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Supplementary Material

This supplementary material contains figures for time series plots of realizations of the models

in Section 4 and the proofs for the main results in the paper.

S1 Figures for Section 4

This section shows figures for time series plots of realizations of the models

in Section 4.



N.H. Chan, W. L. Ng and C.Y. Yau

Realization from ARMA(1,1)−GARCH(1,1) Model 1 for CUSMS/SN−CUSMS
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Realization from ARMA(1,1)−GARCH(1,1) Model 2 for CUSMS/SN−CUSMS
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Figure S.1: Realizations for Models 1 and 2 for CUSMS/SN-CUSMS in Section 4.2 with
m = 1000 and T = 1 without any change-point.
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Realization from ARMA(1,1)−GARCH(1,1) Model A with break size 0.5
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Realization from ARMA(1,1)−GARCH(1,1) Model A with break size 1
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Realization from ARMA(1,1)−GARCH(1,1) Model A with break size 2
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Figure S.2: Realizations for Model A in Section 4.3 with break size ∆ = 0.5, 1 and 2, m = 500,
T = 2, k∗ = 250. The change-points are represented by the vertical dash lines.
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Realization from Model 1 with sigma_epsilon=1
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Realization from Model 2 with sigma_epsilon=1
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Figure S.3: Realizations of Models 1 and 2 with σε = 1 in Section 4.5 with m = 1000 and
T = 1 without any change-point.
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Realization from Model 2 with sigma_epsilon=1
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Realization from Model 2 with sigma_epsilon=2
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Realization from Model 2 with sigma_epsilon=3
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Figure S.4: Realizations of Model 2 with σε = 1, 2 and 3 in Section 4.5 with m = 1000 and
T = 1 without any change-point.
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Realization from Model 1
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Realization from Model 2
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Realization from Model 3
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Figure S.5: Realizations for Models 1, 2 and 3 in Section 4.6 with m = 750, T = 1 and k∗ = 50.
The change-points are represented by the vertical dash lines.
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S2 Proofs

S2.1 Proof in Section 3.3

For simplicity, denote Lj(θ) = L(Xj,θ) and L∗j(θ) = L(X∗j ,θ). Also, let

‖ · ‖ be the maximum norm, i.e., for x = (x1, x2, . . . , xd) ∈ Rd, ‖x‖ =

maxi∈{1,2,...,d} |xi|.

Proof of Theorem 1(a). By Lemma 1 and the continuous mapping theorem,

it suffices to show that

sup
1≤s≤m

∥∥∥∥∥∥
∑s

j=1 Lj(θ̂m)−
(∑s

j=1 Lj(θ0)− s
m

∑m
j=1 Lj(θ0)

)
m

1
2

∥∥∥∥∥∥ p→ 0 . (S2.1)

In the following, we consider

s∑
j=1

Lj(θ̂m) =

(
s∑

j=1

Lj1(θ̂m),
s∑

j=1

Lj2(θ̂m), . . . ,
s∑

j=1

Ljd(θ̂m)

)

and using mean value theorem coordinate-wise, for each i = 1, 2, . . . , d and

for all s = 1, 2, . . . ,m, we have∣∣∣∣∣∣
∑s

j=1 Lji(θ̂m)−
[∑s

j=1 Lji(θ0) +
∑s

j=1 L
′
ji(θ

∗
msi)(θ̂m − θ0)

]
m

1
2

∣∣∣∣∣∣ = 0 ,

(S2.2)

where θ∗msi is between θ̂m and θ0.

Also, by Assumption A.5 and Lemma 1(a) and the uniform law of large
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numbers, we have for all i = 1, 2, . . . , d,

sup
1≤s≤m

∣∣∣∣∣∣
[∑s

j=1 L
′
ji(θ

∗
msi)− sE(L′ji(θ0))

]
(θ̂m − θ0)

m
1
2

∣∣∣∣∣∣
≤ sup

1≤s≤m

∣∣∣∣∣
[∑s

j=1 L
′
ji(θ

∗
msi)− sE(L′ji(θ0))

m

]
√
m(θ̂m − θ0)

∣∣∣∣∣
= |
√
m(θ̂m − θ0)| sup

1≤s≤m

∣∣∣∣∣
∑s

j=1 L
′
ji(θ

∗
msi)− sE(L′ji(θ0))

m

∣∣∣∣∣
= |Op(1)| sup

1≤s≤m

∣∣∣∣∣
∑s

j=1 L
′
ji(θ

∗
msi)− sE(L′ji(θ0))

m

∣∣∣∣∣ p→ 0 , (S2.3)

Using mean value theorem coordinate-wise, for each i = 1, 2, . . . , d and

particularly for s = m, we have∣∣∣∣∣∣
∑m

j=1 Lji(θ̂m)−
[∑m

j=1 Lji(θ0) +
∑m

j=1 L
′
ji(θ

∗
mmi)(θ̂m − θ0)

]
m

∣∣∣∣∣∣ = 0 ,

where θ∗mmi is between θ̂m and θ0. Note that
∑m

j=1 Lji(θ̂m) = 0 by defini-

tion. By the uniform law of large numbers and the positive definiteness of

E(L′j(θ0)), solving the system of linear equations yields

E(L′j(θ0))(1 + op(1))(θ̂m − θ0) = − 1

m

m∑
j=1

Lj(θ0) .

Hence, we have

θ̂m − θ0 =

[
− 1

m
E(L′j(θ0))

−1
m∑
j=1

Lj(θ0)

]
(1 + op(1)) . (S2.4)

Combining (S2.2), (S2.3) and (S2.4), we have

sup
1≤s≤m

∥∥∥∥∥∥
∑s

j=1 Lj(θ̂m)−
(∑s

j=1 Lj(θ0)− s
m

∑m
j=1 Lj(θ0)

)
+ op(1)

(
s
m

∑m
j=1 Lj(θ0)

)
m

1
2

∥∥∥∥∥∥ p→ 0 .

(S2.5)



S2. PROOFS9

Since

sup
1≤s≤m

∥∥∥∥∥ s
m

∑m
j=1 Lj(θ0)

m
1
2

∥∥∥∥∥ = sup
1≤s≤m

∣∣∣ s
m

∣∣∣ ∥∥∥∥∥
∑m

j=1 Lj(θ0)

m
1
2

∥∥∥∥∥ = Op(1) ,

together with (S2.5), we have (S2.1).

By Lemma 1(b), we have for any r ∈ [0, 1] that,

∑bmrc
j=1 Lj(θ̂m)
√
m

D[0,1]−→ M(θ0)
1
2 [Bd(r)− rBd(1)] ,

and thus the results follow from the continuous mapping theorem.

Proof of Theorem 1(b). For T < ∞, similar to the proof of Theorem 1(a),

using mean value theorem on each coordinate i, i.e., for each i = 1, 2, . . . , d

and for all k = 1, 2, . . . ,mT , we have

∣∣∣∣∣∣
∑m+k

j=m+1 Lji(θ̂m)−
[∑m+k

j=m+1 Lji(θ0) +
∑m+k

j=m+1 L
′
ji(θ

∗
mki)(θ̂m − θ0)

]
m

1
2

(
1 + k

m

)
∣∣∣∣∣∣ = 0 ,

(S2.6)

where θ∗mki is between θ̂m and θ0.

Also, by Assumption A.5, Lemma 1(a) and the uniform law of large
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numbers, we have that, for all i = 1, 2, . . . , d,

sup
1≤k≤mT

∣∣∣∣∣∣
[∑m+k

j=m+1 L
′
ji(θ

∗
mki)− kE(L′ji(θ0))

]
(θ̂m − θ0)

m
1
2

(
1 + k

m

)
∣∣∣∣∣∣

≤ sup
1≤k≤mT

∣∣∣∣∣
[∑m+k

j=m+1 L
′
ji(θ

∗
mki)− kE(L′ji(θ0))

m+ k

]
√
m(θ̂m − θ0)

∣∣∣∣∣
= |
√
m(θ̂m − θ0)| sup

1≤k≤mT

∣∣∣∣∣
∑m+k

j=m+1 L
′
ji(θ

∗
mki)− kE(L′ji(θ0))

m+ k

∣∣∣∣∣
= |Op(1)| sup

1≤k≤mT

∣∣∣∣∣
∑m+k

j=m+1 L
′
ji(θ

∗
mki)− kE(L′ji(θ0))

m+ k

∣∣∣∣∣ p→ 0 . (S2.7)

Combining (S2.4), (S2.6) and (S2.7), we have

sup
1≤k≤mT

∥∥∥∥∥∥
∑m+k

j=m+1 Lj(θ̂m)−
(∑m+k

j=m+1 Lj(θ0)− k
m

∑m
j=1 Lj(θ0)

)
+ op(1)

(
k
m

∑m
j=1 Lj(θ0)

)
m

1
2

(
1 + k

m

)
∥∥∥∥∥∥ p→ 0 .

Since

sup
1≤k≤mT

∥∥∥∥∥ k
m

∑m
j=1 Lj(θ0)

m
1
2

(
1 + k

m

) ∥∥∥∥∥ = sup
1≤k≤mT

∣∣∣∣∣ k
m

1 + k
m

∣∣∣∣∣
∥∥∥∥∥
∑m

j=1 Lj(θ0)

m
1
2

∥∥∥∥∥ = Op(1) ,

we have

sup
1≤k≤mT

∥∥∥∥∥∥
∑m+k

j=m+1 Lj(θ̂m)−
(∑m+k

j=m+1 Lj(θ0)− k
m

∑m
j=1 Lj(θ0)

)
m

1
2

(
1 + k

m

)
∥∥∥∥∥∥ p→ 0 .

By Lemma 1(b), we have that for any s ∈ [0, T ],

Sm(bmsc, θ̂m)

m
1
2 (1 + bmsc

m
)

=

∑m+bmsc
j=m+1 Lj(θ̂m)

m
1
2 (1 + bmsc

m
)

D[0,T ]−→ M(θ0)
1
2 [Bd(1 + s)− (1 + s)Bd(1)]

1 + s
.

(S2.8)

Note that {Bd(1 + s) − (1 + s)Bd(1)}s∈[0,T ] is independent of {Bd(r) −
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rBd(1)}r∈[0,1]. Hence, by Theorem 1(a) and (S2.8),

sup
1≤k≤mT

Sm(k, θ̂m)′Dm(θ̂m)−1Sm(k, θ̂m)

m
(
1 + k

m

)2
d−→ sup

0≤s≤T

[Bd(1 + s)− (1 + s)Bd(1)]′V−1 [Bd(1 + s)− (1 + s)Bd(1)]

(1 + s)2
.

Since

P (Tm ≤ mT |H0) = P

(
sup

1≤k≤mT

Sm(k, θ̂m)′Dm(θ̂m)−1Sm(k, θ̂m)

m
(
1 + k

m

)2 > c

)
,

taking limit on both sides yields (3.1).

Proof of Theorem 1(c). For T =∞, by similar arguments as above, we can

show that

sup
1≤k<∞

∥∥∥∥∥∥
∑m+k

j=m+1 Lj(θ̂m)−
(∑m+k

j=m+1 Lj(θ0)− k
m

∑m
j=1 Lj(θ0)

)
m

1
2

(
1 + k

m

)
∥∥∥∥∥∥ p→ 0 .

Thus, it suffices to show that

sup
1≤k<∞

∥∥∥∥∥
∑m+k

j=m+1 Lj(θ0)− k
m

∑m
j=1 Lj(θ0)

m
1
2

(
1 + k

m

) ∥∥∥∥∥ d−→ sup
0≤s<∞

∥∥∥∥∥M(θ0)
1
2 [Bd(1 + s)− (1 + s)Bd(1)]

(1 + s)

∥∥∥∥∥ .
Hence, it in turn suffices to show that

sup
mT≤k<∞

∥∥∥∥∥
∑m+k

j=m+1 Lj(θ0)

m
1
2

(
1 + k

m

) ∥∥∥∥∥ p−→ 0 , (S2.9)

and

sup
T≤s<∞

∥∥∥∥∥M(θ0)
1
2Bd(1 + s)

(1 + s)

∥∥∥∥∥ p−→ 0 . (S2.10)

For (S2.9), by the additional ρ-mixing conditions, we have the ρ-mixing

Hájek-Rényi inequality, see Theorem 1 of Wan (2013). Specifically, for some
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constant c∗, for each i = 1, 2, . . . , d and any ε > 0, we have

P

(
max

mT≤k≤n

∣∣∣∣∣
∑m+k

j=m+1 Lji(θ0)

m
1
2 (1 + k

m
)

∣∣∣∣∣ ≥ ε

)
≤ c∗

ε2

(
m+mT∑
j=m+1

V ar(Lji(θ0))

[m
1
2 (1 + T )]2

)
+4

n∑
j=m+mT+1

V ar(Lji(θ0))

[m
1
2 (1 + j

m
)]2

.

(S2.11)

Next, taking limT→∞ lim supm→∞ limn→∞ on both sides of (S2.11), we have

for ε > 0 that,

lim
T→∞

lim sup
m→∞

lim
n→∞

P

(
sup

mT≤k≤n

∥∥∥∥∥
∑m+k

j=m+1 Lj(θ0)

m
1
2 (1 + k

m
)

∥∥∥∥∥ ≥ ε

)
= 0 .

which yields (S2.9).

For (S2.10), by the law of iterated logarithm, we also have

sup
T≤s<∞

∥∥∥∥∥M(θ0)
1
2Bd(1 + s)

(1 + s)

∥∥∥∥∥ a.s.−→ 0 ,

as T →∞. Thus, we have (S2.10) and hence we have

lim
m→∞

P (Tm <∞|H0)

= P

(
sup

0≤s<∞

[Bd(1 + s)− (1 + s)Bd(1)]′V−1[Bd(1 + s)− (1 + s)Bd(1)]

(1 + s)2
> c

)
.

Note that V is a functional of {Bd(r)}r∈[0,1). Hence, by the independent

increment of the standard Brownian motion, {Bd(1+s)−(1+s)Bd(1)}s∈[0,∞)

is independent of V. By the proof of Theorem 1 in Hušková and Koubková

(2005), we have

{Bd(1 + s)− (1 + s)Bd(1)} d
=

{
(1 + s)B∗d

(
s

1 + s

)}
,
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where B∗d(·) is independent of V. Hence, we have

P

(
sup

0≤s<∞

[Bd(1 + s)− (1 + s)Bd(1)]′V−1[Bd(1 + s)− (1 + s)Bd(1)]

(1 + s)2
> c

)
= P

(
sup

0≤s<∞

[(1 + s)B∗d( s
1+s

)]′V−1[(1 + s)B∗d( s
1+s

)]

(1 + s)2
> c

)

= P

(
sup

0≤s<∞
B∗d
(

s

1 + s

)′
V−1B∗d

(
s

1 + s

)
> c

)
= P

(
sup

0≤u<1
B∗d (u)′V−1B∗d (u) > c

)
,

and the results of Theorem 1(c) follow.

S2.2 Proof in Section 3.4

Proof of Theorem 2. By Assumptions B.1, B.2 and the uniform law of large

numbers, we have

1

m+mT − t∗ + 1

m+mT∑
t=t∗

L∗j(θ̂m) = E(L∗j(θ0)) + op(1) .

Hence, for coordinates i = 1, 2, . . . , d in which E(L∗ji(θ0)) 6= 0, we have

Sm(mT, θ̂m)

m
1
2 (1 + mT

m
)

= m−
1
2 (1 + T )−1

(
t∗−1∑

t=m+1

Lj(θ̂m) +
m+mT∑
t=t∗

L∗j(θ̂m)

)

= Op(1) +
m+mT − t∗ + 1

m
1
2 (1 + T )

(
E(L∗j(θ0)) + op(1)

)
= Op(

√
m) .
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Also, we have

sup
1≤k≤mT

Sm(k, θ̂m)′Dm(θ̂m)−1Sm(k, θ̂m)

m
(
1 + k

m

)2 ≥

(
Sm(mT, θ̂m)

m
1
2 (1 + mT

m
)

)′
Dm(θ̂m)−1

(
Sm(mT, θ̂m)

m
1
2 (1 + mT

m
)

)
→ ∞ ,

as m→∞. As a result,

lim
m→∞

P (Tm ≤ mT |H1) = lim
m→∞

P

(
sup

1≤k≤mT

Sm(k, θ̂m)′Dm(θ̂m)−1Sm(k, θ̂m)

m
(
1 + k

m

)2 > c

∣∣∣∣∣H1

)
→ 1 .

Similar arguments can be applied for the case of open-end procedure. Hence,

the proof is complete.
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