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In this supplementary material, we present proofs of the theorems in the main text and also provide simula-

tion results to support them. We first introduce some notations and a useful technical lemma. We then give

proofs of Proposition 1, Theorems 1–5, and Proposition 4 in Sections S1-S7, respectively. We perform various

simulation studies to verify the proposed theoretical conditions in Section S8.

Before presenting the proofs of the theoretical results, we introduce a useful nota-

tion, the T -matrix T (Q,Θ) of size 2J × 2K . The rows of T (Q,Θ) are indexed by the

2J different response patterns r = (r1, . . . , rJ)
⊤ ∈ {0, 1}J , and columns by attribute

patterns α ∈ {0, 1}K , while the (r,α)th entry of T (Q,Θ), denoted by Tr,α(Q,Θ),

represents the marginal probability that subjects in latent class α provide positive

responses to the set of items {j : rj = 1}, namely

Tr,α(Q,Θ) = P (R ≽ r | Q,Θ,α) =
J󰁜

j=1

θ
rj
j,α.

We denote the αth column vector and the rth row vector of the T -matrix by T·,α(Q,Θ)

1



GU AND XU

and Tr,·(Q,Θ) respectively. Let ej denote the J-dimensional unit vector with the jth

element being one and all the other elements being zero, then any response pattern r

can be written as a sum of some e-vectors, namely r =
󰁓

j:rj=1 ej. The rth element of

the 2J -dimensional vector T (Q,Θ)p is

Tr,·(Q,Θ)p =
󰁛

α∈{0,1}K
Tr,α(Q,Θ)pα = P (R ≽ r | Q,Θ,p).

Based on the T -matrix, there is an equivalent definition of identifiability for (Q,Θ,p).

The T -matrix also has a nice property that will be useful in proving the identifiability

results. These are summarized in the following lemma, whose proof can be found in Xu

(2017).

Lemma 1. Under a restricted latent class model, (Q,Θ,p) are identifiable if and only

if for any (Q,Θ,p) and (Q̄, Θ̄, p̄),

T (Q,Θ)p = T (Q̄, Θ̄)p̄ (S0.1)

implies (Q,Θ,p) = (Q̄, Θ̄, p̄). For any θ∗ = (θ1, . . . , θJ)
⊤ ∈ RJ , there exists an invert-

ible matrix D(θ∗) depending only on θ∗, such that

T (Q,Θ− θ∗1⊤) = D(θ∗)T (Q,Θ). (S0.2)

We introduce some additional notations. For a submatrix Q1 of Q that has size

J1 × K, we denote the item parameter matrix corresponding to these J1 items by

ΘQ1 , then ΘQ1 is a J1 × K submatrix of Θ. Denote Q1’s corresponding T -matrix
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S1. PROOF OF PROPOSITION 1

by T (Q1,ΘQ1), then T (Q1,ΘQ1) has size 2J1 × 2K . For notational simplicity, in the

following we denote c ≡ 1 − s under the DINA model, then Θ = (1 − s, g) = (c, g)

under DINA.

We add some remarks on Lemma 1. First, Equation (S0.1) can be written as that,

for any response pattern r ∈ {0, 1}J , Tr,·(Q,Θ)p = Tr,·(Q̄, Θ̄)p̄. Second, thanks to

(S0.2), for any θ∗ = (θ1, . . . , θJ)
⊤ ∈ RJ , equality (S0.1) leads to

T (Q,Θ− θ∗1⊤)p = T (Q̄, Θ̄− θ∗1⊤)p̄,

and further Tr,·(Q,Θ − θ∗1⊤)p = Tr,·(Q̄, Θ̄ − θ∗1⊤)p̄ for any r ∈ {0, 1}J . Besides,

If (S0.1) holds, then for any submatrix Q1 of Q, equality T (Q1,ΘQ1)p = T (Q̄1, Θ̄Q̄1
)p̄

also holds.

S1. Proof of Proposition 1

Consider a Q-matrix of size J ×K in the form

Q =

󰀳

󰁅󰁅󰁃
Q′

0

󰀴

󰁆󰁆󰁄 ,

where Q′ is of size J ′ × K and contains those nonzero q-vectors of Q. For any item

j ∈ {J ′ + 1, . . . , J} which has qj = 0, all the attribute profiles α satisfy α ≽ qj, so

there is only one item parameter associated with j under Q, and we denote it by θj.

Denote the first J ′ rows of Θ by Θ′. Denote the 2J
′ × 2K T -matrix associated with

matrix Q′ by T ′(Q′,Θ′).
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GU AND XU

First consider the case where (Q′,Θ′,p) are strictly (or generically) identifiable, and

we will show (Q,Θ,p) are also strictly (or generically) identifiable. Assume there is a

J ×K matrix Q̄ and associated parameters (Θ̄, p̄) such that (S0.1) holds. Denote the

submatrix of Q̄ containing its first J ′ rows by Q̄′, and the submatrix of Θ̄ containing

its first J ′ rows by Θ̄
′
. Then (S0.1) implies T (Q′,Θ′)p′ = T (Q̄′, Θ̄

′
)p̄′, and the strict

(or generic) joint identifiability of (Q′,Θ′,p) gives that Q̄′ ∼ Q′ and (Θ̄
′
, p̄) = (Θ′,p).

For an arbitrary RLCM, the strict (or generic) identifiability of (Q′,Θ′,p) implies that

T (Q′,Θ′) has full rank 2K strictly (or generically). This is because if not so, then

the proportion parameters p can not be strictly (or generically) identifiable, in the

sense that there exist multiple different p such that T (Q′,Θ′)p are all equal. This

would contradict the assumption that (Q′,Θ′,p) are strictly (or generically) identifiable.

Therefore T (Q′,Θ′) is strictly (or generically) full-rank. Then for each α ∈ {0, 1}K

there must exist a 2K-dimensional vector vα such that

v⊤
α·T (Q′,Θ′) = v⊤

α·T (Q̄′, Θ̄
′
) = (0, xα󰁿󰁾󰁽󰂀

column α

,0), xα ∕= 0,

and v⊤
α·T (Q′,Θ′)p = v⊤

α·T (Q̄′, Θ̄
′
)p̄ = xαpα ∕= 0. Then again use the property (S0.2)

and we have the following equality for any j ∈ {J ′ + 1, . . . , J},

θj,α =
{Tej ,·(Q,Θ)⊙ [v⊤

α· T (Q′,Θ′)] }p
v⊤
α· T (Q′,Θ′)p

=
{Tej ,·(Q,Θ)⊙ [v⊤

α· T (Q̄′, Θ̄
′
)] }p̄

v⊤
α· T (Q̄′, Θ̄

′
)p̄

= θ̄j,α,

where “⊙” represents the element-wise product of two vectors. This proves Θ = Θ̄ and
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S2. PROOF OF THEOREM 1

Q ∼ Q̄. So (Q,Θ,p) are strictly (or generically) identifiable.

Next consider the case where (Q′,Θ′,p) are not strictly (or generically) identifiable,

so there exist (Q̄′, Θ̄
′
, p̄) ≁ (Q′,Θ′,p) such that T ′(Q̄′, Θ̄

′
)p̄ = T ′(Q′,Θ′)p. Now extend

Q̄′ to Q̄ of size J ×K by adding J − J ′ all-zero q-vectors, i.e.,

Q̄ =

󰀳

󰁅󰁅󰁃
Q̄′

0

󰀴

󰁆󰁆󰁄 ,

and set θ̄j = θj for j ∈ {J ′ + 1, . . . , J}. Then for any r = (r1, . . . , rJ ′ , rJ ′+1, . . . , rJ) ∈

{0, 1}J and the corresponding r′ = (r1, . . . , rJ ′),

Tr,·(Q,Θ)p =
󰁱
T ′
r′,·(Q′,Θ′)p

󰁲 󰁜

j>J ′

θ
rj
j ;

Tr,·(Q̄, Θ̄)p̄ =
󰁱
T ′
r′,·(Q̄′, Θ̄

′
)p
󰁲 󰁜

j>J ′

θ
rj
j .

Now that T (Q,Θ)p = T (Q̄, Θ̄)p̄ but (Q̄, Θ̄, p̄) ≁ (Q,Θ,p), we obtain that (Q,Θ,p)

are not strictly (or generically) identifiable. The proof of the proposition is complete.

S2. Proof of Theorem 1

We first prove the sufficiency, and then show the necessity of the conditions. Under

DINA, (S0.1) can be equivalently written as that for any r ∈ {0, 1}J ,

Tr,·(Q, c, g)p = Tr,·(Q̄, c̄, ḡ)p̄. (S2.3)

We first introduce some notations. In the following discussion, for an integer M , we

denote [M ] = {1, . . . ,M}. For an item set S ⊆ [J ], denote qS = ∨j∈Sqj = (maxj∈S qj,1,
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maxj∈S qj,2, . . . ,maxj∈S qj,K), then qS is also a K-dimensional binary vector, and we

denote its k element by qS,k. Recall

Q =

󰀳

󰁅󰁅󰁃
IK

Q󰂏

󰀴

󰁆󰁆󰁄 ,

and we denote the submatrix of Q̄ consisting of its first K row vectors by Q̄1:K,·. We

next show in five steps that if (S2.3) holds, then Q̄ ∼ Q, and also c = c̄, ḡ = g, p̄ = p.

Step 1. After some column rearrangement, Q̄1:K,· is an upper-triangular matrix with

all the diagonal elements being ones.

Step 2. c̄j = cj for all j ∈ {K + 1, . . . , J}.

Step 3. ḡk = gk for all k ∈ {1, . . . , K}.

Step 4. Q̄1:K,· ∼ IK

Step 5. Q̄ ∼ Q, c = c̄, ḡ = g, p̄ = p.

For any item set S ⊆ {1, . . . , J}, denote cS =
󰁓

j∈S cjej, and denote gS, c̄S, and

ḡS similarly. Consider the response pattern r󰂏 =
󰁓

j∈S ej and any θ󰂏 =
󰁓

j∈S θ
󰂏
jej,

then Equation (S2.3) together with Lemma 1 imply that

Tr󰂏,·(Q, cS − θ󰂏, gS − θ󰂏)p = Tr󰂏,·(Q̄, c̄S − θ󰂏, ḡS − θ󰂏)p̄. (S2.4)

We will frequently use (S2.4) in the following proof. And when the item set S and

response pattern r󰂏 are clearly implied by the definition of θ󰂏, we will omit the subscript

S in the above (S2.4). We also frequently use the fact that when (S2.4) holds, cj ∕= ḡj
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S2. PROOF OF THEOREM 1

and gj ∕= c̄j for any item j. This is true because if cj = ḡj, we would have

Tej ,·(Q, c, g)p = cj(
󰁛

α≽qj

pα) + gj(
󰁛

α⋡qj

pα) < cj = ḡj

≤c̄j(
󰁛

α≽qj

p̄α) + ḡj(
󰁛

α⋡qj

p̄α) = Tej ,·(Q̄, c̄, ḡ)p̄,

which contradicts (S2.3). So cj ∕= ḡj and similarly gj ∕= c̄j for each j. As stated in the

main text, we assume without loss of generality that there is no all-zero row vector in

true Q-matrix. If, however, the jth row vector of Q̄ equals 0, then c̄j would equal ḡj,

and we denote this value by θ̄j. Equation (S2.3) gives

θ̄j = cj

󰀓 󰁛

α:α≽qj

pα

󰀔
+ gj

󰀓 󰁛

α:α⋡qj

pα

󰀔
,

and hence gj < θ̄j < cj holds for this j.

Step 1. In this step we prove that Q̄1:K,· must take the following form after some

column rearrangement,

Q̄1:K,· ∼

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 ∗ . . . ∗

0 1 . . . ∗
...

...
. . .

...

0 0 . . . 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

. (S2.5)

Namely, after properly rearranging the columns of Q̄1:K,·, we have Q̄k,k = 1 and Q̄k,h = 0

for any k > h.

We first introduce the following useful lemma.
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Lemma 2. Suppose the true Q satisfies Condition A that Q1:K = IK. If there exists

an item set S ⊆ {K + 1, . . . , J} such that

max
m∈S

qm,h = 0, max
m∈S

qm,j = 1 ∀j ∈ J

for some attributes h ∈ [K] and a set of attributes J ⊆ [K] \ {h}, then

∨j∈J q̄j ⋡ q̄h.

Proof of Lemma 2. We prove by contradiction. Assume there exist attribute h ∈ [K]

and a set of attributes J ⊆ [K] \ {h}, such that ∨j∈J q̄j ⋡ q̄h; and that there exists

S ⊆ {K + 1, . . . , J} such that maxm∈S qm,h = 0 and maxm∈S qm,j = 1. Define

θ󰂏 = c̄heh +
󰁛

j∈J

ḡjej +
J󰁛

m=K+1

gmem, r󰂏 = eh +
󰁛

j∈J

ej +
J󰁛

m=K+1

em,

and we claim that Tr󰂏,·(Q̄, c̄ − θ󰂏, ḡ − θ󰂏) is an all-zero vector. This is because for

any α ∈ {0, 1}K , the corresponding element in Tr󰂏,α(Q̄, c̄ − θ󰂏, ḡ − θ󰂏) contains a

factor Fα = (θ̄h,α − c̄h)
󰁔

j∈J (θ̄j,α − ḡj). While this factor Fα ∕= 0 only if θ̄h,α = ḡh

and θ̄j,α = c̄j for all j ∈ J , which happens if and only if α ⋡ q̄h and α ≽ q̄j for

all j ∈ J , which is impossible because ∨j∈J q̄j ≽ q̄h by our assumption. So the claim

Tr󰂏,·(Q̄, c̄−θ󰂏, ḡ−θ󰂏) = 0 is proved, and further Tr󰂏,·(Q̄, c̄−θ󰂏, ḡ−θ󰂏)p̄ = 0. Equality

(S2.4) becomes Tr󰂏,·(Q, c−θ󰂏, g−θ󰂏)p̄ = Tr󰂏,·(Q̄, c̄−θ󰂏, ḡ−θ󰂏)p̄ = 0, which leads to

0 = Tr󰂏,·(Q, c− θ󰂏, g − θ󰂏)p = p1(ch − c̄h)
󰁜

j∈J

(cj − ḡj)
󰁜

m>K

(cm − gm),
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S2. PROOF OF THEOREM 1

which is because for any α ∕= 1, we must have α ⋡ qm for somem > K under Condition

C, and hence the element Tr󰂏,α(Q, c−θ󰂏, g−θ󰂏) contains a factor (gm−gm) = 0. Since

cm − gm > 0 for m > K and cj − ḡj ∕= 0, we obtain ch = c̄h.

We remark here that ch = c̄h also implies q̄h ∕= 0, because otherwise we would have

θ̄h = c̄h = ch, which contradicts the gh < θ̄h < ch proved before the current Step 1. This

indicates the Q̄1:K,· can not contain any all-zero row vector, because otherwise q̄j ≽ q̄h

for the all-zero row vector q̄h, which we showed is impossible.

Consider the item set S in the lemma that satisfies S ⊆ {K + 1, . . . , J} such that

maxm∈S qm,h = 0 and maxm∈S qm,j = 1 for all j ∈ J . Define

θ󰂏 = c̄heh +
󰁛

j∈J

ḡjej +
󰁛

m∈S

gmem.

Note that ch = c̄h. The RHS of (S2.4) is zero, and so is the LHS of it. The row vector

Tr󰂏,·(Q, c− θ󰂏, g − θ󰂏) has the following property

Tr󰂏,α(Q, c− θ󰂏, g − θ󰂏)

=

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(gh − c̄h)
󰁔

j∈J (cj − ḡj)
󰁔

m∈S(cm − gm), α ⋡ qh, α ≽ qJ , α ≽ qS;

0, otherwise.

An important observation is that {α ∈ {0, 1}K : α ⋡ qh, α ≽ qJ , α ≽ qS} = A ∕= ∅.

This is because qS,h = 0 and qS,j = 1 for all j ∈ J hold, and we can just choose α for

which αh = 0 and αk = 1 for all qS,k = 1, then such α belongs to the set A. Therefore
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we have

Tr󰂏,·(Q, c− θ󰂏, g − θ󰂏)p

= (gh − c̄h)
󰁜

j∈J

(cj − ḡj)
󰁜

m∈S

(cm − gm)
󰀓󰁛

α∈A

pα

󰀔
= 0,

which leads to a contradiction since gh − c̄h ∕= 0, cj − ḡj ∕= 0, cm − gm ∕= 0 and

󰁓
α∈A pα > 0, i.e., every factor in the above product is nonzero. This completes the

proof of Lemma 2.

We now proceed with the proof of Step 1 using an induction argument. We first

introduce the definition of lexicographic order between two binary vectors of the same

length. Specifically, for two binary vectors a = (a1, . . . , aL)
⊤ and b = (b1, . . . , bL)

⊤ both

of length L, we say a is of smaller lexicographic order than b and denote a ≺lex b, if

either a1 < b1, or there exists a integer l ∈ {2, . . . , L} such that al < bl and am = bm

for all m = 1, . . . , l − 1. It is not hard to see when Condition B that Q󰂏 contains

K distinct column vectors is satisfied, the K columns of Q󰂏 can be arranged in an

increasing lexicographic order. Namely, under Condition B, there exists a permutation

map σ(·) : [K] → [K] such that

Q󰂏
,σ(1) ≺lex Q

󰂏
,σ(2) ≺lex · · · ≺lex Q

󰂏
,σ(K). (S2.6)

Without loss of generality, next we consider the case where σ(·) is the identity map,

i.e., σ(k) = k for all k ∈ [K].

We first consider attribute 1. Since Q󰂏
,1 has the smallest lexicographic order among
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S2. PROOF OF THEOREM 1

the columns of Q󰂏, we have the conclusion that there must exist an item set S ⊆

{K + 1, . . . , J} such that

qS,1 = 0, qS,ℓ = 1 ∀ℓ = 2, . . . , K.

We apply Lemma 2 to obtain ∨ℓ∈{2,...,K}q̄ℓ ⋡ q̄1, which means

( max
m∈{2,...,K}

q̄ℓ,1, max
m∈{2,...,K}

q̄ℓ,2, . . . , max
m∈{2,...,K}

q̄ℓ,K)

⋡ (q̄1,1, . . . , q̄1,K).

This implies there must exist an attribute m1 ∈ [K] such that

max
k∈[K]\{1}

q̄k,m1 = 0, q̄1,m1 = 1, (S2.7)

which exactly says the m1-th column vector of Q̄1:K,· must equal the basis vector

( 1󰁿󰁾󰁽󰂀
column 1

,0)⊤ = e1, i.e., we have Q̄1:K,m1 = e1.

Now we assume as the inductive hypothesis that for h ∈ [K] and h > 1, we have a

distinct set of attributes {m1, . . . ,mh−1} ⊆ [K] such that their corresponding column

vectors in Q̄1:K,· satisfy

∀i = 1, . . . , h− 1, Q̄1:K,mi
= (∗, . . . , ∗, 1󰁿󰁾󰁽󰂀

column i

, 0, . . . , 0)⊤. (S2.8)

Now we focus on attribute h. By (S2.6), the column vector Q󰂏
,h has the smallest lex-

icographic order among the K − h − 1 columns in {Q󰂏·,h, Q󰂏·,h+1
, . . . , Q󰂏·,K}, there-

fore similar to the argument in the previous paragraph, there must exist an item set
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S ⊆ {K + 1, . . . , J} such that

qS,h = 0, qS,ℓ = 1 ∀ℓ = h+ 1, . . . , K. (S2.9)

Therefore Lemma 2 implies ∨ℓ∈{h+1,...,K}q̄ℓ ⋡ q̄1, and further leads to

max
ℓ∈{h+1,...,K}

q̄ℓ,mh
= 0, q̄h,mh

= 1. (S2.10)

We point out that mh ∕∈ {m1, . . . ,mh−1}, because by the induction hypothesis (S2.8) we

have q̄h,mi
= 0 for i = 1, . . . , h−1. So {m1, . . . ,mh−1,mh} contains h distinct attributes.

Furthermore, (S2.10) gives that Q̄·,mh
= (∗, . . . , ∗, 1󰁿󰁾󰁽󰂀

column h

, 0, . . . , 0)⊤, which generalizes

(S2.8) by extending h − 1 there to h. Therefore, we use the induction argument to

obtain

∀k ∈ {1, . . . , K − 1}, Q̄1:K,mk
= (∗, . . . , ∗, 1󰁿󰁾󰁽󰂀

column k

, 0, . . . , 0)⊤.

Furthermore, when considering the last attribute K, the Kth item must have q-vector

taking the form of q̄K = (0, . . . , 0, ∗󰁿󰁾󰁽󰂀
column mK

, 0, . . . , 0), where the “∗” in q̄K is the only

element unspecified. Since previously we have shown in the proof of Lemma 2 that

q̄j = 0 can not happen for any item j, there must be q̄K = (0, . . . , 0, 1󰁿󰁾󰁽󰂀
column mK

, 0, . . . , 0).

Now we have essentially obtained

Q̄1:K, (m1,...,mK) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 ∗ . . . ∗

0 1 . . . ∗
...

...
. . .

...

0 0 . . . 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

, (S2.11)
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S2. PROOF OF THEOREM 1

and the conclusion of Step 1 in (S2.5) is proved.

Step 2. In this step we prove cj = c̄j for j = K + 1, . . . , J . For an arbitrary item

j ∈ {K + 1, . . . , J}, define a response vector r∗ =
󰁓

h:h ∕=j ej and

θ∗ =
K󰁛

h=1

ḡheh +
󰁛

h>K, h ∕=j

gheh.

We claim that Tr∗,·(Q̄, c̄−θ∗, ḡ−θ∗) contains only one nonzero element corresponding to

the all-one attribute pattern α = 1. The reasoning is as follows. Under the conclusion of

Step 1, Q̄1:K,· takes the form of (S2.5), which means each attribute is required by at least

one item in {q̄1, . . . , q̄K}. Then for any α ∕= 1, there must exist some attribute k ∈ [K]

such that α ⋡ q̄k, which implies for this particular α the element Tr∗,α(Q̄, c̄−θ∗, ḡ−θ∗)

contains a factor (ḡh − ḡh) = 0. Therefore Tr∗,α(Q̄, c̄ − θ∗, ḡ − θ∗) ∕= 0 only if α = 1.

Next consider Tr∗,α(Q, c−θ∗, g−θ∗). Under Condition A, in the true Q each attribute

is required by at least three items, so the row vector corresponding to response pattern

r∗ in T (Q, c − θ∗, g − θ∗) only contains one nonzero element, in column α = 1⊤
K ,

representing the attribute profile mastering all the K attributes. This is because for

any other attribute profile α′ that lacks at least one attribute k, there must be some

item h > K, h ∕= j requiring attribute k so that α′ ⋡ qh; and this results in θeh,α′ = gh

and Tr∗,α′(Q, c− θ∗, g − θ∗) = 0. In summary,

Tr∗,α(Q, c− θ∗, g − θ∗) =
K󰁜

h=1

(θh,α − ḡh)
󰁜

h>K:
h ∕=j

(θh,α − gh) ∕= 0 iff α = 1;

13
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Tr∗,α(Q̄, c̄− θ∗, ḡ − θ∗) =
K󰁜

h=1

(θ̄h,α − ḡh)
󰁜

h>K:
h ∕=j

(θ̄h,α − gh) ∕= 0 iff α = 1.

Now further consider item j. Since 1⊤
K ≽ qj and 1⊤

K ≽ q̄j, one must have θj,1⊤
K
= cj

and θ̄j,1⊤
K
= c̄j. Since we assume pα > 0 for each α, we have Tr∗,·(Q, c−θ∗, g−θ∗)p =

Tr∗,1⊤
K
(Q, c− θ∗, g − θ∗)p1⊤

K
∕= 0. So (S0.2) in Lemma 1 implies that

cj =
Tr∗+ej ,·(Q, c− θ∗, g − θ∗)p

Tr∗,·(Q, c− θ∗, g − θ∗)p
=

Tr∗+ej ,·(Q̄, c̄− θ∗, ḡ − θ∗)p̄

Tr∗,·(Q̄, c̄− θ∗, ḡ − θ∗)p̄
= c̄j.

In the above argument j is arbitrary, so cj = c̄j for any j = K + 1, . . . , J .

Step 3. In this step we prove gk = ḡk for k = 1, . . . , K. Recall that in Step 1 we

showed that (S2.6) about the lexicographic order holds and assumed σ(k) = k for

k ∈ [K] without loss of generality. We now prove g1 = ḡ1. Define

θ∗ =
K󰁛

h=1

ḡheh +
󰁛

h>K:
qh,1=0

gheh +
󰁛

h>K:
qh,1=1

cheh, (S2.12)

then

T󰁓
h eh,α(Q, c− θ∗, g − θ∗) =

K󰁜

h=1

(θh,α − ḡh)
󰁜

h>K:
qh,1=0

(θh,α − gh)
󰁜

h>K:
qh,1=1

(θh,α − ch);

T󰁓
h eh,α(Q̄, c̄− θ∗, ḡ − θ∗) =

K󰁜

h=1

(θ̄h,α − ḡh)
󰁜

h>K:
qh,1=0

(θ̄h,α − gh)
󰁜

h>K:
qh,1=1

(θ̄h,α − ch).

First, the row vector T󰁓J
h=1 eh,·(Q̄, c̄−θ∗, ḡ−θ∗) equals the zero vector. This is because

Q̄1:K,· takes the form in (S2.5) by Step 1, and any attribute profile α ∕= 1⊤
K would have

θ̄h,α = ḡh for some h ∈ {1, . . . , K}, which makes the corresponding element in the

above row vector zero. Furthermore, T󰁓J
h=1 eh,1

⊤
K
(Q̄, c̄−θ∗, ḡ−θ∗) is also zero, because

14
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θ̄h,α = c̄h = ch for those h > K such that qh,1 = 1. Since Q󰂏·,1 has the smallest

lexicographic order among the columns of Q󰂏, for any k ∈ {2, . . . , K}, there must exist

some item h ∈ {K + 1, . . . , J} that requires attribute 1, as a result

∨h>K: qh,1=0 qh = (0, 1, . . . , 1).

This ensures T󰁓J
h=1 eh,α

(Q, c−θ∗, g−θ∗) would equal zero if α lacks any attribute other

than the first one. So the nonzero elements in the row vector T󰁓J
h=1 eh,·(Q, c−θ∗, g−θ∗)

can only correspond to columns α1 = (0, 1, . . . , 1) or α2 = 1⊤
K . Further, we claim

T󰁓J
h=1 eh,α

2(Q, c − θ∗, g − θ∗) = 0, this is because θh,α = ch for those h such that

qh,1 = 1. So the row vector T󰁓J
h=1 eh,·(Q, c − θ∗, g − θ∗) only contains one potentially

nonzero element in column α1 = (0, 1, . . . , 1) as follows

T󰁓J
h=1 eh,α1

(Q, c−θ∗, g−θ∗) = (g1−ḡ1)
K󰁜

h=2

(ch−ḡh)
󰁜

h>K:
qh,1=0

(ch−gh)
󰁜

h>K:
qh,1=1

(gh−ch). (S2.13)

Using the fact T󰁓J
h=1 eh,·(Q̄, c̄− θ∗, ḡ − θ∗) = 02K , the equality

T󰁓J
h=1 eh,α

1(Q, c− θ∗, g − θ∗)p = T󰁓J
h=1 eh,α

1(Q̄, c̄− θ∗, ḡ − θ∗)p̄ = 0

implies the element in (S2.13) must also be zero. As shown earlier, ch − ḡh ∕= 0 for any

h, so g1 = ḡ1 must hold.

Next we use an induction argument to prove that for k = 2, . . . , K, gk = ḡk. In

particular, suppose for any 1 ≤ m ≤ k − 1, we already have gm = ḡm. Define

θ∗ =
K󰁛

h=1

ḡheh +
󰁛

h>K: qh,k=0

gheh +
󰁛

h>K: qh,k=1

cheh. (S2.14)
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For the similar reason as stated before, T󰁓J
h=1 eh,·(Q̄, c̄ − θ∗, ḡ − θ∗) equals the zero

vector. We claim that the row vector T󰁓J
h=1 eh,·(Q, c − θ∗, g − θ∗) only contains one

potentially nonzero element in column α′ := (1, . . . , 1, 0󰁿󰁾󰁽󰂀
column k

, 1, . . . , 1). The reason

is as follows. On the one hand, for any attribute profile α that lacks some attribute

l ∈ {k + 1, . . . , K}, due to the assumption in (S2.6) that Q∗·,k ≺lex Q∗·,l, there must

exist some item h > K such that qh,k = 0, qh,l = 1. So for this particular α we

have α ⋡ qh, θh,α = gh, which makes T󰁓J
h=1 eh,α

(Q, c − θ∗, g − θ∗) = 0. On the

other hand, for any attribute profile α′ that lacks some attribute m ∈ {1, . . . , k − 1},

one has α′ ⋡ qm = em and θm,α′ = gm = ḡm, where the last equality gm = ḡm

comes from the induction assumption. This results in T󰁓J
h=1 eh,α

′(Q, c−θ∗, g−θ∗) = 0

for all such α′. In conclusion, the nonzero elements in this transformed row vector

can only be in columns α′ or α2 = 1⊤
K . For similar reason as in proving g1 = ḡ1,

T󰁓J
h=1 eh,α2

(Q, c − θ∗, g − θ∗) = 0. So the transformed row vector only contains one

potentially nonzero entry corresponding to α′:

T󰁓
h eh,α′(Q, c− θ∗, g − θ∗)

= (gk − ḡk)
󰁜

1≤h≤K:
h ∕=k

(ch − ḡh)
󰁜

h>K:
qh,k=0

(ch − gh)
󰁜

h>K:
qh,k=1

(gh − ch).

The same argument after (S2.13) gives gk = ḡk. In conclusion, the induction method

yields gk = ḡk for k = 1, . . . , K.

Step 4. In this step we show that Q̄1:K,· ∼ IK . Recall that in Step 1 we already

16
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obtained (S2.11), and now we aim to show that the Q̄1:K, (m1,...,mK) in (S2.11) can be

further written as

Q̄1:K, (m1,...,mK) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

We now claim that q̄j ⋡ q̄h for any 1 ≤ j < h ≤ K. If this claim is true, then

Q̄1:K, (m1,...,mK) = IK must hold and the conclusion Q̄1:K,· ∼ IK is reached. We next

prove that claim by contradiction. If there exist some 1 ≤ j < h ≤ K such that q̄j ≽ q̄h,

then define

θ󰂏 = c̄heh + ḡjej +
J󰁛

m=K+1

gmem,

we have

0 = Tr󰂏,·(Q̄, c̄− θ󰂏, ḡ − θ󰂏)p̄

= Tr󰂏,·(Q, c− θ󰂏, g − θ󰂏)p

= p1(ch − c̄h)(cj − ḡj)
J󰁜

m=K+1

(cm − gm),

which implies ch = c̄h. Note that we have obtained gj = ḡj in Step 3, and we next

define θ󰂏 = c̄heh+ ḡjej. The equality Tr󰂏,·(Q̄, c̄−θ󰂏, ḡ−θ󰂏)p̄ = 0 still holds and (S2.4)

gives

0 = Tr󰂏,·(Q, c− θ󰂏, g − θ󰂏)p (S2.15)

17



GU AND XU

= (gh − c̄h)(cj − ḡj)
󰀓 󰁛

α:α⋡qh,α≽qj

pα

󰀔

= (gh − ch)(cj − gj)
󰀓 󰁛

α:α⋡qh,α≽qj

pα

󰀔
.

Since Q1:K,· = IK , we have that qj and qh in the true Q are distinct basis vectors,

therefore
󰀓󰁓

α:α⋡qh,α≽qj
pα

󰀔
> 0. Therefore (S2.15) leads to a contradiction, and we

have proved the claim that q̄j ⋡ q̄h for any 1 ≤ j < h ≤ K. As stated earlier, this

claim naturally leads to the conclusion of Step 3 that Q̄1:K,· ∼ IK .

Step 5. In this step we prove that after reordering the columns in Q̄ such that Q̄1:K =

IK , we must have qj = q̄j for j = K + 1, . . . , J . In the following two parts, we first

prove q̄j ≽ qj for all j ∈ {K + 1, . . . , J} in part (a); and then prove q̄j = qj for all

j ∈ {K + 1, . . . , J} in part (b).

(a) We next show q̄j ≽ qj for all j ∈ {K + 1, . . . , J}. We use proof by contradiction,

and assume q̄j ⋡ qj for some j ∈ {K + 1, . . . , J}. Then {α : α ≽ q̄j, α ⋡ qj} =

A ∕= ∅ and
󰁓

α∈A pα ∕= 0. Define

θ∗ =
󰁛

k∈[K]: q̄j,k=1

gkek + cjej, (S2.16)

then Tr∗,·(Q̄, c̄− θ∗, ḡ − θ∗) = 0 and Tr∗,·(Q̄, c̄− θ∗, ḡ − θ∗)p̄ = 0. However, for

any α ∈ A, one has θj,α = gj and θk,α = ck for any k s.t. q̄j,k = 1, so for any

18
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α ∈ A we have

Tr∗,α(Q, c− θ∗, g − θ∗) =
󰁜

1≤k≤K:
qj,k=1

(θk,α − gk)(θj,α − cj)

=
󰁜

1≤k≤K:
qj,k=1

(ck − gk)(gj − cj) ∕= 0,

and hence

Tr∗,·(Q, c− θ∗, g − θ∗)p =
󰁜

1≤k≤K:
qj,k=1

(ck − gk)(gj − cj)
󰁛

α∈A

pα

∕= 0 = Tr∗,·(Q̄, c̄− θ∗, ḡ − θ∗)p̄,

which contradicts (S2.3).

(b) Based on (a), we next show q̄j = qj for all j ∈ {K + 1, . . . , J} using proof by

contradiction. Since part (a) gives q̄j ≽ qj, if q̄j ∕= qj, then there must exist some

attribute k ∈ [K] such that q̄j,k = 1 and qj,k = 0. This implies q̄j ≽ q̄k. Define

θ󰂏 = c̄kek + ḡjej +
󰁛

m>K:m ∕=j

gmem,

then Tr󰂏,·(Q̄, c̄ − θ󰂏, ḡ − θ󰂏)p̄ = 0. Since Condition C holds, each attribute

is required by at least one item in the set {m > K : m ∕= j}, which implies

Tr󰂏,α(Q, c− θ󰂏, g − θ󰂏) ∕= 0 only if α = 1. Therefore (S2.4) gives that

0 = Tr󰂏,·(Q, c− θ󰂏, g − θ󰂏)p

= (ck − c̄k)(cj − ḡj)
󰁜

m>K:m ∕=j

(cm − gm)p1,
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so ck = c̄k. Now we further define

θ󰂏 = c̄kek + ḡjej +
󰁛

h∈[K]\{k}

gmem,

then Tr󰂏,·(Q̄, c̄− θ󰂏, ḡ− θ󰂏)p̄ = 0. However, qj ⋡ qk under the true Q, and (S2.4)

gives

Tr󰂏,·(Q, c− θ󰂏, g − θ󰂏)p = (gk − c̄k)
󰁜

h∈[K]\{k}

(ch − gh)(cj − ḡj)pα−ek ,

where α − ek = (1, 0󰁿󰁾󰁽󰂀
column k

,1), so the above display is nonzero. This contradicts

(S2.4), and this means q̄j ∕= qj can not happen. So we have q̄j = qj for j ∈

{K + 1, . . . , J}.

Now we have proved Q ∼ Q̄. Now that Q ∼ Q̄, Theorem 1 in Gu and Xu (2018b)

gives that Conditions A and B ensure the identifiability of the model parameters (s :=

1− c, g,p). This concludes the proof of the sufficiency of the conditions.

In the end we show the necessity of the conditions. By Theorem 1 in Gu and Xu

(2018b), Conditions A and B are necessary for identifiability of the model parameters

(s, g,p) given a known Q, so they are also necessary for identifiability of (Q, s, g,p).
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S3. Proof of Theorem 2

Proof of the necessity of each attribute required by ≥ 2 items. Suppose Q

takes the form of

Q =

󰀳

󰁅󰁅󰁃
1 0⊤

0 Q󰂏

󰀴

󰁆󰁆󰁄 ,

then for any valid (c, g,p) associated with Q, we next construct (c̄, ḡ, p̄) ∕= (c, g,p)

such that T (Q, c, g)p = T (Q, c̄, ḡ)p̄ holds. In particular, we arbitrarily choose c̄1 that

is not equal to c1 = 1− s1 and set

p̄α =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(c1/c̄1)pα, if α1 = 1,

pα + (1− c1/c̄1)pα+e1 , if α1 = 0.

Then set ḡ1 = g1, and c̄j = cj, ḡj = gj for j = 2, . . . J . Then it is not hard to check

that T (Q, c, g)p = T (Q, c̄, ḡ)p̄. Since (c, g,p) are arbitrary, we have shown the non-

identifiability set spans the entire parameter space and (Q, c, g,p) are not generically

identifiable. Therefore, this proves that (Q, c, g,p) are not generically identifiable if

some attribute is required by only one item.

In the following we prove part (a), (b), and (c) when some attribute is required by

only two items.
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Proof of Part (a). Under the assumption of part (a), Q takes the form

Q =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

1 0⊤

1 1⊤

0 Q󰂏

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
.

Given arbitrary DINA model parameters (c, g,p) under this Q, we next construct

another different set of DINA parameters (c̄, ḡ, p̄) ∕= (c, g,p) also associated with this

Q, such that

T (Q, c, g)p = T (Q, c̄, ḡ)p̄. (S3.17)

In particular, we set c̄j = cj and ḡj = gj for all j = 3, . . . , J . Under this construction,

(S3.17) simplifies to the following two sets of equations

∀α′ ∈ {0, 1}K−1, α′ ∕= 1,

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

p(0,α′) + p(1,α′) = p̄(0,α′) + p̄(1,α′),

g1p(0,α′) + c1p(1,α′) = ḡ1p̄(0,α′) + c̄1p̄(1,α′),

g2[p(0,α′) + p(1,α′)] = ḡ2[p̄(0,α′) + p̄(1,α′)],

g2[g1p(0,α′) + c2p(1,α′)] = ḡ2[ḡ1p̄(0,α′) + c̄1p̄(1,α′)];

(S3.18)
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and for α′ = 1,

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

p(0,1) + p(1,1) = p̄(0,1) + p̄(1,1),

g1p(0,1) + c1p(1,1) = ḡ1p̄(0,1) + c̄1p̄(1,1),

g2p(0,1) + c2p(1,1) = ḡ2p̄(0,1) + c̄2p̄(1,1),

g1g2p(0,1) + c1c2p(1,1) = ḡ1ḡ2p̄(0,1) + c̄1c̄2p̄(1,1).

(S3.19)

The above (S3.18) obviously leads to ḡ2 = g2, and the last two equations of (S3.18)

are automatically satisfied if the first two of (S3.18) are satisfied. Then the last two

equations of (S3.19) can be transformed to

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(c2 − g2)p(1,1) = (c̄2 − g2)p̄(1,1),

c1(c2 − g2)p(1,1) = c̄1(c̄2 − g2)p̄(1,1);

which gives c̄1 = c1. Additionally, when c̄1 = c1, we also have that the last equality

of (S3.19) holds as long as the first three equalities of (S3.19) hold. In summary, now

there are 2K +2 parameters to be determined, which are {ḡ1, c̄2}∪ {p̄α : α ∈ {0, 1}K},

while they only have to satisfy the following 2× (2K−1 − 1) + 3 = 2K + 1 constraints,

∀α′ ∈ {0, 1}K−1, for α′ ∕= 1,

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

p(0,α′) + p(1,α′) = p̄(0,α′) + p̄(1,α′),

g1p(0,α′) + c1p(1,α′) = ḡ1p̄(0,α′) + c1p̄(1,α′);
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and for α′ = 1,

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

p(0,1) + p(1,1) = p̄(0,1) + p̄(1,1),

g1p(0,1) + c1p(1,1) = ḡ1p̄(0,1) + c1p̄(1,1),

g2p(0,1) + c2p(1,1) = g2p̄(0,1) + c̄2p̄(1,1).

Since the number of free variables 2K + 2 is greater than the number of constraints

2K +1, there exist infinitely many different solutions to the above system of equations.

This means that the (Q, s, g,p) are not generically identifiable. In particular, one can

arbitrarily choose ḡ1 close to but not equal to g1, then solve for the remaining parameters

{p̄α, α ∈ {0, 1}K} and c̄2 as follows,

∀α′ ∈ {0, 1}K−1,

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

p̄(0,α′) = p(0,α′)(g1 − c1)/(ḡ1 − c1),

p̄(1,α′) = p(0,α′) + p(1,α′) − p̄(0,α′);

c̄2 =
g2[p(0,1) − p̄(0,1)] + c2p(1,1)

p̄(1,1)
.

This concludes the proof of part (a) of the theorem.

Next we first prove (b.2), i.e. when Q󰂏 has two submatrices IK−1. In this case, the

Q contains a submatrix of the form (IK , IK)
⊤. The proof of (b.1), i.e. when Q󰂏 satisfies

Conditions A, B and C, is combined with the proof of part (c) later.

Proof of Part (b.2). We first give the proof when Q only consists of two IK ’s, namely

Q = (IK , IK)
⊤. In this case, we first prove that Q̄ ∼ Q must hold, using an argument

similar to Step 1 of the proof of Theorem 1. Suppose T (Q, c, g)p = T (Q̄, c̄, ḡ)p̄. Since
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Q(K+1):(2K),· = IK , we have that for each attribute h ∈ [K], there is

max
m∈{K+1,...,2K},

m ∕=K+h

qm,h = 0, max
m∈{K+1,...,2K}

qm,k = 1 ∀k ∈ [K] \ {h}.

Therefore we can apply Lemma 2 with S = {K+1, . . . , 2K}\{K+h} and J = [K]\{h}

to obtain

max
k∈J

q̄k ⋡ q̄h.

This essentially implies that for an arbitrary h ∈ [K], there must be a mh ∈ [K]

such that q̄h,mh
= 0 and q̄k,mh

= 0 for all k ∈ [K] \ {h}. Moreover, the K integers

m1,m2, . . . ,mK must all be distinct, otherwise it is easy to see maxk∈J q̄k ⋡ q̄h would

fail to hold for some h ∈ [K]. So (m1,m2, . . . ,mK) is a permutation of (1, 2, . . . , K).

Now we have obtained that Q̄1:K,(m1,...,mK) must be an identity matrix, i.e., Q̄1:K,· ∼

Q1:K,·. Reasoning in exactly the same way gives Q̄(K+1):(2K),· ∼ Q(K+1):(2K),·, and we

have Q̄ ∼ Q. Now for an arbitrary α = (α1,α2, . . . ,αK) ≡ (α1,α
′), define

θ∗ =ḡ1e1 + c̄K+1eK+1 +
󰁛

k>1:αk=1

gkek +
󰁛

k>1:αk=0

ckek

≡ḡ1e1 + c̄K+1eK+1 + θα

then Te1+eK+1
(Q, s̄− θ∗, ḡ − θ∗) = 0, so

0 =Te1+eK+1
(Q, s̄− θ∗, ḡ − θ∗)p̄ = Te1+eK+1

(Q, s− θ∗, g − θ∗)p

=
󰁜

k>1:αk=1

(ck − gk)×
󰁜

k>1:αk=0

(gk − ck)×

󰁫
(g1 − ḡ1)(gK+1 − c̄K+1)p(0,α2,...,αK) + (c1 − ḡ1)(cK+1 − c̄K+1)p(1,α2,...,αK)

󰁬
.
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This implies that for any α′ = (α2, . . . ,αK) ∈ {0, 1}K−1, we have

(g1 − ḡ1)(gK+1 − c̄K+1)p(0,α2,...,αK) + (c1 − ḡ1)(cK+1 − c̄K+1)p(1,α2,...,αK) = 0.

Since gK+1 − c̄K+1 ∕= 0, we have that

g1 − ḡ1 =
(c1 − ḡ1)(cK+1 − c̄K+1)p(1,α′)

(c̄K+1 − gK+1)p(0,α′)
, for any α′ ∈ {0, 1}K−1.

This equality indicates that if there exists α′
1 ∕= α′

2 such that

p(1,α′
1)

p(0,α′
1)

∕=
p(1,α′

2)

p(0,α′
2)

, (S3.20)

then one must have

cK+1 − c̄K=1 = 0, g1 − ḡ1 = 0.

Redefine θ∗ = c̄1e1 + ḡK+1eK+1 + θα, then following the same procedure as above one

gets that if p satisfy (S3.20), then gK+1 − ḡK=1 = 0 and c1 − c̄1 = 0.

Similarly as the above procedure for k = 1, we have that if for any attribute k ∈

{1, . . . , K}, there exist two attribute profiles αk,1,αk,2 ∈ {0, 1}k−1 × {0}× {0, 1}K−k−1

such that

pαk,1+ek

pαk,1

∕=
pαk,2+ek

pαk,2

, (S3.21)

then

ḡk = gk, c̄k = ck , ḡK+k = gK+k, c̄K+k = cK+k for every k ∈ {1, . . . , K}.

Now that all the item parameters are identified under (S3.21), Equation (S3.22) gives

p̄ = p. Therefore other than the measure zero set of the parameter space specified by
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constraints (S3.21), (Q, s, g,p) are identifiable. This means (Q, s, g,p) are generically

identifiable.

In particular, if Q takes form of the Q2×4 in (3.5),

Q2×4 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0

0 1

1 0

0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

then constraints (S3.21) just simplify to

p(10)
p(00)

∕=
p(11)
p(01)

and
p(01)
p(00)

∕=
p(11)
p(10)

,

which can be equivalently written as inequality (3.6) that p(01)p(10) ∕= p(00)p(11) in the

main text.

Next we prove the conclusion when Q contains other rows besides the two identity

submatrices, namely Q = (IK , IK , (Q
󰂏)⊤)⊤. Using exactly the same arguments as

previously we have that generically, all the item parameters of the first 2K items as well

as all the proportion parameters are satisfied. Now for any J > 2K and α ∈ {0, 1}K

define r∗ =
󰁓K

k=1 ej and

θ∗ =
󰁛

1≤k≤K:α≽qj

gjej +
󰁛

1≤k≤K:α⋡qj

cjej,

then (S0.2) implies that

θj,α =
Tr∗+ej(Q, c− θ∗, g − θ∗)p

Tr∗(Q, c− θ∗, g − θ∗)p
=

Tr∗+ej(Q̄, c̄− θ∗, ḡ − θ∗)p̄

Tr∗(Q̄, c̄− θ∗, ḡ − θ∗)p̄
= θ̄j,α.
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This proves that any slipping or guessing parameter associated with item j > 2K is

identifiable under the generic constraints (S3.21), and this completes the proof of part

(b.2) of the theorem.

Next we prove (b.1) and (c) in Theorem 2 in four steps.

Proof of Part (b.1) and Part (c).

Step 1. In this step, we aim to show that if

Tr,·(Q, s, g)p = Tr,·(Q̄, s̄, ḡ)p̄ for every r ∈ {0, 1}J , (S3.22)

then Q̄ must take the following form up to column permutation

Q̄ =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

1 0

ū v̄

0 Q󰂏

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
. (S3.23)

Here (ū, v̄) is a K dimensional binary vector. The structure of (ū, v̄) will be studied in

Steps 2 and 3.

Since the submatrix Q󰂏 of Q satisfies Conditions A, B and C, the matrix Q can be

written as

Q =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0⊤

1 v⊤

0 IK−1

0 Q󰂏󰂏

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,
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then follow the same procedure as Step 1 in the proof of Theorem 1 one has that, up

to some column permutation, Q̄ takes the form

Q̄ =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0⊤

ū v̄⊤

0 IK−1

b̄ Q̄󰂏󰂏

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

For notational convenience and without loss of generality, in the following proof we

rearrange the order of the row vectors of Q (and Q̄) and rewrite them as follows

Q =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0⊤

0 IK−1

1 v⊤

0 Q󰂏󰂏

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

, Q̄ =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0⊤

0 IK−1

ū v̄⊤

b̄ Q̄󰂏󰂏

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

. (S3.24)

Now that each column of Q󰂏󰂏 contains at least two entries of “1” from the assumption of

scenarios (b.1) and (c), following the same procedure as Step 2 in the proof of Theorem

1 we can obtain

cj = c̄j, for j = K + 2, . . . , J.

Note that slightly different from Step 2 in the proof of Theorem 1, here we do not have

cK+1 = c̄K+1 due to the fact that the first attribute is required by only two items.

Now denote the (J − K) × (K − 1) bottom-right submatrix of Q by Qs and the
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(J −K)×K bottom submatrix of Q by Ql, i.e.,

Qs =

󰀳

󰁅󰁅󰁃
v⊤

Q󰂏󰂏

󰀴

󰁆󰁆󰁄 , Ql =

󰀳

󰁅󰁅󰁃
1 v⊤

0 Q󰂏󰂏

󰀴

󰁆󰁆󰁄

and assume without loss of generality that the K−1 column vectors of Qs are arranged

in the lexicographic order. Specifically, for any 1 ≤ k1 < k2 ≤ K − 1, assume Qs·,k1 ≺lex

Qs·,k2 . This implies that the vector v can be written as

v = (0, . . . , 0, 1, . . . , 1)

Note that in scenario (b.1), v = 0 and k0 = K − 1. where its first k0 elements are zero

and the remain K− 1− k0 elements are one. So q2 = (1,v) = (1, 0, . . . , 0, 1, . . . , 1). We

now use an induction method to prove that

gk = ḡk, ∀k = 2, . . . , 1 + k0. (S3.25)

A key observation is that if considering the order of the columns of the larger submatrix

Ql instead of Qs, then the first column of Ql, i.e. Ql·,1 is of larger lexicographic order

of Ql·,k for any k = 2, . . . , 1 + k0. This indicates that we can follow a similar induction

argument as Step 3 in the proof of Theorem 1 by defining θ∗
k as (the same form as

(S2.14))

θ∗
k =

K󰁛

h=1

ḡheh +
󰁛

h>K: qh,k=0

gheh +
󰁛

h>K: qh,k=1

cheh, (S3.26)

for k = 2, . . . , 1 + k0 one after another, to obtain (S3.25).
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We emphasize here that if v = 0, i.e. in scenario (b.1) of the theorem, then

k0 = K−1 and by far we have already obtained ḡk = gk for all k = 2, . . . , K. So we can

directly go to the next step, Step 2 of the proof, without the local condition to appear

in (S3.29) later. That is why in scenario (b.1) of the theorem, we have global generic

identifiability of (Q, s, g,p).

Next we consider the case v ∕= 0, i.e. in scenario (c) of the theorem, then k0 < K−1.

We will use another induction argument to show ḡk = gk for k = k0 + 2, . . . , K, under

an additional local condition. First we consider ḡk and gk for k = k0 + 2. Note that

Q·,k ≻lex Q·,1, and Q·,k ≺lex Q·,m for any m = k + 1, . . . , K. Define θ∗
k the same as in

(S3.26), then Tr∗,·(Q̄, c̄−θ∗
k, ḡ−θ∗

k) = 0 and Tr∗,·(Q̄, c̄−θ∗
k, ḡ−θ∗

k)p̄ = 0, so Tr∗,·(Q, c−

θ∗
k, g − θ∗

k)p = 0. We claim that in the the vector Tr∗,·(Q, c− θ∗
k, g − θ∗

k), denoted by

Tr∗,· afterwards for notational simplicity, only contains two potentially nonzero elements

corresponding to attribute profiles α1k =
󰁓K

m=1 em − ek = (1, . . . , 1,αk = 0, 1, . . . , 1)

and α0k = α1 − e1 = (α1 = 0, 1, . . . , 1,αk = 0, 1, . . . , 1). This is because on the one

hand, for any attribute profile α that lacks some attributem ∈ {k+1, . . . , K}, θh,α = gh

for some item h > K with qh,k = 0, which makes Tr∗,α = 0; and on the other hand,

for any attribute profile that lacks some attribute m ∈ {2, . . . , k − 1}, since we already

have (S3.25), θh,m = gh = ḡh for some h ∈ {2, . . . , K}, which makes Tr∗,α = 0. Now

Tr∗,α ∕= 0 would only happen if α = (α1, 1, . . . , 1,αk, 1, . . . , 1). However, if αk = 1 and

α = (α1, 1, . . . , 1), then θh,α = ch for some item h > K with qh,k = 1, which also makes
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Tr∗,α = 0. Now we have proven the claim that Tr∗,· has only two potentially nonzero

elements corresponding to α1k and α0k. Therefore we have for k = k0 + 2,

0 =Tr∗,·(Q, c− θ∗
k, g − θ∗

k)p

=
K󰁜

h=2

(ch − ḡh)
󰁜

h>K:
qh,k=0

(ch − gh)
󰁜

h>K:
qh,k=1

(gh − ch)

×
󰁫
(g1 − ḡ1)pα0k

+ (c1 − ḡ1)pα1k

󰁬
(gk − ḡk),

which further gives

󰁫
(g1 − ḡ1)pα0k

+ (c1 − ḡ1)pα1k

󰁬
(gk − ḡk) = 0 for k = k0 + 2. (S3.27)

Note that if ḡ1 = g1, then the part in the bracket in the above display becomes (c1 −

g1)pα1 , which is nonzero. Therefore, when ḡ1 is sufficiently close to the true parameter

g1, the part in the bracket in (S3.27) would be nonzero. We formally write it as

for k = k0 + 2, ∀ḡ1 ∈ Nk, (g1 − ḡ1)pα0k
+ (c1 − ḡ1)pα1k

∕= 0, (S3.28)

where Nk = {x : 0 < x <
g1pα0k

+ c1pα1k

pα0k
+ pα1k

}.

This indicates that in the neighborhood Nk of g1, (S3.27) leads to gk = ḡk for k = k0+2.

Then we use induction to prove gk = ḡk for all k = k0 +3, . . . , K. As the induction

assumption, assume that when ḡ1 ∈
󰁗k−1

m=k0+2 Nm holds, we have gm = ḡm for all

m = 2, . . . , k − 1. Then define θ∗ the same as in (S3.26), and deduce in the same way

as in proving gk0+2 = ḡk0+2, we have

󰁫
(g1 − ḡ1)pα0k

+ (c1 − ḡ1)pα1k

󰁬
(gk − ḡk) = 0,
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and further for any ḡ1 ∈ Nk (more accurately any ḡ1 ∈
󰀅
∩k−1

m=k0+2 Nm

󰀆
∩Nk), we must

have ḡk = gk. Here Nk takes the same form as that in (S3.28). Now by induction, we

have that if

ḡ1 ∈
K󰁟

m=k0+2

Nm, (S3.29)

then gk = ḡk for k = k0 + 2, . . . , K. Combined with the previous results shown in

(S3.25), now we have proven that in scenario (c) of the theorem, if the local condition

(S3.29) is satisfied, then ḡk = gk for k = 2, . . . , K.

In summary, we have shown ḡk = gk for k = 2, . . . , K (under (S3.29) if in scenario

(c)) and c̄j = cj for j = K + 2, . . . , J . Based on these, following similar procedures as

in Step 5 of the proof of Theorem 1, we obtain that

q̄j = qj, ∀j = K + 2, . . . , J.

Step 2. In this step we show ū = 1 in (S3.23). If ū = 0, set

θ∗ = c1e1 + c̄2e2 +
K+3󰁛

j=3

gkek, r∗ =
K+3󰁛

j=1

ej,

then

Tr∗,·(Q̄, c̄− θ∗, ḡ − θ∗)p̄ = 0⊤ · p̄ = 0,

Tr∗,·(Q, c− θ∗, g − θ∗)p = (g1 − c1)(g2 − c̄2)
K+3󰁜

j=3

(cj − gj)p(0,1,...,1) ∕= 0,
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which contradicts Equation (S2.3). So ū = 1. Now we have obtained

Q =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0⊤

0 IK−1

1 v⊤

0 Q󰂏󰂏

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

, Q̄ =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0⊤

0 IK−1

1 v̄⊤

0 Q󰂏󰂏

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

. (S3.30)

Step 3. In this step we show v̄ = v. For notational simplicity in the following proof,

we rearrange the order of the row vectors in Q and Q̄ in (S3.30) again to the following

forms

Q =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0⊤

1 v⊤

0 IK−1

0 Q󰂏󰂏

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

, Q̄ =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0⊤

ū v̄⊤

0 IK−1

0 Q󰂏󰂏

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

, (S3.31)

and our conclusions proved so far are ḡk = gk for k = 3, . . . , K + 1 and c̄j = cj for

j = K+2, . . . , J (under the local condition (S3.29) if in scenario (b.1)). Given that the

last J − 2 rows of Q and Q̄ are equal, we claim that (S3.22) for response pattern r can

be equivalently written as

󰁛

α′∈
{0,1}K−1

󰁜

j>2
rj=1

θj, (0,α′) · P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q,Θ,p) (S3.32)

=
󰁛

α′∈
{0,1}K−1

󰁜

j>2
rj=1

θ̄j, (0,α′) · P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q̄, Θ̄, p̄).

Here A = (A1, . . . , AK) denotes a random attribute profile following a categorical dis-
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tribution with proportion parameters p, and A2:K denotes the vector consisting of the

last K−1 elements of A. The reason for the equivalence of (S3.32) and (S3.22) is stated

as follows. Since all items other than the first two do not require the first attribute, we

have that for any α′ ∈ {0, 1}K−1, the two attribute profiles (0,α′) and (1,α′) always

have the same response probability θj,(0,α′) to any item j > 2. This indicates that the

left hand side of (S3.22) can be written as

Tr,·(Q, s, g)p =
󰁛

α′∈
{0,1}K−1

󰁜

j>2
rj=1

θj, (0,α′) · P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q,Θ,p),

and this further leads to the equivalence between (S3.22) and (S3.32). In particular,

when (r1, r2) = (0, 0), we have P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q,Θ,p) = p(0,α′) +

p(1,α′). Now for any J-dimensional response pattern r with (r1, r2) = (0, 0), then the

constraint Tr,·(Q, c, g)p = Tr,·(Q̄, c̄, ḡ)p̄ simply becomes

󰁛

α′∈
{0,1}K−1

󰁜

j>2
rj=1

θj, (0,α′) · (p(0,α′) + p(1,α′)) =
󰁛

α′∈
{0,1}K−1

󰁜

j>2
rj=1

θ̄j, (0,α′) · (p̄(0,α′) + p̄(1,α′)).

Since the above equality holds for any (r3, r4, . . . , rJ) ∈ {0, 1}J−2, we claim that, pa-

rameters θj,(0,α′) and θ̄j,(0,α′) for j = 3, . . . , J can be equivalently viewed as all the item

parameters (slipping or guessing) associated with the submatrix Q󰂏, while grouped pro-

portion parameters p(0,α′)+p(1,α′) and p̄(0,α′)+p̄(1,α′) can be viewed as all the “proportion

parameters” associated with Q󰂏. Since Q󰂏 satisfy the sufficient conditions A, B, C in

Theorem 1 for identifiability, by Theorem 1 we conclude that θj,(0,α′) = θ̄j,(0,α′) for any

j ∈ {3, . . . , J} and any α′ ∈ {0, 1}K−1. This indicates c̄k = ck for k = 3, . . . , K +1 and
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ḡj = gj for j = K + 2, . . . , J .

Then an important observation is that, fix any particular pair of (r1, r2) ∈ {0, 1}2,

quantities in (S3.32) can be viewed parameters associated with the (J − 2) × (K − 1)

matrix Q󰂏, just similar to the argument in the previous paragraph. Specifically, θj,(0,α′)

and θ̄j,(0,α′) for j = 3, . . . , J are item parameters (slipping or guessing) associated with

the Q󰂏, and P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q,Θ,p) and P(R1 ≥ r1, R2 ≥ r2, A2:K =

α′ | Q̄, Θ̄, p̄) for each α′ ∈ {0, 1}K−1 can be viewed as the “proportion parameters”

associated with Q󰂏. Now because the submatrix Q󰂏 satisfy the identifiability conditions

A, B, C; and Q̄3:J,· = Q3:J,· = Q󰂏 and c̄j = cj, ḡj = gj for j = 3, . . . , J , we must have

∀α′ ∈ {0, 1}K−1, P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q,Θ,p) (S3.33)

= P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q̄, Θ̄, p̄).

Now take (r1, r2) to be (0, 0), (0, 1), (1, 0), (1, 1) in the above (S3.33) respectively, we

obtain

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

p(0,α′) + p(1,α′) = p̄(0,α′) + p̄(1,α′);

θ1, (0,α′) · p(0,α′) + θ1, (1,α′) · p(1,α′) = θ̄1, (0,α′) · p̄(0,α′) + θ̄1, (1,α′) · p̄(1,α′);

θ2, (0,α′) · p(0,α′) + θ2, (1,α′) · p(1,α′) = θ̄2, (0,α′) · p̄(0,α′) + θ̄2, (1,α′) · p̄(1,α′);

θ1, (0,α′)θ2, (0,α′) · p(0,α′) + θ1, (1,α′)θ2, (1,α′) · p(1,α′)

= θ̄1, (0,α′)θ̄2, (0,α′) · p̄(0,α′) + θ̄1, (1,α′)θ̄2, (1,α′) · p̄(1,α′).

(S3.34)
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Next we show v = v̄. (S3.34) implies that,

∀α′ ≥ v, α′ ≱ v̄,

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

p(0,α′) + p(1,α′) = p̄(0,α′) + p̄(1,α′)

g1p(0,α′) + c1p(1,α′) = ḡ1p̄(0,α′) + c̄1p̄(1,α′)

g2p(0,α′) + c2p(1,α′) = ḡ2[p̄(0,α′) + p̄(1,α′)]

g1g2p(0,α′) + c1c2p(1,α′) = ḡ2[ḡ1p̄(0,α′) + c̄1p̄(1,α′)]

If v̄ ≱ v, then taking α′ = v in the above equation and doing some transformation

gives

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(g2 − ḡ2)p(0,α′) + (c2 − ḡ2)p(1,α′) = 0,

(g1 − c1)(g2 − ḡ2)p(0,α′) = 0.

Since g1 ∕= c1, we have g2 − ḡ2 = 0, which further gives c2 − ḡ2 = 0. This contradicts

ch > ḡh for any item h, so v̄ ≱ v can not happen. Similarly v̄ ≰ v also can not happen,

so v̄ = v.

Step 4. In the final step we show c1, c2, g1, g2 and p are generically identifiable if v ∕= 1.

First we show that if there exist α′
1, α

′
2 ∈ {0, 1}K−1, α′

1 ∕= α′
2 such that

p(1,α′
1)
p(0,α′

2)
∕= p(1,α′

2)
p(0,α′

1)
, (S3.35)

then one must have

ci = c̄i, gi = ḡi, i = 1, 2. (S3.36)
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After some transformations, the system of equations (S4.40) yields

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(g1 − c1) · (g2 − c̄2) · p(0,α′) = (ḡ1 − c1) · (ḡ2 − c̄2) · p̄(0,α′),

(g2 − c̄2) · p(0,α′) + (c2 − c̄2) · p̄(1,α′) = (ḡ2 − c̄2) · p̄(0,α′).

Since we have ḡ1 ∕= c1, the left hand side of the first equation above is nonzero. And

obviously the right hand side of the second equation above is nonzero. Taking the ratio

of the above two equations gives

(g1 − c1) · (g2 − c̄2)

(g2 − c̄2) + (c2 − c̄2) · p(1,α′)/p(0,α′)
= (ḡ1 − c1) ≡ f(α′).

The right hand side of the above display does not involve any proportion parameter p or

p̄. So for α′
1, α

′
2 satisfying (S3.35), f(α′

1) = f(α′
2). Note that the left hand side of the

above equation involves a ratio p(1,α′)/p(0,α′) depending on α′. Equality f(α′
1) = f(α′

2)

along with (S3.35) imply

(c2 − c̄2) ·
p(1,α′

1)

p(0,α′
1)

= (c2 − c̄2) ·
p(1,α′

2)

p(0,α′
2)

(c2 − c̄2) ·
󰀕
p(1,α′

1)

p(0,α′
1)

−
p(1,α′

2)

p(0,α′
2)

󰀖
= 0

then since p(1,α′
1)
p(0,α′

2)
∕= p(1,α′

2)
p(0,α′

1)
by assumption (S3.35), one must have c2 = c̄2.

By symmetry of the four item parameters g1, c1, g2 and c2 in (S4.40), equalities (S3.36)

hold as claimed following similar arguments. Now that all the item parameters are

identified, p = p̄. This completes the proof of part (b.1) and part (c) of the theorem.

The proof of Theorem 2 is now complete.
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S4. Proof of Theorem 3

When Condition C fails and some attribute is required by less than three items, there

are two possible scenarios: some attribute is required by only one item, or only two

items. We consider them separately, and in both cases prove that (Q,Θ,p) are not

generically identifiable.

(a) If some attribute is required by only one item. Then Q must take the following

form in (S4.37) up to column and row permutations, where v1 is a binary vector

of length K − 1.

Q =

󰀳

󰁅󰁅󰁃
1 v⊤

1

0 Q󰂏

󰀴

󰁆󰁆󰁄 ; Q̄ =

󰀳

󰁅󰁅󰁃
1 1⊤

0 Q󰂏

󰀴

󰁆󰁆󰁄 . (S4.37)

Now for arbitrary model parameters (Θ,p) associated with Q, we also construct

(Θ̄, p̄) associated with the Q̄ in (S4.37), such that (S0.1) holds. Firstly, for any

item j ≥ 2, set θ̄j,α = θj,α for all α ∈ {0, 1}K , then following a similar argument

as in Step 3 of the proof of Theorem 2 (b.1) and (c), we have that (S0.1) hold as

long as the following constraints are satisfied: for any α′ ∈ {0, 1}K−1,

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

p(0,α′) + p(1,α′) = p̄(0,α′) + p̄(1,α′);

θ1, (0,α′) · p(0,α′) + θ1, (1,α′) · p(1,α′) = θ̄1, (0,α′) · p̄(0,α′) + θ̄1, (1,α′) · p̄(1,α′).

(S4.38)

For each α′ ∈ {0, 1}K−1, we now still arbitrarily set the value of θ̄1, (0,α′) and
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θ̄1, (1,α′), and set the proportions parameters to be

p̄(1,α′) =
(θ1, (0,α′) − θ̄1, (0,α′))p(0,α′) + (θ1, (1,α′) − θ̄1, (0,α′))p(1,α′)

θ̄1, (1,α′) − θ̄1, (0,α′)

p̄(0,α′) = p(0,α′) + p(1,α′) − p̄(1,α′),

for each α′ ∈ {0, 1}K−1. Then (S4.38) holds and further (S0.1) holds. Since the

choice of the 2K item parameters {θ1, (0,α′), θ1, (1,α′) : α
′ ∈ {0, 1}K−1} are arbitrary,

the original Q and associated parameters are not generically identifiable.

(b) If some attribute is required by only two items, then Q takes the form in (S4.39)

up to column/row permutations, where v1 and v2 are vectors of length K − 1 and

Q󰂏 is a submatrix of size (J − 2)× (K − 1).

Q =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

1 v⊤
1

1 v⊤
2

0 Q󰂏

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
; Q̄ =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

1 1⊤

1 1⊤

0 Q󰂏

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
, (S4.39)

Then for arbitrary model parameters (Θ,p) associated with Q, we next carefully

construct (Θ̄, p̄) associated with the Q̄ in (S4.39), such that (S0.1) holds. This

would prove the conclusion that joint generic identifiability fails. Firstly, for any

item j ≥ 3, set θ̄j,α = θj,α for all α ∈ {0, 1}K , then following the same argument

as in Step 3 of the proof of Theorem 2 (b.1) and (c), we have that (S0.1) hold as
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long as the following constraints are satisfied for every α′ ∈ {0, 1}K−1,

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

p(0,α′) + p(1,α′) = p̄(0,α′) + p̄(1,α′);

θ1, (0,α′) · p(0,α′) + θ1, (1,α′) · p(1,α′) = θ̄1, (0,α′) · p̄(0,α′) + θ̄1, (1,α′) · p̄(1,α′);

θ2, (0,α′) · p(0,α′) + θ2, (1,α′) · p(1,α′) = θ̄2, (0,α′) · p̄(0,α′) + θ̄2, (1,α′) · p̄(1,α′);

θ1, (0,α′)θ2, (0,α′) · p(0,α′) + θ1, (1,α′)θ2, (1,α′) · p(1,α′)

= θ̄1, (0,α′)θ̄2, (0,α′) · p̄(0,α′) + θ̄1, (1,α′)θ̄2, (1,α′) · p̄(1,α′).

(S4.40)

For each α′ ∈ {0, 1}K−1, arbitrarily choose θ̄1, (0,α′) and θ̄2, (0,α′) from the neighbor-

hood of the true parameter values θ1,(0,α′) and θ2,(1,α′) respectively. Then set

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

θ̄1, (1,α′) = θ1,(0,α′) +
([θ1, (1,α′)−θ1, (0,α′)][θ2, (1,α′)−θ̄2, (0,α′)]p(1,α′)

[θ2, (0,α′)−θ̄2, (0,α′)]p(0,α′)+[θ2, (1,α′)−θ̄2, (0,α′)]p(1,α′)
,

θ̄2, (1,α′) = θ2,(0,α′) +
[θ2, (1,α′)−θ2, (0,α′)][θ1, (1,α′)−θ̄1, (0,α′)]p(1,α′)

[θ1, (0,α′)−θ̄1, (0,α′)]p(0,α′)+[θ1, (1,α′)−θ̄1, (0,α′)]p(1,α′)
,

p̄(1,α′) =
[θ2, (0,α′)−θ̄2, (0,α′)]p(0,α′)+[θ2, (1,α′)−θ̄2, (0,α′)]p(1,α′)

θ̄2, (1,α′)−θ̄2, (0,α′)
,

p̄(0,α′) = p(0,α′) + p(1,α′) − p̄(1,α′).

(S4.41)

Then one can check that (S4.40) holds and further (S0.1) holds. Since in the

above construction the choice of the 2K item parameters {θ1, (0,α′), θ2, (0,α′) : α
′ ∈

{0, 1}K−1} are arbitrary, we have proved that the Q and associated model param-

eters are not generically identifiable.
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S5. Proof of Theorem 4

We prove this theorem following a similar argument as the proof of Theorem 7 in Gu

and Xu (2018a). Assume Q takes the form Q = (Q⊤
1 , Q

⊤
2 , (Q

󰂏)⊤)⊤, where Q1 and Q2

have all diagonal elements being 1. Assume

θj,α =f
󰀓
βj,0 +

K󰁛

k=1

βj,kqj,kαk +
K󰁛

k′=k+1

K−1󰁛

k=1

βj,kk′(qj,kαk)(qj,k′αk′) + · · ·+ βj,12···K
󰁜

k

(qj,kαk)
󰀔
,

where f(·) is some link function and when f(·) is the identify function, the model

is the GDINA model. We first show that under Condition D, the 2K × 2K matrices

T (Q1,ΘQ1) and T (Q2,ΘQ2) both have full rank 2K generically. It suffices to find some

valid Θ (i.e., ΘQ) that gives

det(T (Q1,ΘQ1)) ∕= 0, det(T (Q2,ΘQ2)) ∕= 0. (S5.42)

The reason is as follows. (S5.42) would imply the polynomials defining the two matrix

determinants are not zero polynomials in the Q-restricted parameter space. Therefore

for almost all parameters, T (Q1,ΘQ1) and T (Q2,ΘQ2) would have full rank. Next we

only focus on T (Q1,ΘQ1). For every item k = 1, . . . , K, we set βk,k = 1, βk,k′ = 0 for any

k′ ∕= k, and set all the interaction effects to zero. Then T (Q1,ΘQ1) becomes identical

to T (IK , 󰁥ΘIK ) under a Q-matrix IK with associated item parameters 󰁥ΘIK defined as

follows: θ̂ek,0 = βk,0, and θ̂ek,ek = θ̂ek,1 = βk,0 + βk,k for k ∈ {1, . . . , K}. It is not hard

to see that T (IK , 󰁥ΘIK ) can be viewed as a T -matrix under the DINA model with the

Q-matrix equal to IK , and guessing parameters βk,0, slipping parameters 1−βk,0−βk,k
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for k = 1, . . . , K. Therefore T (IK , 󰁥ΘIK ) has full rank as argued in Step 1 of the proof

of Theorem 1. So T (Q1,ΘQ1) has full rank generically.

We next prove that if Condition E holds in addition, then any two different columns

of T (Q󰂏,ΘQ󰂏) are distinct generically. For α, α′ ∈ {0, 1}K and α ∕= α′, they at least

differ in one element. Assume without loss of generality that αk = 1 > 0 = α′
k. Then

Condition E ensures that there is some item j > 2K with qj,k = 1. Under the general

RLCM, this implies θj,α ∕= θj,α′ generically. By Kruskal (1977), a matrix’s Kruskal rank

is the largest number I such that every set of I columns of the matrix are independent.

When a matrix has full rank, its Kruskal rank equals its rank. By this definition, T (Q󰂏,

ΘQ󰂏) has Kruskal rank at least 2 generically, and T (Q1,ΘQ1), T (Q2,ΘQ2) have Kruskal

rank 2K generically. Then for generic ΘQ, we have

rankK{T (Q1,ΘQ1)}+ rankK{T (Q2,ΘQ2)}+ rankK{T (Q󰂏,ΘQ󰂏)} ≥ 2× 2K + 2.

(S5.43)

Applying Corollary 2 of Rhodes (2010) to this 2K-class latent class model, we get

T (Q,Θ) = T (Q, Θ̄) and p = p̄ up to column permutation. This proves generic iden-

tifiability of (Q,Θ,p) in the model. Moreover, we also have the following form of the

identifiable set

ϑQ \ ϑnon = {(ΘQ,p) : det(T (Q1,ΘQ1)) ∕= 0, det(T (Q2,ΘQ2)) ∕= 0,

T (Q󰂏,ΘQ󰂏) ·Diag(p) has column vectors different from each other}.

This is because when (ΘQ,p) ∈ ϑQ \ ϑnon, the rank condition (S5.43) is satisfied and

43



GU AND XU

joint identifiability of (Q,ΘQ,p) follows.

S6. Proof of Theorem 5.

We prove the theorem in two steps. In the first step, we show that if Q is not generically

complete, than it must take the following form (up to column/row permutations) for

some k > m,

Q =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

q1,1 · · · q1,k ∗ · · · ∗
...

...
...

...
...

...

qm,1 · · · qm,k ∗ · · · ∗

0 · · · 0 ∗ · · · ∗
...

...
...

...
...

...

0 · · · 0 ∗ · · · ∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

=

󰀳

󰁅󰁅󰁃
Q11 Q12

Q21 Q22

󰀴

󰁆󰁆󰁄 =

󰀳

󰁅󰁅󰁃
Q1

Q2

󰀴

󰁆󰁆󰁄 . (S6.44)

The bottom-left submatrix Q21 = 0(J−m)×k. Any entry not in Q21 can be either 0 or 1.

We introduce some definitions first. Given a Q-matrix Q, define a family SQ of K finite

sets SQ = {A1,A1, . . . ,AK}, where Ak = {1 ≤ j ≤ J : qj,k = 1} for each k. Then Ak

denotes the set of items that require attribute k. For the family SQ, a transversal is a

system of distinct representatives from each of its elements A1, . . . ,AK . For example,
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for

Q =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

1 1 0

0 1 1

1 0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
,

we have SQ = {A1 = {1, 3}, A2 = {1, 2}, A3 = {2, 3}}. Then (1, 2, 3) is a valid

transversal of SQ, and so as (3, 1, 2); but (1, 1, 2) is not a transversal. Now it is not

hard to see that, the assumption that Q is not generically complete is equivalent to the

following statement H󰂏,

H󰂏. Given Q, the family SQ does not have a valid transversal.

Then by Hall’s Marriage Theorem (Hall, 1967), the nonexistence of a transversal indi-

cates the failure of the marriage condition. So there must exist a subfamily W ⊆ SQ

such that |W | > |
󰁖

A∈W A|. More specifically, this means there exist some l1, l2, . . . , lk ∈

{1, . . . , K} and W = {Al1 , . . . ,Alk} such that

|W | = k > |Al1 ∪ · · · ∪Alk |
def
= m.

In other words, we have shown that there exist some attributes, the number of which

(e.g., k) exceeds the number of items that require any of these attributes (e.g., m).

This is exactly saying that Q has to take the form of (S6.44) with k > m after some

column/row permutation.

In the second step, we show that if Q takes the form of (S6.44) with k > m, then

(Q,Θ,p) under general RLCMs are not generically identifiable. Now we define another

45



GU AND XU

potentially different Q̄ as

Q̄ =

󰀳

󰁅󰁅󰁃
Q11 Q̄12

Q21 Q22

󰀴

󰁆󰁆󰁄 =

󰀳

󰁅󰁅󰁃
Q̄1

Q2

󰀴

󰁆󰁆󰁄 , where Q̄12 = 1m×(K−k).

Then given arbitrary (Θ,p) associated with Q, we set θ̄j,α = θj,α for every j = m +

1, . . . , J and every α ∈ {0, 1}K . Because Q21 is a (J − m) × k zero matrix, we claim

that under the current construction, the original 2J constraints in (S0.1) are satisfied

as long as the following constraints are satisfied

∀α′ = (αk+1, . . . ,αK) ∈ {0, 1}K−k, ∀r′ = (r1, . . . , rm) ∈ {0, 1}m,
󰁛

α󰂏∈{0,1}k
Tr′, (α󰂏,α′)(Q1,ΘQ1) · p(α󰂏,α′) =

󰁛

α󰂏∈{0,1}k
Tr′, (α󰂏,α′)(Q̄1, Θ̄Q̄1

) · p̄(α󰂏,α′).

This claim can be shown following a similar argument as that in Step 3 of the proof

of Theorem 2 (b.1) and (c). Then the above system of equations contain 2K−k × 2m

constraints, while under the general RLCMs the number of free variables in (Θ̄, p̄)

involved is

󰀏󰀏󰀏{p̄α : α ∈ {0, 1}K}
󰁞

{θ̄j,α : j ∈ {1, . . . ,m},α ∈ {0, 1}K}
󰀏󰀏󰀏

= 2K + 2K−k ×
󰀓 m󰁛

j=1

2qj,1+···+qj,k
󰀔
≥ 2K + 2K−k ×m.

Under the assumption m < k, we have that the number of constraints 2K−k × 2m is

smaller than the number of variables to solve (which is lower bounded by 2K−k × (2k +

m)), because 2m < 2k +m. So there exist infinitely many different sets of solutions of

(Θ̄, p̄) associated with Q̄ such that T (Q,Θ)p = T (Q̄, Θ̄)p̄. Therefore (Q,Θ,p) are not

46



S7. PROOF OF PROPOSITION 4

generically identifiable and the proof of the theorem is complete.

S7. Proof of Proposition 4

We show the conclusion following a similar argument as the proof of Proposition 1

in Xu and Shang (2018). To establish the bound (6.11) in the proposition, we check

the technical conditions in Theorem 1 in Shen et al. (2012). We first define some

notations. For a family of probability mass functions F , define H(·,F) to be the

bracketing Hellinger metric entropy of F . We call a finite set of function pairs S(󰂃, n) =

{(f l
1, f

u
1 ), . . . , (f

l
n, f

u
n )} a Hellinger 󰂃-bracketing of F if the L2 norm

󰀐󰀐󰀐
󰁳

f l
i −

󰁳
fu
i

󰀐󰀐󰀐 ≤ 󰂃

for all i = 1, . . . , n; and further fur any f ∈ F , there is an i such that f l
i ≤ f ≤ fu

i . The

bracketing Hellinger metric entropy is defined to be the logarithm of the cardinality of

the 󰂃-bracketing with the smallest size, namely H(·,F) = logmin{n : S(󰂃, n)}. We

next argue that the size of the parameter space of (Θ,p) is well controlled under the

Hellinger metric. Recall S is defined in the main text before Proposition 4, and we define

BS = FS ∩ {h(η,η0) ≤ 2󰂃} as the local parameter space with η = (B,p) denoting

general model parameters and η0 = (B0,p0) denoting the true model parameters.

According to the argument in the proof of Proposition 1 in Xu and Shang (2018), in

the considered scenario with fixed J and K, for any 󰂃 < 1 and any t ∈ (󰂃/24, 󰂃), there is

H(t,BS) ≤ c log(J2K)|S| log(2󰂃/t); indeed, there is H(t,BS) = O(log(2󰂃/t)) uniformly
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for any S, 󰂃 and t.

With this upper bound on the Hellinger bracketing entropy, we can apply Theorem

1 in Shen et al. (2012) to obtain

P( 󰁥Q ∕= Q0) ≤ P(󰁥η ∕= 󰁥η0) ≤ c2 exp{−c1NCmin(Θ
0,p0)},

where Cmin(Θ
0,p0) := infη: |S|≤m,S ∕=S0 h

2(η,η0). The above display is the desired (6.11)

in the proposition.

Next we show that when the proposed sufficient conditions for joint strict identifia-

bility hold, the Cmin(Θ
0,p0) in (6.11) is bounded away from zero by some positive con-

stant. When the proposed conditions for joint strict identifiability (such as Conditions

A, B and C under DINA model are satisfied), the (B0,p0) here are strictly identifiable.

The consequence is that there exists a constant δ > 0 such that h2(η,η0) ≥ δ, where

the m denotes the number of free parameters under the Q0 and the RLCM specification.

Therefore,

Cmin(Θ
0,p0) ≥ inf

η: |S|≤m,S ∕=S0

h2(η,η0)

2m
≥ δ

2m
> 0,

so Cmin(Θ
0,p0) ≥ c0 for some positive constant c0 holds. This proves the conclusion

that under the proposed strict identifiability conditions, the finite sample error bound

P( 󰁥Q ∕= Q0) has an exponential rate. This completes the proof of the proposition.
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S8. Simulation Studies

In this section, we provide more simulation results to verify the developed identifiability

theory. In Section S8.1, we perform simulation studies to verify Theorems 1 and 2 for

the DINA model. In Section S8.2, we perform simulation studies to verify Theorems 3

and 4 for the GDINA model. The Matlab code for performing the simulation studies

are available at https://github.com/yuqigu/Identify_Q.

To better illustrate the identifiability or non-identifiability phenomena of Q-matrix,

in some of the following simulation studies, we conduct exhaustive search of all possible

Q-matrices of a certain size 5× 2. Specifically, consider the set of all the 5× 2 binary

Q-matrices other than those containing some all-zero row vectors. If treating two Q-

matrices that are identical up to permuting the two columns as equivalent (because

they are indeed equivalent in terms of model identifiability), then there are in total

121 types of Q-matrices. We denote such a set of Q-matrices by Exhaus(Q5×2), and

denote its elements by Q1, Q2, . . . , Q121. For example, the first three and the last three

Q-matrices in Exhaus(Q5×2) are

Q1 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1

0 1

0 1

0 1

0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

; Q2 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1

1 0

0 1

0 1

0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

; Q3 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1

1 1

0 1

0 1

0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

; · · · · · ·
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Q119 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 1

1 1

1 1

0 1

1 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

; Q120 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 1

1 1

1 1

0 1

1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

; Q121 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 1

1 1

1 1

1 1

1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

The complete list of the 121 Q-matrices in the set Exhaus(Q5×2) is available in the

Matlab file Q_aa.mat at https://github.com/yuqigu/Identify_Q.

In the exhaustive-search scenario, to illustrate the identifiability/non-identifiability

phenomenon, we will generate data using some particular Q-matrix, and fit the dataset

using all the 121 candidate Q-matrices in Exhaus(Q5×2) and plot the log-likelihood

values corresponding to all these 121 Q-matrices. Investigating whether the true data-

generating Q-matrix achieves the maximum of the likelihood would help gain insight

into whether this true Q-matrix is identifiable in the considered practical setting. We

will see from these simulations how the developed identifiability theory matches the

practice.

S8.1 Two-Parameter RLCM: DINA Model

In this section, we carry out four simulation studies.

Study I: When Q-matrix satisfies the necessary and sufficient conditions A,

B and C for strict identifiability.

In this simulation study, we choose those Q-matrices from Exhaus(Q5×2) that sat-

isfies the proposed necessary and sufficient identifiability conditions A, B and C in

50



S8. SIMULATION STUDIES

Theorem 1 of the main text. In particular, after rearranging rows, there are exactly

two forms the 5× 2 Q-matrix that satisfies A, B and C. Their representatives are Q18

and Q15 as follows,

Q18 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1

1 1

1 1

1 0

0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

; Q15 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1

1 1

1 0

1 0

0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

Note that Q18 contains only on identity submatrix I2, while Q15 contains two copies

of submatrix I2. As introduced prior to this section S8.1, we generate datasets with

sample size N = 105 with true Q-matrix being Q18 and Q15, respectively; and for each

case, we run EM algorithm with several random initializations to fit the dataset with

all the 121 Q-matrixes in Exhaus(Q5×2) and obtain their log-likelihood values.

Figure 1a and 1b present the log-likelihood plots, with x-axis denoting the indices of

the 121 candidate Q-matrices in Exhaus(Q5×2), and y-axis denoting the log-likelihood

values. Each blue triangle denotes a candidate Q-matrix; the red star denotes the true

data-generating Q-matrix, and the purple square denotes the Q-matrix that achieves

the largest likelihood.

We can see from these two plots in Figure 1 that when the true data-generating Q-

matrix (Q15 and Q18) satisfies our proposed conditions A, B and C, it indeed achieves

the largest likelihood compared to all other possible candidate Q-matrices. Therefore

for any algorithm seeking the maximum likelihood estimator of (Q, c, g,p), the true
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Q-matrix can be identified and any other Q-matrix will not be confused with the true

Q. Another observation from Figure 1a and 1b is that, for Q15 that contains one more

identity submatrix I2 than Q18, the true Q can be relatively better distinguished from

the other Q’s due to the larger gap in the likelihood values. This phenomenon might

imply that the more identity submatrices the true data-generating Q-matrix contain,

the easier the estimation for the true structure would be.

Figure 1: DINA: exhaustive search in the set of 5 × 2 Q-matrices with a true Q-matrix satisfying

Conditions A, B and C in Theorem 1.

(a) true Q containing one I2: Q
18 =

󰀳

󰁃0 1 1 1 0

1 1 1 0 1

󰀴

󰁄
⊤
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(b) true Q containing two I2’s: Q
15 =

󰀳

󰁃0 1 1 1 0

1 1 0 0 1

󰀴

󰁄
⊤

Study II: When Q-matrix does not satisfy all of Conditions A, B, C but

satisfies conditions in Theorem 2 for generic identifiability.

In this simulation study, we take the data-generating Q-matrix from Exhaus(Q5×2)

that do NOT satisfy some of Conditions A, B and C, but satisfy the conditions in

Theorem 2 for joint generic identifiability of (Q, c, g,p). In particular, for the considered

case of K = 2, the only possibility for (global) generic identifiability is scenario (b.2)

described in Theorem 2, where Condition C is violated and some column of Q contains

only two entries of “1”. After rearranging the rows of Q, it is not hard to see that

there is only one possible case of the form of Q leading to generic identifiability, and
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the following Q5 is a representative,

Q5 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1

1 0

1 0

0 1

0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

. (S8.45)

The log-likelihood value plot is presented in Figure 2. One can see in this generically

identifiable scenario, with randomly generated true parameters, the true Q-matrix Q5

achieves the largest likelihood and hence can be identified from data. We point out

that although only the result of one simulated dataset is presented here, the generically

identifiable Q-matrix (as the true Q-matrix) generally can achieve the largest likelihood

among all the candidate Q-matrices, based on our experience in various simulations.

Figure 2: DINA: exhaustive search in 5× 2 Q-matrices with a true Q-matrix Q5 in (S8.45) generically

identifiable, corresponding to scenario (b.2) in Theorem 2.
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Study III: When Q-matrix does not even lead to local identifiability.

In this simulation study, we take the data-generating Q-matrix from Exhaus(Q5×2)

that do not even lead to local identifiability. That is, under such true Q-matrix, even

in a small neighborhood of the true parameters, there exist infinitely many different

alternative parameters that are not distinguishable from the true one.

Consider the following three different forms ofQ-matrices from the set Exhaus(Q5×2),

Q10 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1

0 1

0 1

1 0

0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

; Q21 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1

1 1

0 1

1 1

0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

; Q55 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1

0 1

0 1

0 1

0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

where Q10 contains only one entry of “1” in one column, Q21 is incomplete (i.e., lacks

I2), and Q55 contains an all-zero column. Their corresponding log-likelihood plots in

the exhaustive-search scenario are presented in Figure 3a, 3b and 3c. One can see from

these plots that in these no even locally identifiable settings, the true data-generating Q-

matrix does not achieve the maximum of the likelihood. Instead, many other alternative

Q-matrices would have larger likelihood, and a wrong Q-matrix will be selected as the

maximum likelihood estimator.
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Figure 3: DINA: exhaustive search in 5×2Q-matrices with a trueQ-matrix not even locally identifiable,

corresponding to scenario (b.1) in Theorem 2.

(a) true Q not even locally identifiable: Q10 =

󰀳

󰁃0 0 0 1 0

1 1 1 0 1

󰀴

󰁄
⊤
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(b) true Q not even locally identifiable: Q21 =

󰀳

󰁃0 1 0 1 0

1 1 1 1 1

󰀴

󰁄
⊤

(c) true Q not even locally identifiable: Q55 =

󰀳

󰁃0 0 0 0 1

1 1 1 1 1

󰀴

󰁄
⊤
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Study IV: Verifying necessity of Condition A “completeness”.

We verify the necessity of Condition A “completeness” of the Q-matrix for identi-

fiability. Consider two settings of incomplete Q-matrices, Q1 with (K, J) = (3, 20) and

Q2 with (K, J) = (5, 20). For i = 1, 2, for the matrix Q = Qi and arbitrary DINA

model parameters (c, g,p), we follow our theoretical derivations to construct two alter-

native Q-matrices Q′ = Q′
i and Q′′ = Q′′

i and corresponding parameters (c
′
, g

′
,p

′
) and

(c
′′
, g

′′
,p

′′
). Then we compute the marginal probabilities for all the possible 220 ≈ 106

response patterns under each of the Q, Q′ and Q′′, which characterize the distribution of

the 20-dimensional binary vector R. We give visualization plots to show how these dif-

ferent Q-matrices and different model parameters lead to exactly the same distribution

of the observed responses R.
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Q1 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0 0

0 1 0

1 1 1

1 0 0

1 1 0

1 1 1

1 0 0

1 1 0

1 1 1

1 0 0

1 1 0

1 1 1

1 0 0

1 1 0

1 1 1

1 0 0

1 1 0

1 1 1

1 1 1

1 1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

20×3

Q′
1 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0 0

0 1 0

0 1 1

1 0 0

1 1 0

0 1 1

1 0 0

1 1 0

0 1 1

1 0 0

1 1 0

0 1 1

1 0 0

1 1 0

0 1 1

1 0 0

1 1 0

0 1 1

1 1 1

1 1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

20×3

Q′′
1 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0 0

0 1 0

0 0 1

1 0 0

1 1 0

0 0 1

1 0 0

1 1 0

0 0 1

1 0 0

1 1 0

0 0 1

1 0 0

1 1 0

0 0 1

1 0 0

1 1 0

0 0 1

1 1 1

1 1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

20×3

(S8.46)

Q2 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 1 1 1 1

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

20×5

Q′
2 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 1 1 1

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

0 0 1 1 1

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

20×5

Q′′
2 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

0 0 0 0 1

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

20×5

(S8.47)
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First, consider the following Q1 with (K, J) = (3, 20) in (S8.46), which is incomplete

because its row vectors does not contain the unit vector (0, 0, 1). For arbitrarily gener-

ated parameters (c, g,p), we set c
′′
= c

′
= c and g

′′
= g

′
= g and set the proportion

parameters as follows,

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

p′(011) = 0,

p′(010) = p(010) + p(011),

p′α = pα, ∀α ∕= (011), (010);

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

p′′(001) = p2(011) = p2(111) = 0,

p′′(000) = p(000) + p(001),

p′′(010) = p(010) + p(011),

p′′(110) = p(110) + p(111),

p′′α = pα, ∀α = (100), (101).

(S8.48)

We define a notation Γ(Q) to briefly explain the rationale behind the above construc-

tions. The Γ(Q) is a J × 2K binary matrix defined based on Q. The columns and rows

of Γ(Q) are indexed by the J items and the 2K possible attribute patterns, respec-

tively; and the (j,α)th entry of it is defined to be Γj,α(Q) = I(α ≽ qj). An important

observation is that, due to the forms of Q, Q′ and Q′′, the unique column vectors in

Γ(Q) form a subset of those of Γ(Q′); and further the unique column vectors of Γ(Q′)

form a subset of those of Γ(Q′′). Therefore, to construct p′ such that (Q, c, g,p) and

(Q′, c, g,p′) that are non-distinguishable, we only need to set p′α = 0 for those α whose

corresponding column vector in Γ(Q′) does not appear as the column vector of Γ(Q);

and let the proportions (in vector p′) of other attribute patterns to absorb the pro-
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portions of these α’s in the vector p′. The proportions p′′ under Q′′ are constructed

similarly. This is exactly how Equation (S8.48) are derived. For the Q2, Q
′
2 and Q′′

2 de-

fined in (S8.47), we construct the proportion parameters p′ under Q′
2 and p′′ under Q′′

2

following the same rationale; the details of defining them are omitted but their values

are later revealed in Figure 5(c).

In Figure 4, we visualize the non-identifiability phenomenon of Q1. In Figure 4(a),

we plot the differences of proportions parameters under the alternative models and the

true model with Q1. The red dotted line with “×” plots the values p′ − p = (p′000 −

p000, p
′
001− p001, p

′
010− p010, p

′
011− p011, p

′
100− p100, p

′
101− p101, p

′
110− p110, p

′
111− p111)

correspondent to the 8 attribute patterns; and the green dotted line with “+” plots

p′′ − p. Despite these three sets of parameters are quite different, the 220-dimensional

vector of marginal probabilities of R are exactly the same, as shown in plots (b) and

(c) of Figure 4. In particular, in plot (b), the x-axis presents the indices of the response

patterns in r ∈ {0, 1}J , the y-axis presents the values of P(R = r | Q, c, g,p), where

the blue circles denote those under (Q1,p), red “×” for (Q′
1,p

′), and green “+” for

(Q′′
1,p

′′). Plot (c) of Figure 4 is a zoomed-in version of plot (b), by only showing those

marginal probabilities in [0.2× 10−4, 2× 10−4], which contains around 7× 103 response

patterns. One can roughly see from both plots (b) and (c) that the three underlying

parameters yield identical distribution of the response vector. Indeed, the computation
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carried out using Matlab yields

max
r∈{0,1}20

|P(R = r | Q1, c, g,p)− P(R = r | Q′
1, c, g,p

′)| = 2.17× 10−19,

max
r∈{0,1}20

|P(R = r | Q1, c, g,p)− P(R = r | Q′′
1, c, g,p

′′)| = 4.34× 10−19,

which are both smaller than the machine epsilon (machine error) of Matlab 2.22×10−16.

This confirms that Q1 defined in (S8.46) is not identifiable.

Figure 5 shows the analogous results for Q2 of size 20 × 5. Plot (a) in Figure 5

shows the difference of the 25 = 32-dimensional proportion parameters under alternative

and true Q-matrices, and plots (b) and (c) give marginal probabilities of R. The

computation using Matlab gives

max
r∈{0,1}20

|P(R = r | Q2, c, g,p)− P(R = r | Q′
2, c, g,p

′)| = 2.17× 10−19,

max
r∈{0,1}20

|P(R = r | Q2, c, g,p)− P(R = r | Q′′
2, c, g,p

′′)| = 6.51× 10−19,

which are also both smaller than the machine error 2.22×10−16 of Matlab. This verifies

the non-identifiability of Q2 defined in (S8.47).
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Figure 4: DINA: true Q-matrix of size 20× 3 is not complete and hence not identifiable.

(a) K = 3 and J = 20, three sets of parameters

(b) K = 3 and J = 20, |{0, 1}20| = 220 response probabilities

(c) K = 3 and J = 20, response probabilities zoomed in
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Figure 5: DINA: true Q-matrix of size 20× 5 is not complete and hence not identifiable.

(a) K = 5 and J = 20, three sets of parameters

(b) K = 5 and J = 20, |{0, 1}20| = 220 response probabilities

(c) K = 5 and J = 20, response probabilities zoomed in

64



S8. SIMULATION STUDIES

S8.2 General RLCM: GDINA Model

In this section, we design simulation studies to verify the proposed identifiability condi-

tions under the GDINA model introduced in Example 2. In Study V, we use exhaustive

search within 5×2 Q-matrices to verify the sufficient conditions in Theorem 4. In Study

VI and Study VII, we verify the necessary conditions in Theorem 3.

Study V: When Q-matrix satisfies Conditions D, E for generic identifiability.

Within the set of 5 × 2 Q-matrices Exhaus(Q5×2), if Q satisfies the sufficient con-

ditions D and E for generic identifiability under the GDINA model, then other than

the all-one Q-matrix Q121 which corresponds to the unrestricted latent class model,

Q can take the forms of Q15, Q18, Q27, Q54, and Q81 (up to rearrangement of rows

and columns). When using some Q-matrix to generate data, we also set the sample

size to N = 105 and randomly set the true parameters which satisfy the monotonicity

constraint (2.1) in the main text. In plots (a), (b), (c), (d) and (e) in Figure 6, we

present the exhaustive search results when the true data-generating Q-matrix is Q15,

Q18, Q27, Q54, or Q81. We point out that for GDINA model, in each scenario, we did

not plot all the 121 Q-matrices’ log-likelihood values, although we fit all the 121 ones to

the simulated data. Instead, we only plot those Q-matrices under which the estimated

parameters satisfies the stringent monotonicity constraint

θj,α > θj,α′ if α⊙ qj ≻ α′ ⊙ qj. (S8.49)
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This constraint is stronger than requiring merely (2.1), and it is often imposed in prac-

tice when fitting the general RLCM that models the main and interaction effects of

the latent attributes; for example, see the LCDM proposed in Henson et al. (2009). So

each blue triangle in each plot of Figure 6 corresponds to a Q-matrix with estimated Θ

satisfying (S8.49). We can see from the five plots in Figure 6 that when the generic iden-

tifiability conditions D and E are satisfied, the true data-generating Q-matrix achieves

the maximum of the data likelihood compared to all the candidate Q-matrices of the

same size.
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Figure 6: GDINA: exhaustive search in 5 × 2 Q-matrices with a true Q satisfying Conditions D and

E.

(a) GDINA: generically identifiable: Q15 =

󰀳

󰁃0 1 1 1 0

1 1 0 0 1

󰀴

󰁄
⊤

(b) GDINA: generically identifiable: Q18 =

󰀳

󰁃0 1 1 1 0

1 1 1 0 1

󰀴

󰁄
⊤
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(c) GDINA: generically identifiable: Q27 =

󰀳

󰁃0 1 1 1 0

1 1 1 1 1

󰀴

󰁄
⊤

(d) GDINA: generically identifiable: Q54 =

󰀳

󰁃0 1 1 1 1

1 1 1 1 0

󰀴

󰁄
⊤
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(e) GDINA: generically identifiable: Q81 =

󰀳

󰁃0 1 1 1 1

1 1 1 1 1

󰀴

󰁄
⊤

Study VI: When Q-matrix does not even lead to local generic identifiability.

We now use the not even locally generically identifiable Q-matrices Q1, Q2, or Q3

to generate the data, and perform the exhaustive search among Exhaus(Q5×2). The

log-likelihood plots along with the forms of the data generating matrices Q1, Q2, Q3

are presented in Figure 7. Similar to the previous Study V, here in each scenario we only

plot those Q-matrix whose estimated Θ parameters satisfy the stringent monotonicity

constraint (S8.49). One can see from the plots in Figure 7 that these Q1, Q2, Q3

do not maximize the data likelihood, implying severe non-identifiability. Note that for

Figure 7(b) corresponding to Q2, there are only two Q-matrices satisfying the constraint

(S8.49) among the 121 Q-matrices fitted to the data; these two Q-matrices are the true
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Q-matrix Q2 and another Q-matrix Q56,

Q2 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1

1 0

0 1

0 1

0 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

, Q56 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1

1 0

0 1

0 1

1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

Note that even there are only two Q-matrices satisfying the monotonicity constraint

(S8.49), the true Q2 used to generate the data is not the one that has the larger

likelihood, according to Figure 7(b). This illustrates the non-identifiability of Q2.

Figure 7: GDINA: exhaustive search in 5 × 2 Q-matrices with a true Q-matrix which leads to a not

even locally generically identifiable model.

(a) GDINA: true Q not even locally identifiable: Q1 =

󰀳

󰁃0 0 0 0 0

1 1 1 1 1

󰀴

󰁄
⊤
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(b) GDINA: true Q not even locally identifiable: Q2 =

󰀳

󰁃0 1 0 0 0

1 0 1 1 1

󰀴

󰁄
⊤

(c) GDINA: true Q not even locally identifiable: Q3 =

󰀳

󰁃0 1 0 0 0

1 1 1 1 1

󰀴

󰁄
⊤
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Study VII: Construction of many alternative sets of parameters when true

Q-matrix violates the necessary condition for generic identifiability.

In this study, we verify Theorem 3, i.e., verify the necessity of Condition C that each

attribute is required by at least two items in the Q-matrix for joint generic identifiability.

We consider two cases with (K, J) = (3, 20) and (K, J) = (5, 20).

First, for (K, J) = (3, 20), consider the following Q-matrix Q3 and an alternative

Q̄3.

Q3 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 1 0

1 0 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

0 1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

20×3

Q̄3 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 1 1

1 1 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

0 1 1

0 1 0

0 0 1

0 1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

20×3

(S8.50)

We first construct true parameters (Θ,p) under Q3. For each attribute pattern α, we

set its population proportion pα to be 1/2K . For each item, set the baseline probability,

the positive response probability of the all-zero attribute profile α = 0⊤, to be 0.2 and

the positive response probability of α = 1⊤ to be 0.8. And we take all the main effects

and interaction effects parameters to be equal.
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For the defined true parameters (Θ,p) under Q3, we next construct 70 alternative

sets of parameters (Θ̄
ℓ
, p̄ℓ) for ℓ = 1, 2, . . . , 70, all under the alternative Q-matrix Q̄3,

that are non-distinguishable from the true parameters. Following the proof of Theorem

3, we first set θ̄j,α = θj,α for any j > 2 and any α. Then we randomly generate the values

of the Θ̄1:2, 1:4 (the first four elements of the first two rows of Θ̄) from the neighborhood

of their true values, and enforce the monotonicity constraint (2.1). Specifically, for each

alternative set (the ℓ-th set) of parameters, there is

Θ̄
ℓ
i,j = Θi,j + U(−0.1, 0.1), i = 1, 2; j = 1, 2, 3, 4; ℓ = 1, 2, . . . , 70.

where U(−0.1, 0.1) denotes a uniformly distributed random variable between −0.1 and

0.1. Next we just use Equation (S4.41) to get the remaining item parameters Θ̄
ℓ
1:2, 5:8

and p̄ℓ.

Figure 8 presents the constructed 70 other parameters sets (Θ̄
ℓ
, p̄ℓ) under the al-

ternative Q̄3, by plotting the values of difference between the alternative parameters

and the true parameters. In particular, In Figure 8(a), the black solid line with dots is

the reference line at zero, and each of the 70 colored dotted line with “+”’s represents

one particular set of alternative parameters. For each colored line corresponding to the

ℓth set of parameters, the following 16-dimensional vector of parameter difference is

plotted,

(θ̄ℓ1, 000 − θ1, 000, θ̄ℓ1, 001 − θ1, 010, θ̄ℓ1, 010 − θ1, 010, θ̄ℓ1, 011 − θ1, 011,
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θ̄ℓ1, 100 − θ1, 100, θ̄ℓ1, 101 − θ1, 110, θ̄ℓ1, 110 − θ1, 110, θ̄ℓ1, 111 − θ1, 111,

θ̄ℓ2, 000 − θ2, 000, θ̄ℓ2, 001 − θ2, 010, θ̄ℓ2, 010 − θ2, 010, θ̄ℓ2, 011 − θ2, 011,

θ̄ℓ2, 100 − θ2, 100, θ̄ℓ2, 101 − θ2, 110, θ̄ℓ2, 110 − θ2, 110, θ̄ℓ2, 111 − θ2, 111).

Similarly, in Figure 8(b), for each colored line corresponding to the ℓth set of parameters,

the following 8-dimensional vector of parameter difference is plotted, (p̄ℓ000−p000, p̄
ℓ
001−

p010, p̄
ℓ
010−p010, p̄

ℓ
011−p011, p̄

ℓ
100−p100, p̄

ℓ
101−p110, p̄

ℓ
110−p110, p̄

ℓ
111−p111). In summary,

a total number of 70 colored lines corresponding to 70 alternative sets of parameters

are plotted in Figure 8.

The (Θ,p) and all the (Θ̄
ℓ
, p̄ℓ), ℓ = 1, . . . , 70 give the identical distribution of R.

Specifically, from the computation in Matlab, we have

max
1≤ℓ≤70

max
r∈{0,1}20

󰀏󰀏P(R = r | Q3,Θ,p)− P(R = r | Q̄3,Θ
ℓ,pℓ)

󰀏󰀏 = 1.30× 10−18,

which is smaller than the Matlab machine error 2.22× 10−16. This verifies that despite

the underlying parameters are different from the truth, they all lead to the identical

distribution of responses. So (Q3,Θ,p) are not identifiable. We emphasize that under

this Q3, for any true parameters, one can similarly construct arbitrarily many such

alternative parameter sets under Q̄3.
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Figure 8: GDINA: true Q is Q3 with (K,J) = (3, 20); each of the 70 colored line corresponds to one

set of alternative parameters under Q̄3; all sets non-distinguishable.

(a) K = 3 and J = 20, 70 alternative sets of parameters

(b) K = 3 and J = 20, 70 sets of parameters
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For (K, J) = (5, 20), consider the following Q4 and an alternative Q̄4,

Q4 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 1 0 0 0

1 0 1 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

0 0 1 1 0

0 0 1 0 1

0 0 0 1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

20×5

Q̄4 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 1 1 1 1

1 1 1 1 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

0 0 1 1 0

0 0 1 0 1

0 0 0 1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

20×5

. (S8.51)

We set the true parameters under Q4 similarly as those under Q3, and also use (S4.41)

in the proof of Theorem 3 to randomly construct 70 sets of parameters under the Q̄4.

Figure 9 (a) and (b) plot the values of difference between alternative and true item

parameters (of the first two items), and that between alternative and true proportion

parameters, respectively. Despite the differences in parameter values, our computation

in Matlab shows the maximum difference between marginal response probabilities is

max
1≤ℓ≤70

max
r∈{0,1}20

󰀏󰀏P(R = r | Q4,Θ,p)− P(R = r | Q̄4,Θ
ℓ,pℓ)

󰀏󰀏 = 5.42× 10−19,

also smaller than the Matlab machine error 2.22 × 10−16. This illustrates the non-

identifiability of Q4.
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Figure 9: GDINA: true Q is Q4 with (K,J) = (5, 20); each of the 70 colored line corresponds to one

set of alternative parameters under Q̄4; all sets non-distinguishable.

(a) K = 5 and J = 20, 70 alternative sets of parameters

(b) K = 5 and J = 20, 70 alternative sets of parameters
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