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Abstract: Restricted latent class models (RLCMs) have recently gained prominence

in educational assessment, psychiatric evaluation, and medical diagnosis. In con-

trast to conventional latent class models, the restrictions on RLCM parameters are

imposed using a design matrix, in order to respect practitioners’ scientific assump-

tions. The design matrix, called the Q-matrix in the cognitive diagnosis literature,

is usually constructed by practitioners and domain experts; however, it remains sub-

jective and can be misspecified. To address this problem, researchers have proposed

estimating the Q-matrix from sample data. However, the fundamental learnability

of the Q-matrix and the model parameters remains underexplored. As a result,

studies often impose stronger than needed (or even impractical) conditions. Here,

we propose sufficient and necessary conditions for the joint identifiability of the Q-

matrix and the RLCM parameters under different types of RLCMs. The proposed

identifiability conditions depend only on the design matrix, and are easy to verify

in practice.

Key words and phrases: Cognitive diagnosis, identifiability, restricted latent class

models.

1. Introduction

Latent class models are widely used as statistical tools in social and biological

sciences to model the relationship between a set of observed responses and a

set of discrete latent attributes of interest. This study focuses on a family of

restricted latent class models (RLCMs), which play a key role in, for example,

cognitive diagnosis in educational assessment (e.g., Junker and Sijtsma (2001);

Henson, Templin and Willse (2009); Rupp, Templin and Henson (2010); de la

Torre (2011)), psychiatric evaluation (Templin and Henson (2006); Jaeger et al.

(2006); de la Torre, van der Ark and Rossi (2018)), online testing and learning

(Wang et al. (2016); Zhang and Chang (2016); Xu, Wang and Shang (2016)),

and disease etiology diagnosis and scientifically structured clustering of patients

(Wu, Deloria-Knoll and Zeger (2017); Wu et al. (2018)).
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In contrast to conventional latent class models, the parameters of RLCMs

are constrained using a design matrix, often called the Q-matrix in the cogni-

tive diagnosis literature (Rupp, Templin and Henson (2010)). The Q-matrix

encodes practitioners’ understanding of how the responses depend on the under-

lying latent attributes. Various RLCMs have been developed, each with their own

cognitive diagnostic assumptions (e.g., DiBello, Stout and Roussos (1995); de la

Torre and Douglas (2004); Templin and Henson (2006); von Davier (2008); Hen-

son, Templin and Willse (2009)), including the basic deterministic input noisy

output “And” gate (DINA) model (Junker and Sijtsma (2001)), which serves as

a basic submodel for more general cognitive diagnostic models. See Section 2 for

a review of these models.

Despite the popularity of RLCMs, the fundamental identifiability of such

models remains a challenge, as noted in the literature (DiBello, Stout and Roussos

(1995); Maris and Bechger (2009); Tatsuoka (2009); DeCarlo (2011); von Davier

(2014)). Existing results related to the identifiability of unrestricted latent class

models in statistics (Teicher (1967); Goodman (1974); Gyllenberg et al. (1994);

Allman, Matias and Rhodes (2009)) cannot be applied directly to RLCMs, owing

to the structural constraints induced by the Q-matrix. Recent works have ex-

amined the identifiability of RLCM parameters for the basic DINA model (Chen

et al. (2015); Xu and Zhang (2016); Gu and Xu (2018)) and general RLCMs (Xu

(2017); Gu and Xu (2019, 2020)), assuming that the Q-matrix is prespecified and

correct.

However, the Q-matrix, specified by scientific experts when constructing the

diagnostic items, can be misspecified. Moreover, in an exploratory analysis of

newly designed items, much or all of the Q-matrix may not be available. Here, a

misspecification of the Q-matrix could lead to a serious lack of fit for the model,

and thus inaccurate inferences on the latent attribute profiles of the individuals.

Therefore, it is desirable to estimate the Q-matrix and the model parameters

jointly from the response data (e.g., de la Torre (2008); DeCarlo (2012); Liu, Xu

and Ying (2012); de la Torre and Chiu (2016); Chen et al. (2018)). A reliable

and valid estimation and inference on the Q-matrix requires that we ensure the

joint identifiability of the Q-matrix and the associated model parameters. Such

joint identifiability has been studied recently by Liu, Xu and Ying (2013) and

Chen et al. (2015) under the DINA model, and by Xu and Shang (2018) under

general RLCMs. Nevertheless, most of these works focus on developing sufficient

conditions for joint identifiability, and thus often impose stronger than needed

or sometimes impractical constraints on the experimental design of a cognitive
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diagnosis.

Therefore, the necessary and sufficient conditions (or minimal requirements)

for the joint identifiability of the Q-matrix and the model parameters remains an

open problem. This study addresses this problem, contributing to the literature

as follows.

First, under the DINA model, we derive the necessary and sufficient condi-

tions for the joint identifiability of the Q-matrix and the associated DINA model

parameters. Our necessary and sufficient conditions are succinctly and neatly

written as three algebraic properties of the Q-matrix, which we summarize as

completeness (Condition A), distinctness (Condition B), and repetition (Condi-

tion C); please see Theorem 1 for details. These three conditions require that

the binary Q-matrix is complete by containing an identity submatrix, has all

columns distinct other than the part of the identity submatrix, and repeatedly

contains at least three entries of one in each column. In addition to guaranteeing

identifiability, these conditions give the minimal requirements for the Q-matrix

and DINA model parameters to be estimable from the observed responses. The

identifiability result can be applied directly to the deterministic input noisy out-

put “Or” gate (DINO) model (Templin and Henson (2006)), owing to the duality

of the DINA and DINO models (Chen et al. (2015)). The derived identifiabil-

ity conditions also serve as necessary requirements for joint identifiability under

general RLCMs, which include the DINA model as a submodel.

Second, we propose sufficient and necessary conditions for a weaker nota-

tion of identifiability, the so-called generic identifiability, under both the DINA

model and general RLCMs. Generic identifiability implies that those parameters

for which identifiability does not hold live in a set of Lebesgue measure zero

(Allman, Matias and Rhodes (2009)). The motivation for studying generic iden-

tifiability is that the strict identifiability conditions are sometimes too restrictive

in practice. For instance, it is known that unrestricted latent class models are

not strictly identifiable (Gyllenberg et al. (1994)), but are generically identifiable

under certain conditions (Allman, Matias and Rhodes (2009)). In RLCMs, the

model parameters are forced by the Q-matrix-induced constraints to fall in a

measure-zero subset of the parameter space, and, thus, existing results for unre-

stricted models cannot be applied directly. Moreover, the generic identifiability

conditions needed to jointly identify the Q-matrix and the model parameters are

unknown. Therefore, in this work, we propose sufficient and necessary conditions

for generic identifiability, and explicitly characterize the nonidentifiable measure-

zero subset. Our mild sufficient conditions for generic identifiability under general
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RLCMs can be summarized as the following properties of the Q-matrix: double

generic completeness (Condition D), and generic repetition (Condition E); see

Theorem 4 for details. These two conditions require that the binary Q-matrix

contains two generically complete square submatrices with all diagonal elements

equal to one, and (repeatedly) contains at least one entry of “1” other than the

part comprising these two submatrices.

The rest of the paper is organized as follows. Section 2 introduces RLCMs

and reviews some popular models in cognitive diagnosis. Section 3 defines strict

and generic identifiability for RLCMs, and presents an illustrative example. Sec-

tions 4 and 5 contain our main theoretical results for strict and generic identifia-

bility for the DINA model and general RLCMs, respectively. Section 6 concludes

the paper. The proofs of the theoretical results and additional simulation stud-

ies that verify the developed theory are included in the online Supplementary

Material. The Matlab code used to check the proposed conditions is available at

https://github.com/yuqigu/Identify_Q.

2. RLCMs for Cognitive Diagnosis

RLCMs are key statistical tools in cognitive diagnostic assessments that es-

timate individuals’ attribute profiles based on their response data in the assess-

ment. Specifically, consider a diagnostic test with J items. A subject (e.g., an

examinee or a patient) provides a J-dimensional binary response vector R =

(R1, . . . , RJ)> to the J items. These responses are assumed to be dependent in

a certain way on K unobserved latent attributes. Under RLCMs, a complete set

of K latent attributes is known as a latent class or an attribute profile, denoted

by a vector α = (α1, . . . , αK)>, where αk ∈ {0, 1} is a binary indicator of the

absence or presence, respectively, of the kth attribute.

RLCMs assume a two-step data-generating process. The first step uses a

population model for the attribute profile vector. We assume that the attribute

profile follows a categorical distribution with population proportions p := (pα :

α ∈ {0, 1}K)>, where pα > 0, for all α ∈ {0, 1}K and
∑
α∈{0,1}K pα = 1.

The second step of the data-generating process follows a latent class model

framework, incorporating constraints based on the underlying cognitive pro-

cesses. Given a subject’s attribute profile α, his/her responses to the J items

{Rj : j = 1, . . . , J} are assumed to be conditionally independent, and each Rj fol-

lows a Bernoulli distribution with parameter θj,α = P (Rj = 1 | α). Here, θj,α de-

notes the probability of a positive response, and is also called an item parameter of

https://github.com/yuqigu/Identify_Q
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item j. The collection of all item parameters, denoted by the item parameter ma-

trix Θ = (θj,α)J×2K , is further constrained by the design matrixQ. TheQ-matrix

is the key structure that specifies the relationship between the J items and the K

latent attributes. Specifically, the Q-matrix is a J×K binary matrix, with entries

qj,k ∈ {1, 0} that indicate whether or not the jth item is linked to the kth latent

attribute. When qj,k = 1, we say attribute k is required by item j. The jth row

vector qj of Q gives the full attribute requirements of item j. Given an attribute

profile α and a matrix Q, we write α � qj if αk ≥ qj,k, for all k ∈ {1, . . . ,K},
and α � qj if there exists k such that αk < qjk; similarly, we define the opera-

tions � and �.

If α � qj , a subject with attribute pattern α possesses all attributes re-

quired by item j specified by the Q-matrix, and is “capable” of answering item

j correctly. On the other hand, if α′ � qj , a subject with α′ misses some re-

quired attribute of item j, and is expected to have a smaller positive response

probability than those of subjects with α � qj . That is, the RLCMs we consider

assume

θj,α > θj,α′ for any α � qj and α′ � qj . (2.1)

The monotonicity assumption in (2.1) is common to most RLCMs. Another

common assumption of RLCMs is that mastering these nonrequired attributes

of an item does not change the positive response probability to it; that is, θj,α =

θj,α′ if α � qj = α′ � qj , where “�” denotes the elementwise multiplication

operator (Henson, Templin and Willse (2009)). Under the introduced setup, the

response vector R has a probability mass function of the form

P(R = r | Q,Θ,p) =
∑

α∈{0,1}K
pα

J∏
j=1

θ
rj
j,α(1− θj,α)1−rj , r ∈ {0, 1}J , (2.2)

where the constraints on θj,α imposed by Q are made implicit.

Next, we review several popular cognitive diagnosis models, showing where

they fall within the family of RLCMs.

Example 1 (DINA model). The DINA model is one of the basic cognitive di-

agnosis models (Junker and Sijtsma (2001)). The model assumes a conjunctive

relationship among attributes, which means that providing a positive response

to an item requires possessing all its required attributes, as indicated by the Q-

matrix. For an item j and a subject with attribute profile α, an ideal response
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under the DINA model is defined as ΓDINAj,α = I(α � qj), which indicates whether

the subject is capable of responding to item j. The uncertainty is incorporated at

the item level in the slipping parameter sj = P (Rj = 0 | Γj,α = 1), denoting the

probability that a capable subject slips the positive response, and the guessing

parameter gj = P (Rj = 1 | Γj,α = 0), denoting the probability that a noncapable

subject coincidentally gives the positive response by guessing. Then, the positive

response probability for item j of class α is θDINAj,α = (1 − sj)Γj,αg
1−Γj,α

j . The

DINA model has only two parameters (i.e., sj and gj) for each item, regardless

of the number of attributes required by the item. In the following discussion, we

denote s = (s1, . . . , sJ)> and g = (s1, . . . , sJ)>. Given a Q-matrix, the DINA

model parameters (Θ,p) can be expressed equivalently by (s, g,p). We further

assume 1− s � g (Xu and Zhang (2016)), which ensures that the DINA model

satisfies the monotonicity assumption (2.1). The identifiability results for the

basic DINA model are presented in Section 4.

Example 2 (GDINA model and General RLCMs). de la Torre (2011) extended

the DINA model to the generalized DINA (GDINA) model, which is formulated

on the basis that θj,α can be decomposed into the sum of the effects caused by

the presence of specific attributes and their interactions. Specifically, for an item

j with q-vector qj = (qj,k : k = 1, . . . ,K), the positive response probability is

θGDINAj,α =
∑

S⊆{1,...,K}

βj,S
∏
k∈S

qj,k
∏
k∈S

αk. (2.3)

Note that not all β-coefficients in the above equation are included in the model.

For a subset S of the K attributes {1, . . . ,K}, βj,S 6= 0 only if
∏
k∈S qj,k = 1. We

interpret this as βj,∅ denoting the probability of a positive response when none

of the required attributes are present in α; when qj,k = 1, βj,{k} is included in the

model, representing the change in the positive response probability resulting from

the mastery of a single attribute k; when qj,k = qj,k′ = 1, βj,{k,k′} is included in

the model, representing the change in the positive response probability resulting

from the interaction effect of mastering both k and k′. Under the GDINA model,

each θj,α models the main effects and all interaction effects of the attributes

measured by the item. We refer to these diagnostic models as general RLCMs.

Other popular general RLCMs include the log-linear cognitive diagnosis model

(LCDM; Henson, Templin and Willse (2009)) and the general diagnostic model

(GDM; von Davier (2008)). The identifiability results for general RLCMs are

presented in Section 5.
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3. Definitions and Examples of Strict and Generic Identifiability

This section introduces the definitions of joint strict identifiability and joint

generic identifiability of (Q,Θ,p) for RLCMs, and gives an illustrative example.

Note that the monotonicity assumption stated in (2.1), is necessary for the

identifiability of the Q-matrix, because, without it, Q 6= 1J×K with parameters

(Θ,p) is distinguished from Q̄ = 1J×K with the same parameters (Θ,p) under

the general RLCM. The monotonicity constraints ensure that the constraints

induced by Q 6= 1J×K and Q̄ = 1J×K cannot be the same and, therefore, Q can

be identified under additional conditions; see Sections 4 and 5. In the following

we assume the monotonicity assumption introduced in Section 2 is satisfied.

Another common issue with the identifiability of the Q-matrix is label swap-

ping. In an RLCM setting, arbitrarily reordering the columns of a Q-matrix does

not change the distribution of the responses. As a result, it is only possible to

identify Q up to column permutation; thus, we write Q̄ ∼ Q if Q̄ and Q have

an identical set of column vectors, and write (Q̄, Θ̄, p̄) ∼ (Q,Θ,p) if Q̄ ∼ Q and

(Θ̄, p̄) = (Θ,p).

We first define the identifiability of the Q-matrix and the model parameters

(Θ,p). We refer to this as joint strict identifiability.

Definition 1 (Joint Strict Identifiability). Under an RLCM, the design matrix

Q joint with the model parameters (Θ,p) are said to be strictly identifiable if

for any (Q,Θ,p), there is no (Q̄, Θ̄, p̄) � (Q,Θ,p) such that

P(R = r | Q,Θ,p) = P(R = r | Q̄, Θ̄, p̄) for all r ∈ {0, 1}J . (3.1)

In the following discussion, we write (3.1) simply as P(R | Q,Θ,p) = P(R |
Q̄, Θ̄, p̄).

Despite being the most stringent criterion for identifiability, strict identifia-

bility can be too restrictive, ruling out many cases where (Q,Θ,p) are “almost

surely” identifiable. In the literature on unrestricted latent class models, Allman,

Matias and Rhodes (2011) proposed and studied the so-called generic identifi-

ability of such models. Here, we introduce the concept of generic identifiability

for RLCMs as follows.

Definition 2 (Joint Generic Identifiability). Consider an RLCM with parameter

space ϑQ, which is of full dimension in Rm, with m corresponding to the number

of free parameters in the model. The matrix Q joint with the model parameters

(Θ,p) are said to be generically identifiable if the following set has Lebesgue
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measure zero in Rm: ϑnon = {(Θ,p) : ∃(Q̄, Θ̄, p̄) � (Q,Θ,p), such that P(R |
Q,Θ,p) = P(R | Q̄, Θ̄, p̄)}.

3.1. Example of the generic identifiability phenomenon with Q4×2

Here, we use an example to explain the difference between generic identi-

fiability and strict identifiability. Consider the Q-matrix Q4×2 in (3.2). Under

the DINA model, we prove that this Q-matrix, joint with the associated model

parameters (s, g,p), is generically identifiable (by part (b.2) of Theorem 2), but

not strictly identifiable (by Theorem 1).

Q4×2 =

(
1 0 1 0

0 1 0 1

)>
. (3.2)

In particular, as long as the true proportions p = (p(00), p(01), p(10), p(11)) satisfy

the following inequality constraint, (Q4×2, s, g,p) is identifiable (see the proof of

Theorem 2 (b.2)):

p(01)p(10) 6= p(00)p(11). (3.3)

On the other hand, when p(01)p(10) = p(00)p(11), the model parameters are not

identifiable, and there exist infinitely many sets of parameters that provide the

same distribution of the observed response vector. Here, the parameter space

ϑQ = {(s, g,p) : 1 − s � g, p � 0,
∑
α pα = 1} is of full dimension in R11,

where the nonidentifiable subset ϑnon = {(s, g,p) : p(01)p(10) = p(00)p(11)} has

Lebesgue measure zero in R11. We use a simulation study to illustrate the generic

identifiability phenomenon. Under the Q4×2 in (3.2), consider the following two

simulation scenarios:

(a) the true model parameters are set as gj = sj = 0.2 for j = 1, 2, 3, 4, and

p(00) = p(01) = p(10) = p(11) = 0.25, which violates (3.3);

(b) the true model parameters are generated randomly, which almost always

satisfies (3.3). Specifically, we randomly generate 100 true parameter sets

(s, g,p) using the following generating mechanism: sj ∼ U(0.1, 0.3), gj ∼
U(0.1, 0.3) for j = 1, 2, 3, 4, and p ∼ Dirichlet(3, 3, 3, 3). Here U(0.1, 0.3) de-

notes the uniform distribution on [0.1, 0.3], and Dirichlet(3, 3, 3, 3) denotes

the Dirichlet distribution with parameter vector (3, 3, 3, 3).

We show numerically that in scenario (a), there exist multiple sets of valid DINA

parameters that give the same distribution of R; in scenario (b), the model

(Q, s, g,p) is almost surely identifiable and estimable. In particular, correspond-
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Figure 1. Illustration of nonidentifiability under Q4×2 in scenario (a).

ing to scenario (a), Figure 1(a) plots the true model parameters and the other

two sets of valid DINA model parameters (constructed based on the derivations

in the proof of Theorem 2 (b.2)), and Figure 1(b) plots the marginal probabilities

of all 24 = 16 response patterns under the three sets of model parameters. We

can see that despite these three sets of parameters being quite different, they

give the identical distribution of the four-dimensional binary response vector.

Corresponding to scenario (b), we randomly generate B = 100 sets of true

parameters (si, gi,pi), for i = 1, . . . , 100. Then, for each (si, gi,pi), we generate

200 independent data sets of size N , with N = 102, 103, 104, and 105, and then

compute the mean square errors (MSEs) of the maximum likelihood estimators

(MLEs) of the slipping, guessing and proportion parameters. To compute the

MLEs of the model parameters for each simulated data set, we run the EM

algorithm with 10 random initializations, and choose the estimators that achieve

the largest log-likelihood value of the 10 runs. Figure 2 shows the box plots

of MSEs associated with the B = 100 true parameter sets for each sample size

N . As N increases, we observe that the MSEs decrease to zero, indicating the

(generic) identifiability of these randomly generated parameters.

On the other hand, Figure 2 also shows that several parameter sets have

MSEs that are “outliers” that converge to zero more slowly than others do

as N increases. This happens because these sets of parameters fall near the

nonidentifiability set Vnon = {(s, g,p) : p(01)p(10) − p(00)p(11) = 0}, making

it more difficult to identify them. To illustrate this point, consider the sce-

nario corresponding to the rightmost box plot in Figure 2(a), with sample size



458 GU AND XU

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0
1e2             1e3             1e4              1e5

N

(a) MSE of p

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0
1e2             1e3             1e4              1e5

N

(b) MSE of s

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0
1e2             1e3             1e4              1e5

N

(c) MSE of g

Figure 2. Illustration of generic identifiability under Q4×2, which corresponds to simu-
lation scenario (b).

N = 105. For each of the 100 sets of true parameters (si, gi,pi), we plot pi(00)·p
i
(11)

and pi(01) · p
i
(01) as the x-axis and y-axis coordinates, respectively (see Figure

3). Then, each point represents one set of true parameters used to generate

the data. Specifically, we plot these parameter sets using a “∗” if their corre-

sponding MSEs are the 20% largest outliers in the rightmost box plot in Figure

2(a); we plot the remaining 80% of the parameter sets using a “+”. One can

clearly see that as the true parameters become closer to the nonidentifiability set

Vnon = {(s, g,p) : p(01)p(10) − p(00)p(11) = 0} (represented by the straight ref-

erence line drawn from (0, 0) to (0.17, 0.17)), the MSEs increase, and the MSEs

converge more slowly. Thus, under generic identifiability, when the true model

is close to the nonidentifiable set, the convergence of their MLEs becomes slow.

Interestingly, the generic identifiability constraint (3.3) is equivalent to the

statement that the two latent attributes are not independent of each other. To

see this, view each subject’s two-dimensional attribute profile as a random vector

taking values in a 2×2 contingency table. Then, (3.3) states that the 2×2 matrix

of joint probabilities of attributes mastery,(
p(00) p(01)

p(10) p(11)

)
,

has full rank, with nonzero determinant p(00)p(11) − p(01)p(10). Therefore, one

row (resp. column) of the matrix cannot be a multiple of the other row (resp.

column), and hence the two binary attributes can not be independent. Intu-

itively, this implies that the DINA model essentially requires that each attribute

is measured at least three times for identifiability (as shown in Condition B in
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Figure 3. The effect of the generic identifiability constraint (3.3). “∗”s represent param-
eter sets with the 20% largest MSEs in Figure 2(a), with N = 105; “+”s represent the
remaining parameter sets.

Theorem 1). In particular, consider those attributes that are measured by only

two items in the Q-matrix. If these attributes are independent, then, intuitively,

they provide an independent source of information in which case the model is

not identifiable. However, if these attributes are dependent, then the dependency

instead helps to identify the model structure.

Before stating the strict and generic identifiability results on (Q,Θ,p), we

show in the next proposition that any all-zero row vector in the Q-matrix can be

dropped without affecting the identifiability conclusion.

Proposition 1. Suppose the Q-matrix of size J ×K takes the form Q = ((Q′)>,

0>)>, where Q′ is a J ′ × K submatrix containing J ′ nonzero q-vectors, and 0

denotes a (J − J ′) × K submatrix containing these zero q-vectors. Let Θ′ be

the submatrix of Θ containing its first J ′ rows. Then, for any RLCM, (Q,Θ,p)

are jointly strictly (generically) identifiable if and only if (Q′,Θ′,p) are jointly

strictly (generically) identifiable.

Therefore, without loss of generality, from now on, we only consider Q-

matrices without any zero q-vectors when discussing joint identifiability. We

examine various RLCMs that are popular in cognitive diagnosis assessment. In

particular, in Section 4, we present the sufficient and necessary conditions for the

strict and generic identifiability of (Q,Θ,p) under the basic DINA model. These

identifiability results can also be applied to the DINO model (Templin and Hen-

son (2006)), owing to the duality between the two models (Chen et al. (2015)).

Section 5 presents the sufficient and necessary conditions for the generic identi-
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fiability of (Q,Θ,p) under general RLCMs, which include the popular GDINA

and LCDM models.

4. Identifiability of (Q,Θ,p) under the DINA model

Under the DINA model, Liu, Xu and Ying (2013) first studied the identi-

fiability of the Q-matrix under the assumption that the guessing parameters g

are known. Chen et al. (2015) and Xu and Shang (2018) proposed a further set

of sufficient conditions without needing to assume known item parameters. An

important requirement in these identifiability studies is the completeness of the

Q-matrix (Chiu, Douglas and Li (2009)). Under the DINA model, the Q-matrix

is said to be complete if it contains a K×K identity submatrix IK up to column

permutation. Chen et al. (2015) and Xu and Shang (2018) require Q to contain

at least two complete submatrices IK for identifiability.

However, determining the minimal requirements on the Q-matrix for iden-

tifiability remains an open problem. In the next theorem, we solve this prob-

lem by providing the necessary and sufficient condition for the identifiability of

(Q, s, g,p) under the earlier assumption that pα > 0, for all α ∈ {0, 1}K (Xu

and Zhang (2016); Gu and Xu (2018)).

Theorem 1. Under the DINA model, the combination of Conditions A, B, and

C is necessary and sufficient for the strict identifiability of (Q, s, g,p):

A. The true Q-matrix is complete. Without loss of generality, assume the Q-

matrix takes the following form:

Q =

(
IK
Q?

)
. (4.1)

B. The column vectors of the submatrix Q? in (4.1) are distinct.

C. Each column in Q contains at least three entries equal to one.

In the Supplementary Material, we provide simulations that verify Theorem

1. In particular, see simulation study I for the sufficiency of Conditions A, B,

and C for joint identifiability; also see simulation studies III and IV for the neces-

sity of the proposed conditions. Next, we compare our Theorem 1 with several

existing results. First, although the same set of conditions is proposed in Gu and

Xu (2018), they assumed a known Q when examining the identifiability of the

parameters (s, g,p). In contrast, Theorem 1 studies the joint identifiability of
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(Q, s, g,p), which is theoretically much more challenging, owing to the unknown

Q-matrix, and therefore provides a much stronger result than that in Gu and

Xu (2018). In terms of estimation, Theorem 1 implies that we can consistently

estimate both Q and (s, g,p), without worrying that an incorrect Q-matrix is

indistinguishable from the true Q. Second, Theorem 1 has much weaker require-

ments than those of the well-known identifiability conditions resulting from a

three-way tensor decomposition (Kruskal (1977); Allman, Matias and Rhodes

(2011)). Specifically, these classical results require that the number of items

J ≥ 2K + 1 for (generic) identifiability. In contrast, the conditions in Theorem

1 imply that we need the number of items J to be at least K + dlog2(K)e + 1

under the DINA model. This is because, other than the identity submatrix IK ,

in order to satisfy Condition B of distinctness, the Q-matrix needs only contain

a further log2(K) items whose K-dimensional q-vectors form a matrix with K

distinct columns. For example, for K = 8, the conditions in Allman, Matias

and Rhodes (2011) require at least 2K + 1 = 17 items, whereas our Theorem 1

guarantees that the following Q with K + log2(K) + 1 = 12 items suffices for the

strict identifiability of (Q, s, g,p) under DINA:

Q =


I8

0 0 1 1 1 0 1 1

0 1 0 1 0 1 1 1

1 0 0 0 1 1 1 1

1 1 1 1 1 1 0 1

 .

Conditions A, B, and C are the minimal requirements for joint strict iden-

tifiability. When the true Q fails to satisfy one or more of these, Theorem 1

implies that there must exist (Q, s, g,p) � (Q̄, s̄, ḡ, p̄) such that (3.1) holds. In

this scenario, there are still cases where the model is “almost surely” identifiable,

though not strictly identifiable, as illustrated by the example under Q4×2 in (3.2).

On the other hand, there are also cases where the entire model is never identifi-

able, as shown in simulation studies III and IV in the Supplementary Material.

Therefore, it is desirable to determine which conditions guarantee the generic

identifiability of (Q, s, g,p).

In the following, we discuss the necessity of Conditions A, B, and C under

the weaker notion of generic identifiability. First, Condition A is necessary for

the joint generic identifiability of (Q,Θ,p). If the true Q-matrix does not satisfy

Condition A, then under the DINA model, certain latent classes would be equiv-
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alent given Q, and their separate proportion parameters can never be identified,

not even generically (Gu and Xu (2020)). In certain scenarios where Condition

A fails, one can find a different Q̄ that is not distinguishable from Q. Simulation

study IV in the Supplementary Material illustrates the necessity of Condition A.

Second, Condition B is also difficult to relax, and serves as a necessary

condition for generic identifiability when K = 2. Specifically, as shown in Gu

and Xu (2018), when K = 2, the only possible structure of the Q-matrix that

violates Condition B while satisfying Conditions A and C is

Q =

(
1 0 1 · · · 1
0 1 1 · · · 1

)>
.

In addition, Gu and Xu (2018) prove that for any valid DINA parameters asso-

ciated with this Q, there exist infinitely many different sets of DINA parameters

that lead to the same distribution of the responses. Therefore, the model is not

generically identifiable.

Third, in contrast to Conditions A and B, for generic identifiability, Condi-

tion C can be relaxed to a certain extent. The next theorem characterizes how

the Q-matrix structure in this case affects generic identifiability. For an empirical

verification of Theorem 2, see simulation study II in the Supplementary Material.

Theorem 2. Under the DINA model, (Q, s, g,p) is not generically identifiable

if some attribute is required by only one item.

If some attribute is required by only two items, suppose the Q-matrix takes the

following form, after some column and row permutations:

Q =

1 0>

1 v>

0 Q?

 , (4.2)

where v is a vector of length K − 1, and Q? is a (J − 2)× (K − 1) submatrix.

(a) If v = 1, (Q, s, g,p) is not locally generically identifiable.

(b) If v = 0, (Q, s, g,p) is globally generically identifiable if either

(b.1) the submatrix Q? satisfies Conditions A, B, and C in Theorem 1; or

(b.2) the submatrix Q? has two submatrices IK−1.

(c) If v 6= 0,1, (Q, s, g,p) is locally generically identifiable if Q? satisfies Con-

ditions A, B, and C in Theorem 1.
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Remark 1. We say (Q, s, g,p) is locally identifiable if, in a neighborhood of

the true parameters, there does not exist a different set of parameters that gives

the same distribution of the responses. Local generic identifiability is a weaker

notion than (global) generic identifiability. Therefore, the statement in part (a)

of Theorem 2 also implies that (Q, s, g,p) is not globally generically identifiable.

Remark 2. In scenario (b.1) of Theorem 2, the identifiable subset of the pa-

rameter space is
{

(s, g,p) : ∃α1 = (0, α1
2, . . . , α

1
K),α2 = (0, α2

2, . . . , α
2
K) ∈ {0} ×

{0, 1}K−1, such that pα1pα2+e1 6= pα2pα1+e1

}
, where ej is a J-dimensional unit

vector, with the jth element equal to one and all the others zero. In scenario (b.2)

of Theorem 2, we can write Q = (IK , IK , (Q
??)>)>, in which case, the identifiable

subset is
{

(s, g,p) : ∀k ∈ {1, . . . ,K},∃αk,1,αk,2 ∈ {0, 1}k−1×{0}×{0, 1}K−k−1,

such that pαk,1pαk,2+ek 6= pαk,2pαk,1+ek

}
. The complements of these identifiable

subsets in the parameter space give the nonidentifiable subsets, which are both

of measure zero in the DINA model parameter space.

Next we discuss the generic identifiability of the DINA model in the special

case of K = 2. We have the following proposition.

Proposition 2. Under the DINA model with K = 2 attributes, (Q, s, g,p) is

generically identifiable if and only if the conditions in Theorem 1 or 2(b) hold.

Proposition 2 gives a full characterization of joint generic identifiability when

K = 2, showing that the proposed generic identifiability conditions are neces-

sary and sufficient in this case. The following example discusses all possible

Q-matrices with K = 2, such that (Q, s, g,p) is not strictly identifiable, which

proves Proposition 2 automatically.

Example 3. When K = 2, the discussions on Conditions A and B before Theo-

rem 2 show that (Q, s, g,p) is not generically identifiable when A or B is violated.

Therefore, we need only focus on cases where Condition C is violated and Con-

ditions A and B are satisfied. Specifically, when J ≤ 5, the Q-matrix can only

take the following forms up to column and row permutations:

Q1 =


1 0

0 1

1 1

0 1

 , Q2 =


1 0

0 1

1 0

0 1

 , Q3 =


1 0

0 1

1 0

0 1

0 1

 .

By Theorem 2, Q1 falls in scenario (a); therefore, (Q1, s, g,p) is not locally gener-



464 GU AND XU

ically identifiable; that is, even in a small neighborhood of the true parameters,

there exist infinitely many different sets of parameters that give the same distri-

bution of the responses. On the other hand, Q2 falls in scenario (b.2) and Q3

falls in scenario (b.1). Therefore, (Q2, s, g,p) and (Q3, s, g,p) are both generi-

cally identifiable. In the case of J > 5, any Q satisfying A and B while violating

C must contain one of the above Qi as a submatrix and include additional row

vectors of (0, 1). By Theorem 2, any such Q extended from Q1 is still not lo-

cally generically identifiable, and any such Q extended from Q2 or Q3 is globally

generically identifiable.

5. Identifiability of (Q,Θ,p) under General RLCMs

Because the DINA model is a submodel of general RLCMs, Conditions A, B,

and C in Theorem 1 are also necessary for the strict identifiability of general

RLCMs. For instance, our proposed Conditions A, B, and C are weaker than

the sufficient conditions proposed by Xu and Shang (2018) for the strict identi-

fiability of (Q,Θ,p) under general RLCMs; and if their conditions are satisfied,

the current conditions A, B, and C are also satisfied. However, these necessary

requirements may be strong in practice, and cannot be applied to identify any

Q that lacks some single-attribute items (i.e., lacks some unit vector as a row

vector). A natural question is whether Conditions A, B, and C can be relaxed

under the weaker notation of of generic identifiability. This section addresses this

question.

Under general RLCMs, the next theorem shows that Condition C (each

attribute is required by at least three items) is necessary for the generic identifia-

bility of (Q,Θ,p), contrary to the results for the DINA model, where Conditions

A and B cannot be relaxed, but Condition C can. Simulation studies VI and

VII in the Supplementary Material verify Theorem 3.

Theorem 3. Under a general RLCM, Condition C in Theorem 1 is necessary

for the generic identifiability of (Q,Θ,p). Specifically, when the true Q-matrix

violates C, for any model parameters (Θ,p) associated with Q, there exist in-

finitely many sets of (Q̄, Θ̄, p̄) � (Q,Θ,p) such that equation (3.1) holds. Thus,

(Q,Θ,p) is not generically identifiable.

Whereas Condition C is necessary, we next show that the other two condi-

tions, A and B, can be relaxed further for the generic identifiability of general

RLCMs. Before stating the result, we first introduce a new concept about the

Q-matrix, called generic completeness.
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Definition 3 (Generic Completeness). A Q-matrix with K attributes is said to

be generically complete if, after some column and row permutations, it has a

K ×K submatrix with all diagonal entries equal to one.

Generic completeness is a relaxation of the concept of completeness. In par-

ticular, aQ-matrix is generically complete if, up to column and row permutations,

it contains a submatrix as follows:
1 ∗ . . . ∗
∗ 1 . . . ∗
...

...
. . .

...

∗ ∗ . . . 1

 ,

where the off-diagonal entries “∗” are left unspecified. Note that any complete

Q-matrix is also generically complete, whereas a generically complete Q-matrix

may not have any single-attribute items.

Using the concept of generic completeness, the next theorem gives sufficient

conditions for joint generic identifiability, and shows that under general RLCMs,

the necessary conditions A and B for strict identifiability are no longer necessary

in the current setting.

Theorem 4. Under a general RLCM, if the true Q-matrix satisfies the following

Conditions D and E, then (Q,Θ,p) is generically identifiable.

D. The Q-matrix has two nonoverlapping generically complete K ×K subma-

trices Q1 and Q2. Without loss of generality, assume the Q-matrix is in the

following form:

Q =

Q1

Q2

Q?


J×K

. (5.1)

E. Each column of the submatrix Q? in (5.1) contains at least one entry of

one.

Remark 3. Under Theorem 4, the identifiable subset of the parameter space is

{(Θ,p) : det(T (Q1,ΘQ1
)) 6= 0, det(T (Q2,ΘQ2

)) 6= 0, and T (Q?,ΘQ?) · Diag(p)

has distinct column vectors}. Its complement is the nonidentifiable subset, and it

has measure zero in the parameter space ϑQ when Q satisfies Conditions D and

E. Please see the supplementary materials for the definition of the T -matrices

(T (Q1,ΘQ1
), etc.).
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Remark 4. The proof of Theorem 4 is based on the proof of Theorem 7 in Gu and

Xu (2020), who proposed the same Conditions D and E as sufficient conditions

for the generic identifiability of model parameters, given a known Q. We point

out that though D and E serve as sufficient conditions for generic identifiability,

both when Q is known and when Q is unknown, the generic identifiability results

in these two scenarios are different. In particular, Theorem 8 in Gu and Xu

(2020) shows that when Q is known, some attribute can be required by only

two items for generic identifiability to hold (i.e., Condition C can be relaxed); in

contrast, our current Theorem 3 shows that when Q is unknown, Condition C

indeed becomes necessary.

The proposed sufficient Conditions D and E weaken the strong requirement

of Conditions A and B, especially the identity submatrix requirement that may

be difficult to satisfy in practice. Simulation study V in the Supplementary

Material verifies Theorem 4. Note that Conditions D and E imply the necessary

Condition C that each attribute is required by at least three items.

We next discuss the necessity of Conditions D and E. As shown in Section

3.2, under DINA, the completeness of Q is necessary for the joint strict identifi-

ability of (Q, s, g,p). For general RLCMs, we have an analogous conclusion that

the generic completeness of Q, which is part of Condition D, is necessary for the

joint generic identifiability of (Q,Θ,p). This is stated in the next theorem.

Theorem 5. Under a general RLCM, generic completeness of the Q-matrix is

necessary for the joint generic identifiability of (Q,Θ,p).

Furthermore, we show that Conditions D and E themselves are in fact nec-

essary when K = 2, indicating the difficulty of relaxing these further.

Proposition 3. For a general RLCM with K = 2, Conditions D and E are

necessary and sufficient for the generic identifiability of (Q,Θ,p).

We use the following example to illustrate the result of Proposition 3, which

also gives a natural proof of the proposition.

Example 4. When K = 2, a Q-matrix that satisfies the necessary Condition C,

but not Conditions D or E, can only take the following form Q1 or Q2, up to

row permutations:

Q1 =

1 1

1 1

1 1

 , Q2 =


1 ∗
∗ 1

1 1

1 1

 ; Q̄2 =


1 1

1 1

1 1

1 1

 .
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The “∗”s in Q2 are unspecified values, and can be either zero or one. For Q1 with

J = 3, K = 2, and any parameters (Θ,p), there are 2J = 8 constraints in (3.1) for

solving (Θ̄, p̄) under Q1 itself, whereas the number of free parameters of (Θ̄, p̄) is

|{pα : α ∈ {0, 1}2}∪{θj,α : j ∈ {1, 2},α ∈ {0, 1}2}| = 2K +2K×J = 16 > 8. For

Q2 with J = 4, K = 2, and any associated (Θ,p), there are 2J = 16 constraints

in (3.1) for solving (Θ̄, p̄), whereas the number of free parameters of (Θ̄, p̄)

under the alternative Q̄2 is 2K + J × 2K = 20 > 2J = 16. In both cases, there

are infinitely many sets of solutions of (3.1) as alternative model parameters.

Therefore, neither (Q1,Θ,p) nor (Q2,Θ,p) are generically identifiable.

6. Conclusion

In this work, we study the identifiability issue of RLCMs with unknown

Q-matrices. For the basic DINA model, we derive the necessary and sufficient

conditions for the strict joint identifiability of the Q-matrix and the associated

model parameters. We also study a slightly weaker identifiability notion, called

generic identifiability, and propose sufficient and necessary conditions for it under

the DINA model and general RLCMs.

Statistical consequences of identifiability. In the setting of RLCMs, identifia-

bility naturally leads to estimability, in different senses, under strict and generic

identifiability. If the Q-matrix and the associated model parameters are strictly

identifiable, then Q and the model parameters can consistently be jointly esti-

mated from the data. If the Q-matrix and the model parameters are generically

identifiable, then for true parameters ranging almost everywhere in the param-

eter space with respect to the Lebesgue measure, the Q-matrix and the model

parameters can consistently be jointly estimated from the data.

As pointed out by one reviewer, the analysis of identifiability is under an ideal

situation with an infinite sample size. Indeed, general identification problems as-

sume the hypothetical exact knowledge of the distribution of the observed vari-

ables, and ask under what conditions one can recover the underlying parameters

(Allman, Matias and Rhodes (2009)). Next, we discuss the finite-sample estima-

tion issue under the proposed identifiability conditions for strict identifiability,

following a similar argument to that in Proposition 1 in Xu and Shang (2018).

Denote the true Q-matrix and model parameters by Q0 and η0 = (Θ0,p0), re-

spectively. Consider a sample with N independent and identically distributed

(i.i.d.) response vectors R1,R2, . . . ,RN , and denote the log-likelihood of the

sample by `(Θ,p) =
∑N

i=1 logP(Ri | Q,Θ,p). Under a specified RLCM, a Q-
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matrix determines the structure of the item parameter matrix Θ by specifying

which entries are equal. For a given Θ, we can define an equivalent formulation

of it, a sparse matrix B, with the same size as Θ, as follows. Under a general

RLCM, such as the GDINA model in Example 2, the item parameters can be

parameterized as θj,α =
∑
S⊆{1,...,K} βj,S

∏
k∈S αk. Based on this, we define the

jth row of B as a 2K-dimensional vector collecting all of these β-coefficients;

that is, Bj = (βj,0, βj,1, . . . , βj,K , . . . , βj,12···K). Then, as long as the q-vector

qj 6= 1K , the vector Bj and the matrix B are both “sparse”. For the true Q0,

we denote the corresponding B-matrix by B0. Under a specified RLCM (e.g.,

DINA or GDINA), the identification of Q0 is then implied by the identification

of the indices of nonzero elements of B0. Denote the support of the true B0 and

any candidate B by S0 and S, respectively. Define Cmin(η0) = inf{S 6=S0, |S|≤|S0|}
(|S0 \S|)−1h2(η0,η), where h2(η0,η) denotes the Hellinger distance between the

two distributions of R, indexed by parameters η0 under the true B0, and by η

under the candidate B. Denote the Q-matrix and the model parameters that

maximize the log-likelihood `(Θ,p) subject to the L0 constraint |S| ≤ |S0| by

η̂ = (Θ̂, p̂), and denote the “oracle” MLEs of the model parameters obtained, as-

suming Q0 is known, by η̂0 = (Θ̂0, p̂0). Then, we have the following finite-sample

error bound for the estimated Q-matrix and model parameters.

Proposition 4. Suppose Q0 satisfies the proposed sufficient conditions for joint

strict identifiability; then, Cmin(Θ0,p0) ≥ c0, for some positive constant c0. Fur-

thermore,

P(Q̂ 6∼ Q0) ≤ P(η̂ 6= η̂0) ≤ c2 exp{−c1NCmin(Θ0,p0)}, (6.1)

where c1, c2 > 0 are some constants. That is, when the joint strict identifiability

conditions hold, the finite-sample estimation error has an exponential bound.

Proposition 4 shows that the estimation error decreases exponentially in N

if the model is identifiable. On the other hand, when the identifiability condi-

tions fail to hold, there exist alternative models that are close to the true model

in terms of the Hellinger distance. This would make the Cmin(Θ0,p0) in (6.1)

equal to zero, instead of being bounded away from zero, as shown in Proposi-

tion 4. Therefore, the finite-sample error bound in (6.1) becomes O(1) in this

nonidentifiable scenario. In particular, when the generic identifiability conditions

are satisfied, Cmin(Θ0,p0) depends on the distance between the true parameters

and the nonidentifiable measure-zero subset of the parameter space; as the true

parameters become closer to this measure-zero set, Cmin(Θ0,p0) decreases to
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zero, and a larger sample size may be needed to achieve a prespecified level of

estimation accuracy.

Potential extensions to other latent variable models. We briefly discuss po-

tential extensions of the proposed theory to other latent variable models, such

as RLCMs with ordinal polytomous attributes (von Davier (2008); Ma and de la

Torre (2016); Chen and de la Torre (2018)), and multidimensional latent trait

models (Embretson (1991)). First, an RLCM with ordinal polytomous attributes

can be viewed as an RLCM with binary attributes and a constrained relation-

ship among the binary attributes. For instance, consider an ordinal attribute γ

that can take C different values {0, 1, . . . , C − 1}; then, γ can be equivalently

viewed as a collection of C − 1 binary random variables αγ := (α1, . . . , αC−1)

with the following constraints. If αi = 0 for some i < C − 1, then αj = 0, for all

j = i + 1, . . . , C − 1. In other words, any pattern αγ with αi = 0 and αj = 1,

for some i < j is “forbidden” and constrained to have proportion zero. The

vector of polytomous attributes can be augmented to a longer vector of binary

attributes using constraints in this fashion. Then, we can consider the RLCM

with the augmented proportion parameters by constraining the proportions of

the “forbidden” binary attribute patterns to zero. In this scenario, it might be

possible to extend the current theory and develop identifiability conditions for

the case of polytomous attributes.

Second, if a multidimensional latent trait model includes both continuous

and discrete latent traits, then the techniques used to establish the identifiabil-

ity of the latent class models in this study would also be useful when treating

discrete latent variables. For continuous latent variables, the techniques devel-

oped in Bai and Li (2012) for the identifiability of the factor analysis model and

those developed for traditional multivariate analyses (Anderson (2009)) would

be helpful.

In practice, the proposed identifiability theory can serve as a foundation for

designing statistically guaranteed estimation procedures. Specifically, consider

the set of all Q-matrices that satisfy our identifiability conditions (A, B, and C

under the DINA model, or D and E under general RLCMs), and call it the “iden-

tifiable Q-set.” Then, we can use likelihood-based approaches, such as that in Xu

and Shang (2018), to jointly estimate Q and the model parameters by constrain-

ing Q to the identifiable Q-set; alternatively we can use Bayesian approaches to

estimate Q, as in Chen et al. (2018). Additionally, if under the DINA model,

the Q-matrix does not contain a submatrix IK , then according to Gu and Xu



470 GU AND XU

(2020), certain attribute profiles would be equivalent and the strongest possible

identifiability argument therein is the so-called p-partial identifiability. In this

scenario, it would be interesting to study the identifiability of the incomplete

Q-matrix under the notion of p-partial identifiability. We leave this to future

research.

Supplementary Material

The online Supplementary Material contains proofs of Propositions 1 and 4

and Theorems 1–5, as well as additional simulation results.
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