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Additional simulation results

In this section, we show some additional simulation results for Simulated Examples 1 and 2,
where we set ¢ = 6 and keep all the other set ups the same. The results are shown in Tables

S1 and S2. The information we obtain is similar to that from the scenarios with o = 2.

Additional sensitivity study

In this section, we investigate how the performance of our method depends on the sample
size, dimensionality, and noise level for Simulated Example 2, as a supplement to Section 5.2.
In particular, we consider n = 100 or 500, p = 500, 1000, 2000 or 5000 and ¢ = 2 or 6 in
the Simulated Example 2. We illustrate the MSE, ||8 — By|l2, FN and FP against different
values of p for each configuration of sample size and noise level in Figure S1.

One can see from the plots that the performance of PCS does not change much as

the dimensionality p increases from 500 to 5000. In general, it is robust as sample size,
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Table S1: Results for simulated example 1. For each method, we report the average MSE,
12 distance, FN and FP over 100 replications (with standard errors given in parentheses).

Method MSE 18 — Boll FN FP

= 1000, o =6
Elnet 52.11 (0.59) 3.31 (0.07) 0.81 (0.09)  1.85 (0.26)
SIS-Elnet  50.68 (0.53) 3.15 (0.07) 0.63 (0.08)  1.81 (0.20)
LASSO 52.52 (0.57)  3.96 (0.06) 1.50 (0.10)  1.13 (0.17)
SIS-LASSO  50.88 (0.54) 3.91 (0.06) 1.44 (0.10)  1.03 (0.13)
SIS-Ridge  119.9 (1.01) 4.59 (0.01) 0.00 (0.00) 12.00 (0.00)
SIS-PACS 52,50 (0.67)  3.40 (0.06) 0.00 (0.00)  4.86 (0.04)
PCS 41.68 (0.38)  1.67 (0.07) 0.06 (0.04)  0.00 (0.00)
PRCS 43.12 (0.37)  2.04 (0.08) 0.06 (0.04)  2.05 (0.14)

p=>5000, o=6
Enet 55.57 (0.64)  3.55 (0.06) 0.99 (0.11)  2.47 (0.29)
SIS-Enet 53.86 (0.60)  3.45 (0.07) 0.99 (0.10)  1.83 (0.19)
LASSO 55.95 (0.64) 4.16 (0.06) 1.77 (0.12)  1.55 (0.17)
SIS-LASSO  53.78 (0.61) 4.02 (0.06) 1.68 (0.10)  1.22 (0.13)
SIS-Ridge  123.29 (1.03) 4.68 (0.01) 0.00 (0.00) 12.00 (0.00)
SIS-PACS  56.45 (0.74)  3.80 (0.04) 0.00 (0.00)  4.94 (0.03)
PCS 42.76 (0.42) 1.96 (0.11) 0.25 (0.07)  0.04 (0.02)
PRCS 43.16 (0.47) 211 (0.11) 0.25 (0.07)  0.80 (0.09)

dimensionality or signal to noise ratio (SNR) vary.

Additional technical proofs

Proof of Corollary ??. First note that % > x is equivalent to
log(1 — W;n) <log(l—apn — bynz), (1)
where log(1 — W2) = Tp,. The RHS of (1) can be further expressed as
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Table S2: Results for simulated example 2. The format of this table is the same as Table
S1.

Method MSE 18 — Boll2 FN FP
p=1000, 0=6
Elnet 45.03 (0.35) 3.73 (0.03) 2.28 (0.07)  1.30 (0.59)
SIS-Elnet  45.08 (0.35) 3.75 (0.02) 2.31 (0.07)  1.53 (0.51)
LASSO 45.03 (0.36) 3.74 (0.03) 2.35 (0.06)  0.12 (0.04)
SIS-LASSO  45.09 (0.35) 3.75 (0.02) 2.43 (0.06)  0.12 (0.04)
SIS-Ridge  46.08 (0.30) 3.90 (0.00) 1.07 (0.07) 20.07 (0.07)
SIS-PACS  45.45 (0.34) 3.91 (0.02) 1.07 (0.07)  4.03 (0.06)
PCS 44.01 (0.46) 3.51 (0.06) 2.2 (0.08)  0.24 (0.05)
PRCS 44.98 (0.35) 3.73 (0.03) 2.37 (0.07)  0.14 (0.04)
p=>5000, o=6
Elnet 45.78 (0.35) 3.84 (0.01) 2.48 (0.07)  1.09 (0.67)
SIS-Elnet  45.77 (0.35) 3.84 (0.02) 2.47 (0.05)  0.77 (0.36)
LASSO 45.78 (0.35) 3.84 (0.01) 2.57 (0.05)  0.20 (0.04)
SIS-LASSO  45.75 (0.35) 3.83 (0.02) 2.50 (0.05)  0.15 (0.04)
SIS-Ridge  46.14 (0.35) 3.90 (0.00) 1.42 (0.06) 20.42 (0.06)
SIS-PACS  45.76 (0.38) 3.85 (0.02) 2.46 (0.06) 0.76 (0.06)
PCS 45.80 (0.36) 3.85 (0.01) 2.61 (0.05)  0.12 (0.04)
PRCS 45.79 (0.36) 3.84 (0.02) 2.62 (0.05)  0.13 (0.05)

(i) Sub-Exponential Case

If log(p)/n — 0 as n — oo, then we have
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Figure S1: Performance of PCS against different dimensionality p.

Hence for large enough n,
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Lety =n log(l—ﬁx)ﬂog 27, then the RHS of (2) becomes log log p—4 log p+y-+o(1).
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Note that 1 — -2z = exp{2(y — log 27)}, plugging it into G, (z) yields
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Hence part (i) of Corollary 77 follows.

e Exponential Case

When (logp)/n — 8 € (0,5) as n — oo, we have
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It follows that for large enough n,
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Together with (2) we have
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Let y = —86+nlog(1—-252)+log (”(1;‘;—4ﬁ)), then the RHS of (5) becomes loglog p—

4logp +y + o(1). Again combing with (1), we can still get (4).
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which leads to the convergence result in part (ii).

e Super-Exponential Case

If logp/n — oo as n — oo, then for large enough n,
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Combing with (2) we obtain
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Let y = nlog(1 — -%52)+log 2, then the RHS of (5) becomes —%+logn+y+o(l).

Moreover,
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Proof of Theorem 2. IfY is normally distributed, then conditioning on X; and X, R?j | X, X
is distributed as Beta(1, "T_?’) [? |, which is independent of X;, X;. Therefore, the uncondi-

tional distribution of R}, is also Beta(1, 252).
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