Statistica Sinica: Supplement

New HSIC-based tests for independence between two

stationary multivariate time series

Guochang Wang, Wai Keung Li and Ke Zhu

Jinan University and The University of Hong Kong

Supplementary Material

This supplementary material give some additional simulation studies in Section S1 and the

proofs of lemmas and theorems in Sections S2 and S3.

S1 Additional simulation studies

To see the impact of the kernel functions k& and [, we examine the
performance of our HSIC-based test statistics when k and [ are chosen as
inverse multi-quadratics kernels with o = g = 1.

Tables BTIHS™ report the sizes and power of all examined HSIC-based
tests. Compared with the results in Tables 1-2, the results in Tables ST1-52
imply that similar performance of our HSIC-based tests retains for the two
different choices of kernels in most cases, but some differences may exist in

some cases. This is consistent with the findings in Gretton et al. (2009).
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Table S.1: Empirical sizes and power (x100) of all HSIC-based tests based on the models

in (5.1), with k& and [ being chosen as inverse multi-quadratics kernels

EGP 1 EGP 2 EGP 3

n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

S1,(0) 1.5 5.7 12.1 1.2 5.4 11.4 52.6 74.9 83.9 92.1 97.1 98.7 79.5 94.2 99.5 100 100 100
Sin(3) 1.5 6.2 12.7 1.0 6.4 11.0 1.0 6.5 11.3 1.0 6.0 10.8 0.3 2.7 7.5 1.0 3.6 9.2
S2,(3) 1.1 5.7 11.7 1.0 6.0 11.8 0.7 5.4 12.0 1.2 6.4 12.8 0.3 29 7.8 09 3.8 74
Jin(3) 1.5 7.2 15.2 0.6 5.4 13.3 21.2 50.4 65.6 61.8 83.2 91.3 12.6 43.0 68.8 80.5 96.2 98.7
Jin(6) 0.5 6.7 17.1 1.1 5.7 11.7 10.8 34.7 55.0 41.4 69.1 81.3 1.0 13.0 35.6 39.8 76.7 88.8
J2n(3) 0.9 6.2 13.1 1.3 6.7 14.1 21.2 47.1 63.2 62.8 83.4 90.3 12.0 42.5 67.3 79.0 94.4 97.9

J2n,(6) 0.8 5.3 15.1 0.9 5.7 13.9 9.7 34.0 52.6 41.6 71.6.7 82.3 0.9 14.8 35.6 36.7 75.5 88.4

EGP 4 EGP 5 EGP 6

n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Sin(0) 0.4 3.6 83 0.5 3.5 7.5 20.044.6 62.1 78.9 93.8 97.3 41.2 66.1 79.1 36.8 64.3 76.3
S1,(3) 0.5 2.7 85 0.9 4.0 89 04 30 7.7 0.6 50 105 04 3.0 7.9 05 3.1 7.8
S2,(3) 73.9 91.9 96.4 99.3 100 100 0.4 3.8 7.4 0.7 4.9 11.1 0.3 44 82 04 3.1 7.6
Jin(3) 0.1 0.7 3.3 0.2 1.6 5.0 0.8 3.8 7.4 30.2 624 77.9 2.5 16.6 33.0 7.6 25.3 41.9
Jin(6) 0.0 0.0 3.3 0.0 0.6 2.7 0.0 1.1 8.2 10.8 354 55.2 0.0 2.8 11.3 1.7 12.4 25.5
J2n (3) 10.5 40.6 62.6 75.0 94.2 97.4 0.7 7.5 19.8 30.4 61.3 76.2 3.0 14.9 33.6 5.6 23.6 38.8

Jan(6) 0.6 11.9 32.237.170.887.1 0.1 1.7 7.4 10.2 35.6 55.2 0.0 3.5 12.0 1.8 10.3 23.4
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Table S.2: Empirical sizes and power (x100) of all HSIC-based tests based on the models

in (5.2), with k& and [ being chosen as inverse multi-quadratics kernels

EGP 1 EGP 2 EGP 3

n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

S1n,(0) 0.4 4.1 8.0 0.6 4.8 11.0 100 100 100 100 100 100 99.9 100 100 100 100 100
Sin(3) 09 42 9.0 0.6 51 9.3 1.0 5.1 10.7 0.6 5.30 10.2 0.8 3.9 82 0.1 21 5.7
S2,(3) 0.2 2.7 82 0.7 5.0 9.5 08 4.3 96 0.7 45 96 05 36 7.4 03 3.2 74
Jin(3) 0.5 24 6.3 1.3 4.9 10.4 98.899.9 100 100 100 100 99.0 100 100 99.9 100 100
Jin(6) 0.3 2.7 6.9 0.6 3.9 9.2 87.198.399.799.9 100 100 55.6 85.6 95.0 95.3 99.6 100
J2n(3) 0.4 3.3 83 0.9 4.4 9.9 98.199.799.9 100 100 100 89.6 97.8 99.6 99.8 100 100

J2n(6) 0.3 2.4 7.1 0.6 3.5 9.3 87.397.799.3 99.599.9 100.0 55.6 84.4 94.3 96.0 99.5 99.8

EGP 4 EGP 5 EGP 6

n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

Tests 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

S1n(0) 0.5 2.9 6.4 0.4 3.4 7.2 65.587.393.489.497.2 98.4 90.6 97.6 98.4 98.9 99.7 99.9
Sin(3) 0.3 3.1 82 0.6 2.7 6.1 06 3.0 7.5 1.1 42 87 0.7 3.1 82 09 4.3 10.3
S21,(3) 99.9 99.9 100 100 100 100 0.4 3.0 6.7 0.5 3.9 9.0 05 32 6.8 0.3 3.3 56
Jin(3) 0.1 1.6 44 0.1 1.7 4.0 14.8 38.8 55.6 38.5 67.0 80.9 42.4 71.6 82.80 77.6 92.9 96.9
Jin(6) 0.1 0.7 2.9 0.0 0.5 2.7 2.6 16.4 32,9 11.337.5 57.7 10.2 39.2 61.4 42.3 74.3 86.5
J2n(3) 87.3 97.7 98.7 99.8 100 100 13.3 38.1 56.2 38.1 68.6 81.6 42.0 71.0 83.6 79.1 92.5 96.5

Jon (6) 51.4 83.5 91.4 94.5 99.5 99.9 1.9 16.2 32.0 11.3 39.6 58.8 10.9 38.1 59.1 42.0 74.5 86.4
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S2 Proofs of Theorems

This section provides the proofs of all theorems. To facilitate it, the
results of V-statistics are needed below, and they can be found in Hoeffding
(1948) and Lee (1990) for the i.i.d. case and Yoshihara (1976) and Denker

and Keller (1983) for the mixing case.

ProOOF OF THEOREM 3.1. (i) By Lemmas 3.1 and 53,
N[Sin(m)] = Z1n(m) + 0,(1),
where
Zin(m) = NISL) (m)] + (L [NSL (m)] + LN S (m)]
+ S ChIVSE )]G + 5 INSED ()] Gon
+ [VNG] "S5 (m) [V N Gon.

For a,b = 1,2, S}Zb) (m) is a degenerate V-statistic of order 1 by Lemma

3.2(ii), and hence NS:EZI’) (m) = O,(1). By Assumption 2.3, it follows that
Zin(m) = N[SL) ()] + VNGl "S5 (m) [VN Gl + 0p(1)
= NSt (m)] + VNGl "AGY [VN Gl + 0,(1),
where the last equality holds by the law of large numbers for V-statistics.

Hence, Z1,,(m) —4 xm as n — 0o by (3.9), Lemma 3.3, and the continuous

mapping theorem. This completes the proof of (i).
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(ii) It follows by a similar argument as for (i). O

PROOF OF THEOREM 3.2. (i) By Lemmas 3.1 and 833, we have

VN [Sin(m) = AD] = Z1,(m) + 0,(1), (S2.1)
where AL = B[RS (0™, n5™ ,n§™, n{™)] > 0 and

Zin(m) = VN [5593(7”) — AD] 4 [VEGITSE ) + [V Gl )

+ 5o (VYRGS VNGl + VR G () [V N G

+2VNG)" S5 () [VNGanl }

First, since SS? (m) is a non-degenerate V-statistic under Hl(m), part

(c) of Theorem 2 in Denker and Keller (1983) implies that

VN [$0(m) — A9 = \/_Zhlm ™) +0,(1) = 0,(1),  (52.2)

where hg%(xl) = E[h(o) (m,ném),né ),ﬁim))] — A, Second, by the law of

large numbers for V-statistics and Assumption 2.3, it follows that

VNG PS8 (m) = %iﬂ” AD 4 0.(1) = 0,(1), (52.3)
(VNG| T 852 (m) = %im AL+ 0,(1) = Oy(1), (S2.4)

e (VYRGS OV NG + [V NGl S22 ) [V G

+2VN IS5 ) [VNGal | = 0,(1), (82.5)
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where ALY = E[hq(%s) (n§m),n§m),n§m),nim))] for s = 1,2. By (8232)-(823),
Z1,(m) = O,(1), which together with (8Z1) implies that n[Sy,(m)] — oo
in probability as n — oo. This completes the proof of (i).

(ii) It follows by a similar argument as for (i). O

PROOF OF THEOREM 4.1. (i) By Assumptions 4.1 and 4.2(i), vV N(’, =
O3(1). Then, by (4.1)-(4.2), Assumption 4.2, and a similar argument as for

Lemmas 3.2(ii)-(iii) and 831, we can show that

Strm) = 3 [ﬁ > @, 0)
WVNGIINEIVRG +oj(1) = 051, (520

This completes the proof of (i).

(ii) It follows by a similar argument as for (i).

(111) Let 1 — ((q)jm<nz ))j21,0§m§M> ) 7;1 = ((71—3@' )1§s§2) ) and

- 1 & T
Ti=(—=> T —=> TN,
n (\/N; 17 \/ﬁ; 21)

where 7%, is defined as in Assumption 4.1. Also, let 7;* = (7357, T57)T. As

for Lemma 3.3, it is not hard to see that conditional on w,,
TS —aT" (52.7)

in probability as n — oo, where 7* is a multivariate normal distribution

with covariance matrix 7, and T = lim, o E*(T7T77) = E(LTE) =T
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in probability by Assumption 4.2.
Next, by Lemma 8374(i) and Corollary X1.9.4(a) in Dunford and Schwartz

(1963, p.1090), we can get
[Af — Ajml| = 0(1). (52.8)

Hence, the conclusion holds by (828)-(52R), Lemma 8374(ii), and the con-
tinuous mapping theorem. This completes the proof of (iii).

(iv) It follows by a similar argument as for (iii). O

S3 The remaining proofs
PrOOF OF LEMMA 3.1. Denote z;j, = El-leqr. By Taylor’s expansion,

> _ (0 ~ T
Zijgr = Zijqr + Migar — Mijgr)” Wijar
1

+ §(ﬁijw - niqu)THiqur(ﬁijq"' — Nijqr)

0 ~
= Zi(j(;r + Mijgr — Mijgr)" Wijgr
+1A.. — i) Hijor Bisar — Tigr) + B (S3.1)
2(771qu nz]qr) ijqr\Mijqr Nijqr ijqr ’

0) _ ~ (T =T =T ~T T _ (T T T
where Zijgr — Kijlgr, Mijgr = (n1i7n1j7n2q+m’n2r+m) s Mijgqr = (n1i7771j7772q+m7

77%;”+m)T7 VVU‘ZT = W(”ﬁ‘ﬁ”)’ Hijqr = H(nijqr)a H;jqr = H(”jjqr)’ njjqr lies

between 7,4, and 74, and

1 ~ ~
R) = (fijar — ijar)” <H1qur — Hz‘jqr) (Mijgr — Nijar)-
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Here, W : R4 x R4 x R% x R% — REA+2d2)x1 gych that

W(u,u',v,0") =

T

(kx(u, ) (0,0, by (u, ) 1 (0,0"), k(w0 (v, 0') T K (u, u)l, (v, v’)T) :
and H : R% x RT x R%2 x Rz — R2N+2d2 o R21+2d2 gych that

H(u,u',v,v") =

km(u,u/)l(v,v/) kxy(u,u/)l(v,v') kx(uv u/)l??(v7v/)T kx(u7u/)ly(vvv/)T

* Eyy (u, u)l(v,0")  ky(u,u)le(v,0)T ky(u, w)ly(v,0")T
* * k(u, u e (v,0") E(u, u)lpy (v, ")
* * * E(u, u")lyy (v, v")

is a symmetric matrix.
Next, let 6 = (87,627)T and 6, = (67,67 )T, and denote

T

Gijqr(e) = (gli(91>T7glj(91>T792q+m(‘92)T>g2r+m(62>T> )

where g4 (0,) is defined as in Assumption 2.2. By Taylor’s expansion again,

we have

=@, Gy (0")

ﬁi]“ﬁ" = Nijgr = Rijqr + 89T (é\n - 90), (832)

—(2 o~ -~ o~ -~ o~ -~ o~ -~ -~ .
where Rijgr = (Rli(91n)T> le(em)T, R2q+m(92n)T7 R2r+m(92n>T)T7 R (0s) is
defined as in Assumption 2.4, and 07 lies between 6, and é\n For the second

term in (833), we rewrite it as

9Gijqr (07)
09T

~ — 3 0Gije(b0) A
(B, — 60) = R, + ;T(O)wn —0),  (S3.3)
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- T
where Ry, = [2Cusl0D) _ 2Cug )]G _ g).

Now, by (83)-(833), it follows that

Zijar = 2y + (O — 00)" 250, + %(é\n —00)7 20 (0 — 00) + Rijgr, (S3.4)
where zl(]lgr = %g;w")qur, Zi(f;r = ”qT(GO)HUqr 339(00), and Rijqr =
Ry} + RG). + RO+ R with

RS, = (R + RW)T Wijgr.
RS, =2 (B + B0 Hyg (B + T
Ry = 00 (S 4 ).

By (834), it entails that
—~ 1 ~ —~
S1a(m) = 8§ (m) + (6 — 00)" 53] (m) + 5B — 60)7 S (m) (B — 60)

where

1 2
1n N2 Z lelj N4 Z ZZ(JpgT B m Z Zl(fl)q

ivjﬂ]»r ’L’,j,q
for p € {0,1,2}, and
Rln N2 ZRZW’] + N N4 Z RUQT - N3 Z Rz]zq (S36>
1,3,4,T %,J,9

is the remainder term.

Furthermore, simple algebra shows that

(é\n - (90) Z]q’r = Cln ij qr + C2n ij qT’ (83‘7)
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(0 - 00) zjqr(é\ 00) = Clj;z\];ijquC1n + C;Lkijz:]’/‘CQH

+ ¢ (2Fily, ) Gon (S3.8)

where ky;, lij, Eij, and lvij are defined in (3.1)-(3.4), respectively. Finally,
the conclusion holds by (833H) and (837)-(8338). This completes the proof.

O

Proor oF LEMMA 3.2. Without loss of generality, we only prove the

results for m = 0, under which N = n, and 77750) and gt(o) are denoted by n; :=

(M1, m2¢) and ¢, = (nlm ‘99155(1’10),7)%, (9g25$20)>’ respectively, for notational

ease.

(i) Denote 1 = (z11,291) for 11 € R and x5, € R%. Then, we

rewrite
1 (2,3,4) (2,3,4)
0 0 0
hé )(5’71777277737774) = @ Z Zg,ng(l’l) + Z Zé t)vw<x1>
T =1, (uv,w) u=1,(t,v,w)
(2,3,4) (2,3,4)
0
+ Z 23 tuw :Cl Z ZA(L7t)uv(x1)
v=1,(t,u,w) w=1,(t,u,v)
1
= [Aﬁ(’) + AP + AP + AEP)] ,
where

Zi?qsz(xl) = k(xlla 771u> [l(l?la 772u) + l(772v7 772w) - 2l($217 7721})] )

20w (@1) = k(e w10) 12, 221) + 102, T20) — 20(1121, 7120)]
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zé?ﬁuw(xl) = k(1 M) (265 M2u) + 121, M2w) — 20(0at, 221)]

Zﬁ(l?t)uv(‘rl) = k(ﬁm Ulu) [l(ﬁzm Uzu) + 1(7721;, $21) - 21(77% Tm)] .

By the symmetry of k and [, the stationarity of ny; and 7y, and the inde-

pendence of {n;;} and {7} under Hy, simple algebra shows that

EAY = 6 [k(z1,m1)] x E [L(n21,m2) — Uzar, non)]
EAY) = 6 [k(z11, m11)] X E [[(z21, m21) — 121, 722)] »
EAY = 6 [k(ni,m2)) % B (121, 122) — U(21,721)]

EAY = 6E [k(ni,m2)] % B [[(z21,721) = 1(21,722)] -

Hence, it follows that under Hy, E[héo)(xl,ng,ng,m)] = 0 for all z;. This
completes the proof of (i).

(ii) We only consider the proof for the case that a = b = 1, since
the proofs of other cases are similar. Denote x; = (x11, Y11, Z21, yo1) for
x11 € RM, yip € RPN 150 € R%, and y91 € RP2*%. Then, we rewrite

(2,3,4) (2,3,4)

1
W™ (21, 52, 63, 61) = 1 Yo @)+ D A ()
C =1, (u,w) u=1,(t,v,w)
(2,3,4) (2,3,4)
11
+ Z 23 tuw 1'1 Z Zé(l,tu)v (xl)
v=1,(t,u,w) w=1,(t,u,v)

1
_. E [Agn) +A§11) +A§11) +A5111)] ’
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where

0g1.,(0
Zg,liz))w<x1) = {yllkm(l’u,mu) + %kx(mu, 1’11)}
1

X [l($217 772u) + l(7727)7 772w) - 2l(x217 7721))] )

014 (0
Zé,ltlv)w( 1) = {%ﬁwkz(mt,xn) + y11km(l’11,771t)]

X [l(mt, 9021) + l<772v7 772w) - 2l(772t, 772v)] )

0g1:(0 0g1.(0
Zig,ltlzzw<x1> = {%ﬁ(ﬁkz(nltu 7]1u> + %;())kr(nluv 771t):|

X [L(Nat, Mow) + UZa1, Mow) — 20(M2r, 21)]

9g1.(0 D14 (0
Zi,lifv( 1) = {%ykz(mt,mu) + %kx(mumu)]

X [U(M2t;s ow) + UN2w, T21) — 201(02t, M20)] -

Here, we have used the fact that k,(c,d) = k,(d, c) by the symmetry of k.

By the stationarity of 7y, and 7y, and the independence of {n;;} and {7}

under Hy, simple algebra shows that

EAM = —BAJY

0g11(0
= {ynEkx(ﬁu, m)+E %kx(nmxu)] }
1

X [4El(n21,m22) + 2E1(n91,m23) — 6El(221,121)]
EAY" = —EAMY

dg11(0 0g12(0
=4F {%ﬁo)kz(ﬁny Ma) + %110)]%(7712, 7711)1
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X [El(n21, m22) — El(291,m21)]

8911(910 6913(910)

)
2E ko (711,
+ 90, (m1,ms) + 90,

km(nli’n 7711)
X [El(nzh 7723) - El($21, 7721)] .

Hence, it follows that under Hy, E[hén)(xl,§2,<3,g4)] = 0 for all z;. This
completes the proof of (ii).
(iii) Denote x1 = (211, Y11, T21,Yo1) for x11 € R,y € RPVD 19 €

R%_ and y,; € RP2*9. Then, we rewrite

(2,3,4) (2,3,4)

1
hé23) (x17 2,63, §4) = E Z Z§231))w (:Cl) + Z Zéi?w (xl)
t=1,(u,v,w) u=1,(t,v,w)
(2,3,4) (2,3.4)
23
+ Y )+ Y A ()
v=L1,(t,u,w) w=1,(t,u,v)

23 23 23 23
::@[Aﬁ P AP+ APY + A )],

where
0qg1,(0
Zﬁgw(?ﬁl) = {ynk (T11, M) + %f(])kz(nluaxll)]
6 U 9 8 v 0
X |:y2ll:r(x217 N2u) + —9282220)%(7727“ To1) + —Q%é;o) L (M20, M2w)
G2 (60 Ga (0
+—9280(2 20)lm(n2w77]2v) — 2ya1le (T21,M20) — 2—9282220)175(7721” To1)|
0qgq4(0
Zé t?;)w(xl) = {yllkx(xllvnlt) + %ﬁo)kx(muiﬂn)]
0go (0 0o, (0
X | y21le (a1, m2t) + Mlm(n%; To1) + Mlx(ﬂ%ﬂhw)
00, 00,
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+8928w—9(2920)la:(772w7772v) - 28925—(2320)%(7721:, N2w) — 2(9925—5%)%(7721”77%)} :
Z§,253w( 1) = [agg—gfm)kx(ﬁlt,mu) + aglau—é?m)kx(nmmt)}
X [yzllm(l‘m? Mow) + aggt—éfm)lx(mt, M2u) + aggau—éfm)lx(mua Mat)
+8928w—9(29m)la:(772w7$21) — 2y21le (221, m2r) — 20925—252@131:(7721:%21)} 7
th?v(iﬂl) = {agg—gw)k:ﬁ(mt,mu) + aglau—éfm)k‘x(mu,nu)}
9g2t(620) 9gau(f20)

ly (7]21“ TIQt)

0920 (920)
00,

Ly (Mo, M2w) +

09 (920)
00,

X {ymlzp(%m? Now) +

092 (920)
0,

892 a02

la:<772v7 $21) -2 la7<772t7772v> -2 la:(772m 772t>} .

By the stationarity of 7y, and 7y, and the independence of {ny;} and {7}

under Hy, simple algebra shows that

EAP = —EAPY

0gy1(0
= {ynEkx(l‘uﬂ?u) +F {M%(Thh xn)] }

00,
0goq (0
X {—6y21Elx($21,7721) —6F {%G(mhxm)}
2

0 0 0 0
%220)%(7721,7722)} +2F {%;O)ZI(WQLUZ%)}

9o (6 0ga3 (6
+4F [Mlx<n227 7721)1 +2E {Mlm(nﬂnml)} } ’

4B {

892 a02
EAM = —pAM 4

8911(910)
00,

3912(910)

Fe(mi,
(M1, m2) + 90,

=4F { ka(m2, 7711)}
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0ga1 (6 0ga1 (6
X {E [%220)[900721’7722)] - LK {%;O)Zx(nﬂ)le)}

0qoo (0
+FE Mzm (77227 7721) - y21Elw(x21’ 7721)
00,
Dg11 (0 99156
1L oF [%ﬁo)kx(mhm) + %110)1%(7713,7711)]

0 0 0 0
X {E {%jo)l,ﬂc(nm,nm)} - LK [%jo)lz(nm,xm)}

+E {3923(920)

06, lx(7723,7721)] - y21Elx(3?21,7721)} -

Hence, it follows that under Hy, E [h(()23) (21,%2,63,64)] = T for all ;. This

completes the proof of (iii). O

PROOF OF LEMMA 3.3. Let F; = o(Fy;, Fa;). Under Hy, it is not hard
to see that (71| Fi—1) = E(T1;) = 0 by Lemma 3.2(i). Since E(7Ty|Fi—1) =
0 by Assumption 2.3, it follows that E(7;|F;—1) = 0. Moreover, by Assump-
tions 2.3 and 2.5, it is straightforward to see that E|7;||> < oo. By the
central limit theorem for martingale difference sequence (see Corollary 5.26
in White (2001)), it follows that 7, —4 T as n — oo, where T is a multi-

variate normal distribution with covariance matrix 7 = lim, o, var(7,) =

E(TiTy). m

Moreover, we introduce two lemmas to deal with the remainder term

Ry, (m) in Lemma 3.1,

Lemma S3.1. Suppose Assumptions 2.1, 2.2(i) and 2.3-2.5 hold. Then,
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under Hy, n||Ri,(m)| = o0,(1), where Ry, (m) is defined as in (S34).

Proof. As for the proof of Lemma 3.2, we only prove the result for m = 0.

Rewrite Ry, (0) = RY + R + RY + Rgfl), where

1
Rgbd) - n2 Z l(jZ)J + nA Z Uqr 03 Z Rl(jz)q
i,j

4,5,q,7 ,0,9

for d=1,2,3,4, and R is defined as in (833).

Z]q’r
We first consider RY. By (832)-(833), we can rewrite Rwr as

-(2) -2
Ry, = [Rig)" (Hy, — Hiyor) R

1yqr qu’f‘ 13qr

—(3) —(3)
+ Ry, ) (HL . — Hijor) R

1qr 1)qr 1Jqr

(é\n i eo)TaGiqu<90)} (HT — H..

60 17qr 13qr

) {3Gijqr(90) ~

+ RO (H — Hy)R

ijqr ijqr ijqr

—(2) 0G;; T(QO) ~
2Ry, — Ho) | 22500, - 01
—(3) 0Gjgr(0o)
+ 2[R1]q7‘] (HLqT - Hijqr) [#To(en — 00)
1 1
- T§ z)gqr + 7’% z)]qT + TZ(S z)jqr + Té(l z)jq7' + ré 7,)](11" + Té 1)]qr (839>

Then, by (839), we have Ry 2> = Ag), where

wm_ 1 6 1
Do’ =32 Taiis + g Z v e} Z Td,ijiq

n? & <
7,7 1,7,4,T 1,5,9

For the first entry of [H — Hijqr], we have Hkm(ﬁL,ﬁL)l(ﬁ;q,ﬁ;) -

’qu’r‘

aa (i 15) Uiteg, o) || < O T — mall 1705 — 1+ 1733, — mal + 1175, —
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772,n||} by Triangle’s inequality and Assumption 2.5. Meanwhile, by Taylor’s

expansion and Assumptions 2.2(i) and 2.3, we can show that |7, — 7y <

agst (95)

20| = || Ryt (Oun) || + 0p(1), where Ry(6)

| Rt (Osn) || + 1|0sn — Osol| Supg,

is defined as in Assumption 2.4, 0,(1) holds uniformly in ¢ due to the fact
that v/72]|fsn — fs0|| = O,(1) and

—= max sup

NZOREA)

agst‘ (93)
00,

‘ = 0,(1) (S3.10)
by Assumption 2.2(i). Hence, it follows that

Her(ﬁL; ﬁij)l(ﬁ;q7 ﬁgr) - kmiﬂ(nlh Ulj)l<772q> 7727“)H
< C || Rus(@un) | + | Ros Brn)l| + 1 R (B | + 11 Rar )1

+0,(1), (S3.11)

where 0,(1) holds uniformly in ¢, j, ¢, . Similarly, (§83T1) holds for other

entries of [H;rjqr

— H,jq4r]. Note that

[Rijgrll < [[1R2i(Orn) [ + [ B (Orn) [| + | R2g (O2n) | + | FR2r (F2n) || (S3.12)

ijqr

Using the inequality (325_, aa))® < C 325, |aal®, by Assumption 2.4 and

(83TT)-(83T2), it is not hard to show that
nl|AY| = 0,(1/n). (S3.13)

Furthermore, by Taylor’s expansion, Assumptions 2.2(i) and 2.3, and a
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similar argument as for (8370), it is straightforward to see that

9Gijer(07)  0Gir(00) ||~

||Rz]q7‘|| —= H ajz/fg ) - aqug 0 ‘ X ||0n - 90”
329115(91) 329%(92) o~ 2
{2 “P‘ oz || T2 ||| X 0w = Ol

= Op(l/\/ﬁ)a

where 0,(1) holds uniformly in 4,j,¢,7. As for (8313), it entails that
n||A§1)|| = 0,(1). Similarly, we can show that n||A£ll)|| = 0,(1) for d =

3,4,5,6. Therefore, it follows that n||R£ll)|| = 0,(1). By the analogous

arguments, we can also show that nHRﬁPH = 0,(1) for d = 3,4.
: . (2) @ @y
Next, we consider the remaining term Ry,”. Denote ry ;.. = [R;;..]" Wijgr

—3)
and 7’2 diar = [RUQT

2 _ 1 2) 1 ) 2 2)
Ad T2 Z Tdijij + 4 Z Tdijqr — ﬁzrdvijiq

,J 4,0,q,T 4,J,9

|"Wijqr. Then, we can rewrite R = A + AY where

for d = 1,2. By Assumptions 2.2(i) and 2.3-2.5 and (83T2), we have
n|A? | = 0,(1/n). Rewrite AP = (B1, — 010)TAD + (6, — 020)T AL,
where
@ _ 1 (2) 1 (2) 25,0
AQd - F Z Tod,i ,ij1j + 4 Z 7ﬁQd,iqu" - E Tad,i ,ijiq
i,] Zj1q7T 1,]‘]

for d = 1,2, with 15, = kbl and 753, = kilh,. Here,

091;(6])  9g1;(610) o
691 801 ky(nlh 771])7

o= 3912-(6’1) o 991i(010)
- at91 891

] kx('fhiﬂ?u) +
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8921”(9;[) 0gar (920)
862 602 ly(772q7 T]Q”‘) .

0o (HT) dga (920)
b qg\Y2) q
lqr [ 96, 904 Lo (112gs M2r) +

By the mean value theorem, k:jj — (0] — 910)Tk:§j, where k‘fj is defined

explicitly, and it satisfies that

2
= Z kil + Z kjilgr — = > kllig = 0,(1/n). (S3.14)

ij.a,r ija

Here, (8314) holds, since A§21)§ under Hj is a degenerate V-statistic by
Assumptions 2.1 and 2.5 and a similar argument as for Lemma 3.2(ii).
Note that A2 = (6] — 010)TADS and [16] — 610]| < |61, — O10] = 0,(1).
Therefore, it follows that /7| ALY = 0p(1). Similarly, we can show that
\/ﬁHA@)H = 0,(1), and it follows that nHR,(f)H = 0,(1). This completes the

proof. O]

Lemma S3.2. Suppose Assumptions 2.1-2.5 hold. Then, \/n||R,(m)| =

0p(1), where R,(m) is defined as in (S34).

Proof. The proof is the same as the one for Lemma 837, except that when
Hj does not hold, we can only have A§§)§ = 0,(1) in (8314) by part (c) of

Theorem 2 in Denker and Keller (1983). O

3951&(9 )

Let ¢ = (775167 for s = 1,2. To prove Theorem 4.1, we need the

following two lemmas.
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Lemma S3.3. Suppose Assumptions 2.1, 2.2(i1) and 2.3-2.5 hold. Then,

under Hy, for VK, > 0,

(i) sup

1
Q N4 Z hgg) (21, T2, (M1g> N2grtm) 5 (M1rs N2rrm))
1

! !
q,q9 7,7

_E[hv(vg) (xh T2, nf(im)7 nim))] = 017(1)a
where Q1 = {(x1, 22) : ||zs|| < Koy for s =1,2};
1
m Z hﬁi?’) ((211, §2i’+m) ) (212, §2j'+m) ) (213, §2q'+m) ) (2’14, §2r'+m))

AR ASY W,
27.] 7q7T

—F [hﬁi?’) ((211, §21) ) (2127 §22) ) (2’137 §23) ) (214; §24))] | = Op(1)7

(13) sup
Qo

where Qo = {(211, 212, 213, 214) : ||215]| < Ko for s =1,2,3,4};

(1ii) sup

1
Q N4 Z hgﬁ) ((S1i, 221) 5 (S15 222) , (S1g5 223) 5 (S1rs 224))
3

4,J,4,7

—F [h§3) (11, 221) , (S12, 222) , (G135 223) , (14, 224))} | = Op(1)7

where Q3 = { (291, 292, 203, 204) : ||20s|| < Ko for s =1,2,3,4}.

Proof. (i) Denote x1 = (11,221) and xo = (x12,T9). Without loss of
generality, we assume that m = 0. By the definition of h(()00)7 it has 24
different terms, and we only give the proof for its first term. That is, we
are going to show that

1 o~ - - -
N O R+ g — 2y — B - B(5) + 2B8(13)]

! ol
q,7,q9°,7"
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= 0,(1), (S3.15)

where 0,(1) holds uniformly in €, IE;Q = k(z11,712), l§°2) = k(z21,T9),

l,(;]r)/ = k(n2q', M2r ), ﬁz? = k(za1,M2g), l:(fi) = k(n23,m24), and 553) = k(za1,23)-

By the triangle’s inequality, we have

1 i - - -
N O R+ g — 2 — B - B() +2E<Z§E?>1‘

q77.7q/’,rl
kL © _ oi(0) 0 (0)
= W [lq/,r/ - 2l1q/ - E(l34 ) + 2E(l13 )]
a,7,q" 51!
C < (0 %0
<+ O - B+ v 2y - E(zﬁ;n‘ .
q' r'=1 q'=1

Hence, it follows that (S3T3) holds by noting the fact that

1
= O 0 = B = 0,(1), (83.16)
q',r'=1
1 o -
Sup Zlm(;? — B = 0,(1), (83.17)
q=

where (83T8) holds by the law of large numbers for V-statistics, and (837171)
holds by Assumption 2.5 and standard arguments for uniform convergence.

(17) & (i1i) The conclusions hold by similar arguments as for (7). [

Lemma S3.4. Suppose Assumptions 2.1, 2.2(1) and 2.3-2.5 hold. Then,

under Hy,

(4) sup

E* [h( ) (xlux%ﬁ(?, )777/\(4m*))i|
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—B (a0 (o™ 0l ™ ™ )| | = op(1),
where )y is defined as in Lemma [S3-3(i);
(i) |A = AZY| = 0,(1).
Proof. (i) First, it is straightforward to see that

E* [h( ) <$1yx27ﬁ§ *)7;]\4(1m*)>:|

1 o~ PO
- m Z hgg) (xla Zo, (nlqv n2q’+’m> ) (ThT‘a n?r’-ﬁ-m))

/ ’
q?q 7T?7.

1
- W Z hgg) (5’717 L2, (771q7 772q’+m) ) (7711"7 772r/+m>> + 0p<1)7 (S3'18>

/ /
q,q9 7,17

where 0,(1) holds uniformly in €y by Taylor’s expansion and Assumptions
2.3 and 2.5. Then, the conclusion holds by (8318) and Lemma 8373(i).

(ii) Define
H(Z7 il) j) j/a q, q/7 r, T,) = hgg) ((§1i7 §2i’) P (§1j7 §2j’) ) (glqy §2q’) P (glm g?r’)) .
By a similar argument as for (83I8), we have

A (23%) A(23 EO + Op(l),

m

o= —= Z H(i,i' +m, ], 5 +m,q,qd +m,rr +m)— A2

.. YA
BVIUREUSVEASU SIS
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Rewrite

- 1 - 1 -
= = m Z zl,ijqr + m Z \:2’1;qu, (8319)

i’j?q7'r iij?q’/r

where

- 1 . .
:l,ijqrzm Z 7—[(2,2/—|—m,j,j/—|—m,q,q/—i—m,r,7‘/+m)

’i/,j/,q/,T/
- E§21,<22,§237§24 [H(Zv 17 Js 27 q, 37 T, 4)] ;

EQaiqu = E§21,§22,§23,§24 [IH(Z? 1,7,2,q4,3,r, 4)] - Agrng)'
By Lemma 8373(ii), = ;j4r = 0p(1) uniformly in ¢, j, ¢, 7, and hence

1 -
~i > Erijer = 0p(1). (S3.20)

i7j7q7r

Moreover, we can rewrite

1 — ) .
m Z =2.ijqr — E§21,<22,§23,§24 {H(Z7 17 Js 27 q, 37 T, 4)

4,J,4,T

— Eo cinarnns [H(1,1,2,2,3,3,4,4)] }, (S3.21)
where we have used the fact that under Hy,
AP = B oo Boncmases [H(1,1,2,2,3,3,4,4)] .
By (83221), Lemma S33(iii), Assumptions 2.2(i) and 2.5, and the domi-

nated convergence theorem, we can show that

1 -
m Z :2,ijqr = Op(l). (S322)

4,J,4,7

Hence, the conclusion holds by (8319)-(8320) and (S322). O
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