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Abstract: In the context of sufficient dimension reduction (SDR), the sliced inverse

regression (SIR) successfully reduces the covariate dimension of a high-dimensional

nonlinear regression. When the covariate is low or moderate dimensional, the per-

formance of the SIR is insensitive to the number of slices. However, our empirical

studies indicate that the performance of the SIR relies heavily on the number of

slices when the covariate is high or ultrahigh dimensional. Determining the optimal

number of slices remains an open problem in the SDR literature, despite its im-

portance to the effectiveness of SIR in high- and ultrahigh-dimensional regressions.

Thus, we propose an improved version of the SIR, called the cumulative slicing

estimation (CUME) method, that does not require selecting an optimal number

of slices. We provide a general framework in which to analyze the phase transi-

tions of the CUME method. We show that, without the sparsity assumption, the

CUME method is consistent if and only if p/n → 0, where p denotes the covariate

dimension, and n denotes the sample size. If we include certain sparsity assump-

tions, then the thresholding estimate for the CUME method is consistent as long as

log(p)/n → 0. We demonstrate the superior performance of the proposed method

using extensive numerical experiments.

Key words and phrases: Cumulative slicing estimation, dimension reduction, sliced

inverse regression, sparsity, sufficient.

1. Introduction

1.1. Background

Recent advances in information and technology now allow us to collect big

data in scientific areas including genome sequencing, biomedical imaging, social

media analysis, and high-frequency finance. Big data are often high or ultrahigh

dimensional (Fan, Han and Liu (2014)). For instance, the Framingham heart

study records many features related to heart disease and health status, including
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genetic background, measurements from blood analyses, immune system status,

nutrition, alcohol/tobacco/drug consumption, operations, treatments, and di-

agnosed diseases. These features are high dimensional, which poses significant

challenges for classic statistical methods.

Sufficient dimension reduction (Cook (1998), SDR) is an effective paradigm

that combines the concept of dimension reduction and sufficiency when an-

alyzing high-dimensional data. Suppose Y ∈ R is a response variable and

x = (X1, . . . , Xp)
T ∈ Rp is the associated covariate vector. Let ⊥⊥ denote statis-

tical independence. SDR seeks a p× d matrix B ∈ Rp×d, such that

Y ⊥⊥ x | (BTx). (1.1)

Model (1.1) implies that replacing the original high-dimensional p-vector x with d

linear combinations, denoted by (BTx), does not lose any regression information

related to (Y | x). If d = p and B is an arbitrary full-rank matrix, model (1.1)

holds trivially. Given the purpose of dimension reduction, d is often a small

number. In real-world applications, quite often d = 1, 2, or, at most, 3. Note

that B is not unique. If B satisfies model (1.1), then for any nonsingular C, BC

satisfies model (1.1) as well. Therefore, the parameter of interest is the column

space of B, denoted by span(B). We refer to the span(B) with minimum column

dimension as the central subspace, if it is uniquely defined. We denote the central

subspace by SY |x. With slight abuse of notation, we still use B as a basis matrix

of SY |x. We refer to the column dimension of B as the structural dimension of

SY |x.

A popular tool used to recover SY |x is the sliced inverse regression (Li (1991),

SIR). Let Σ
def
= var(x) and ΛSIR

def
= var{E(x | Y )}. The SIR identifies SY |x using

span(Σ−1ΛSIRΣ−1), the column space of Σ−1ΛSIRΣ−1. Li (1991) proposed a

slicing procedure to estimate ΛSIR that divides the range of the observed response

values into H slices, and then calculates the sample average of the concomitant

covariates within each slice. Owing to its computational efficiency, simplicity,

and generality, the slicing estimation was later applied to other SDR methods

(Cook and Weisberg (1991); Li and Wang (2007)). The estimation is consistent

for SIR when p is fixed (Li (1991); Hsing and Carroll (1992); Zhu and Ng (1995))

and H ranges from 2 to n/2. Zhu, Miao and Peng (2006), Zhong et al. (2012)

and Jiang and Liu (2014) proved the consistency of the slicing estimation when

p = o(n1/2) and H is a fixed number. Recently, Lin, Zhao and Liu (2018b) showed

that the slicing estimate of the SIR is consistent when p = o(n). However, the
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convergence rate derived in Lin, Zhao and Liu (2018b) varies with the number

of slices. This is often undesirable, giving that determining the optimal number

of slices remains an open problem in the SDR literature.

1.2. Disadvantages of the SIR

When the covariate is high/ultrahigh dimensional, the SIR encounters sev-

eral theoretical and practical problems. To the best of our knowledge, the consis-

tency of the slicing estimation for relatively large p (e.g., log(p) = o(n)) remains

unknown in the SDR literature. From a theoretical perspective, an asymptotic

study of the consistency of the SIR with large p is not straightforward, because

the convergence rate also depends on H, and no data-driven selection schemes

are yet available to determine H. From a practical perspective, our empirical

results indicate that the performance of the SIR may depend on H when p is

relatively large, but that this is not the case when p is small. However, if H is

too small, the pattern between Y and x may be averaged out within each slice.

In contrast, if H is too large, the SIR may suffer from significant inner-slice

variation. Therefore, determine an optimal H is an important issue when p is

relatively large.

We demonstrate using simulated examples that the SIR may be sensitive to

the selection of H when p is relatively large. Here, we adapt the following models,

common in the SDR literature. In particular, models (1.2) and (1.5) are used by

Li (1991), model (1.3) is used by Zhu, Zhu and Feng (2010), and models (1.4) and

(1.7) are used by Lin, Zhao and Liu (2018b). The covariates x = (X1, . . . , Xp)
T

are drawn independently from the standard normal distribution, and ε follows

the standard normal distribution. The response variable Y is generated from the

following models:

Y = X1 +X2 +X3 +X4 + 0.5ε; (1.2)

Y = sin (X1 + 0.5ε); (1.3)

Y =
(X1 +X2 +X3)

3

2
+ 0.5ε; (1.4)

Y =
1 +X1

0.5 + (1.5 +X2)2
+ 0.2ε; (1.5)

Y = 4 sin (X1 +X2) + exp (X3 +X4) + 0.2ε; (1.6)

Y = (X1 + · · ·+X7) exp (X8 +X9) + 0.2ε. (1.7)

In general, estimating SY |x for one-dimensional models is easier than doing so
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Figure 1. The mean values of the r2(d) values over 1,000 repetitions for models
(1.2)−(1.7). The squares denotes p = 10, the circles denotes p = 50, and the trian-
gles denotes p = 100. The horizontal axis shows the number of slices H, which ranges
from 2 to 40 in models (1.2)−(1.4) and from 3 to 40 in models (1.5)−(1.7). The vertical
axis shows the mean values of the trace correlation r2(d).

for multiple-dimensional models. We measure the accuracy of the SIR estimate

using a trace correlation, as proposed by Ferré (1998). Let B be an underlying

true basis of SY |x, and B̂ be an estimated basis obtained using the SIR method.

Define P
def
= B(BTB)−1BT and P̂

def
= B̂(B̂TB̂)−1B̂T. We denote trace(A) as

the trace of a matrix A, and d as the structural dimension of SY |x. The trace

correlation is defined as r2(d)
def
= trace(P̂P)/d, and ranges from zero to one.

Larger r2(d) values indicate a more accurate estimation. In particular, r2(d) = 1

if the estimated SY |x and the true SY |x are identical, and r2(d) = 0 if these two

spaces are orthogonal to each other. Here, we examine how the mean r2(d) varies

with the number of slices H for different dimensions p. The simulation results

based on 1,000 repetitions are summarized in Figure 1 (A)−(F) where the sample

size is 200.

Unsurprisingly, when p is small, say p = 10, the SIR exhibits a very stable
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performance, indicated by r2(d) values that appear constant for a wide range of

slice numbers. However, when p is relatively large, the resulting pattern about

H in the SIR is quite different. The performance of the SIR deteriorates quickly

when p is large and H is too large or too small. For instance, in model (1.3)

with p = 100, r2(d) = 47.3% when H = 2, and r2(d) = 33.7% when H = 40.

However, the peak occurs at H = 6, with r2(d) = 59.21%. Thus, the results for

small p may not carry over to the case of large p. Thus, when p is large, we need

an SDR method that does not require selecting an appropriate number of slices.

We also observe that the SIR deteriorates sharply as p increases in all mod-

els, indicating that the SIR estimate may not maintain consistency if p is rela-

tively large. Thus, a consistent estimate is highly desirable for SDR methods in

ultrahigh-dimensional settings.

1.3. Contributions to the literature

We propose an improved version of the SIR, called the cumulative slicing

estimation (Zhu, Zhu and Feng (2010), CUME) method. Unlike the SIR, the

CUME method is independent of the number of slices H. It recovers SY |x using

span(Σ−1ΛΣ−1), where Λ
def
= E{m(Y )mT(Y )} and m(y)

def
= cov{x, I(Y ≤ y)}.

Note that m(y) = cov{E(x | Y ), I(Y ≤ y)}, indicating that both the CUME

and the SIR methods use the inverse regression E(x | Y ) to identify SY |x. The

difference between the two is that the CUME method does not depend on the

number of slices H. We provide a general framework in which to analyze the

phase transitions of the CUME method. We show that, without the sparsity

assumption, the CUME method is consistent if p = o(n). If both Σ−1 and

Σ−1ΛΣ−1 are sparse matrices, we suggest a thresholding estimate for Σ−1ΛΣ−1.

We show that the sparse estimate of Σ−1ΛΣ−1 is consistent as long as log(p) =

o(n).

Recently, Lin, Zhao and Liu (2018a) introduced the Lasso-SIR algorithm,

which can be used to obtain a sparse estimate of the central subspace. The

resulting estimate achieves an optimal convergence rate under certain sparsity

conditions when p = o(n2λ2), where λ is the generalized signal-to-noise ratio. In

contrast, our proposed thresholding estimate is consistent and achieves the same

convergence rate when log(p) = o(n). In addition, implementing the Lasso-SIR

requires specifying the number of slices, whereas our method does not. In this

sense, our results improve upon theirs significantly.

Next, we use simulated examples to show that, for the CUME method to

be consistent, p = o(n) is the largest divergence rate. We still adopt models
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Figure 2. The mean values of the r2(d) values over 1,000 repetitions for models
(1.2)−(1.7). The line marked with squares denotes (p/n) = 0.2; the line marked with
hollow points denotes (p/n) = 0.1; the line marked with triangles denotes (p/n) = 0.05;
the line marked with stars denotes (p/n) = {log(n/5)}−2; and the line marked with solid
points denotes (p/n) = {log(n)}−2. The horizontal axis shows the sample size n, ranging
from 100 to 5,000, and the vertical axis shows the mean values of the trace correlation
r2(d).

(1.2)−(1.7), and generate the covariates and the error terms in the same manner.

We consider different sample sizes n and covariate dimensions p, such that their

ratio (p/n) is equal to 0.2, 0.1, 0.05, {log(n/5)}−2, or {log(n)}−2. The sample size

n ranges from 100 to 5,000. We repeat our experiments 1,000 times. Again, we

use the mean values of the trace correlation r2(d) to illustrate the performance of

the CUME method. The simulation results are summarized in Figure 2 (A)−(F).

Figure 2 clearly shows that, if p is proportional to n (e.g., (p/n) = 0.05, 0.1,

and 0.2), the mean values of r2(d) appear very flat as n increases. In this case,

the CUME method cannot be consistent as n diverges, because the r2(d) val-

ues should get closer to one as n increases. In contrast, if (p/n) → 0 (e.g.,

(p/n) = {log(n/5)}−2 or {log(n)}−2), the r2(d) values approach one gradually

as n increases. For example, in model (1.5) with (p/n) = {log(n/5)}−2, the



ON CUMULATIVE SLICING ESTIMATION 229

mean r2(d) is 74.88% when n = 100, and 94.17% when n increases to 5,000.

This exhibits a clear pattern that, as long as (p/n) → 0 when n → ∞, the

CUME method converges. Because (p/n) is a constant as n → ∞, the CUME

method cannot converge without the sparsity assumption. These simulation re-

sults demonstrate that the CUME method is consistent if and only if p = o(n).

For high-dimensional data, where p = O(n) or even log(p) = o(n), we need to

regularize the CUME matrix to accommodate high-dimensionality under some

sparsity assumptions.

The rest of this paper is organized as follows. In Section 2, we examine the

consistency of the estimated CUME matrix. We show that the classical moment

estimate of the CUME matrix is consistent for p = o(n) without the sparsity

assumption, and that the regularized estimate is consistent for log(p) = o(n)

with the sparsity assumption. In Section 3, we investigate the finite-sample

performance of the proposed method using comprehensive simulations and real-

world data. Section 4 concludes the paper. All technical details are relegated to

the online Supplementary Material.

2. Main Results

2.1. Definitions and notation

Suppose {(xi, Yi), i = 1, . . . , n} is a random sample of (x, Y ). For a p × q
matrix Ap×q, let span(A) be the space spanned by the columns of A, trace(A)

denote the trace of A, rank(A) be the rank of A, and λmax(A) and λmin(A)

denote the maximum and the minimum eigenvalues of A, respectively. Let

λmax(A) = λ1(A) ≥ λ2(A) ≥ · · · ≥ λq(A) = λmin(A), where λk(A) denotes the

kth-largest principal eigenvalue of A. We may simply use λk in place of λk(A)

when it is sufficiently clear from the context. Let ‖A‖F
def
= {trace(ATA)}1/2 be

the Frobenius norm, and let ‖A‖ be the spectral norm of A. Specifically,

‖A‖ def
= sup

aTa=1
(aTATAa)1/2 = λ1/2max(ATA).

Let Ak,l be the (k, l)th entry of A; that is, A = (Ak,l)p×q. Define

‖A‖∞
def
= max

1≤k≤p,1≤l≤q
|Ak,l|, and ‖A‖1

def
= max

1≤k≤p

q∑
l=1

|Ak,l|.

Denote Ip×p as the p×p identity matrix. Let I(A) be an indicator function, equal

to one if event A is true, and zero otherwise; here, pr(A) = E{I(A)} represents
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the probability that A is true. We denote c0, C0, c1, C1, . . . , as a sequence of

generic constants, which can take different values, depending on the context.

The goal of an SDR is to identify and recover SY |x. Let Bp×d ∈ Rp×d be a

basis of SY |x and B̂p×d ∈ Rp×d be an estimated basis, where P
def
= B(BTB)−1BT

and P̂
def
= B̂(B̂TB̂)−1B̂T. The projection matrix P, rather than its basis B, is

unique and identifiable. Therefore, to quantify how well B̂ estimates SY |x, it is

reasonable to use the following three criteria:

1. The spectral norm ‖P̂−P‖;

2. The Frobenius norm ‖P̂−P‖F ;

3. The trace correlation r2(d)
def
= trace(P̂P)/d.

Note that the Frobenius norm is equivalent to the the trace correlation (Ferré

(1998)), in that ‖P̂−P‖2F = 2d{1−r2(d)}. Both the spectral norm ‖P̂−P‖ and

the Frobenius norm ‖P̂ − P‖F are nonnegative and have upper bounds, where

a smaller value indicates a more accurate estimate. The trace correlation r2(d)

ranges from zero to one, where a larger value indicates a better estimate. In the

following section, we examine the convergence rate of P̂ under the above three

norms when p = o(n).

2.2. Usual moment estimate for the CUME method when p = o(n)

In this section, we advocate using the CUME method to obtain B̂, an esti-

mated basis of SY |x, because its estimation is free of tuning parameters. Recall

that Σ = var(x) and Λ = E{m(Y )mT(Y )}, where m(y) = cov{x, I(Y ≤ y)}.
We estimate m(y) using

m̂(y)
def
= n−1

n∑
i=1

(xi − x) I(Yi ≤ y), x
def
= n−1

n∑
i=1

xi,

and estimate Λ and Σ using

Λ̂
def
= n−1

n∑
i=1

m̂(Yi)m̂
T(Yi), and Σ̂

def
= n−1

n∑
i=1

(xi − x) (xi − x)T . (2.1)

The estimated basis B̂ is composed of the first d principal eigenvectors of Σ̂
−1

Λ̂Σ̂
−1
.

To state the consistency of B̂, we make the following assumptions.

(A1) : Define d
def
= rank(Λ) and λd(Λ) as the dth principal eigenvalue of Λ (which

is also the smallest nonzero principal eigenvalue of Λ). Assume λd(Λ) ≥ c−10 .
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(A2) : Assume c−10 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c0, where λmin(Σ) and λmax(Σ) are

the smallest and largest eigenvalues, respectively, of Σ.

(A3) : Assume the covariate vector x = (X1, . . . , Xp)
T ∈ Rp is subGaussian.

That is, for any unit-length vector e, pr (| eTx |≥ t) ≤ exp(1− c0t2), for all

t ≥ 0.

Assumption (A1) requires that the nonzero eigenvalues of Λ be bounded from

below. It ensures that the magnitudes of signals, represented by nonzero eigen-

values of Λ, are detectable. Assumption (A2) is widely assumed in the literature

on high-dimensional covariance matrix estimation; see, for example, Bickel and

Levina (2008) and Cai, Liu and Luo (2011). This assumption allows covariates to

be correlated, as long as their covariance matrix is nonsingular. Assumption (A3)

requires that the covariates be subGaussian, which is weaker than the normality

assumption. We require this technical condition to yield exponential inequalities.

Theorem 1. Assume conditions (A1)− (A3). If p = o(n), then

1. ‖Σ̂−Σ‖2 = Op(p/n) and ‖Λ̂−Λ‖2 = Op {max(p, log n)/n};

2. ‖P̂−P‖2F = (2d)
{

1− r2(d)
}

= Op {max (p, log n)/n};

3. ‖P̂−P‖2 = Op {max (p, log n)/n} .

We first give some brief comments on Theorem 1. The subGaussian assump-

tion is widely used in studies on the consistency of the sample covariance matrix

Σ̂; see, for example, Vershynin (2012), Bunea and Xiao (2015) and Koltchin-

skii and Lounici (2017). In the present context, an important contribution of

this study is that we derive the convergence rates of both Λ̂ and P̂ under the

spectral norm. Moreover, one may wonder why Σ̂ and Λ̂ have different con-

vergence rates. The rate (log n/n) in ‖Λ̂ − Λ‖2 appears in the derivation of

the uniform convergence rate of m̂(y). We believe the rate Op{max (p, log n)/n}
may be refined to Op(p/n). In high-dimensional data analyses, it is reasonable

to expect that p is greater than log n. Accordingly, ‖Λ̂ − Λ‖2 = Op(p/n). In

other words, the presence of log n/n does not have a significant effect on the

convergence rate of ‖Λ̂−Λ‖2 when the covariate dimension is high. The second

statement connects the Frobenius norm with the trace correlation. In particular,

‖P̂ − P‖F = (2d)1/2
{

1− r2(d)
}1/2

. The last two statements indicate that the

Frobenius norm and the spectral norm of P̂−P have identical convergence rates.

Zhu, Zhu and Feng (2010) and Jiang and Liu (2014) derived the convergence

rate of B̂ when p = o(n1/2). We improve upon their results substantially by
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finding the rate when p = o(n), which is the largest p one can handle without

a sparsity condition. The key to improving the convergence rate of ‖P̂ − P‖F
from Op(p/n

1/2) (Zhu, Miao and Peng (2006); Zhu, Zhu and Feng (2010); Jiang

and Liu (2014)) to Op(p
1/2/n1/2) is that we use an improved Davis−Kahan sin θ

theorem (Yu, Wang and Samworth (2015)). In particular,

‖P̂−P‖F ≤
4 min{d1/2‖Σ̂

−1
Λ̂Σ̂

−1
−Σ−1ΛΣ−1‖, ‖Σ̂

−1
Λ̂Σ̂

−1
−Σ−1ΛΣ−1‖F }

λd(Σ−1ΛΣ−1)
.

In general, ‖Σ̂
−1

Λ̂Σ̂
−1
− Σ−1ΛΣ−1‖ ≤ ‖Σ̂

−1
Λ̂Σ̂

−1
− Σ−1ΛΣ−1‖F , where d

is a small number, given the purpose of dimension reduction. The improved

Davis−Kahan sin θ theorem accounts for the significantly improved convergence

rate.

Recently, Lin, Zhao and Liu (2018b, Thm. 1) studied the consistency of the

SIR when p = o(n), showing that

‖Λ̂SIR −ΛSIR‖ = Op

(
1

Hϑ
+
H2p

n
+

√
H2p

n

)
,

where ϑ is a nonnegative constant. The above convergence rate indicates that

the optimal number of slices is

H = O

{(
p

n

)−1/(2(ϑ+1))
}
. (2.2)

Accordingly, the resulting optimal convergence rate is

‖Λ̂SIR −ΛSIR‖ = Op

{(
p

n

)ϑ/(2(ϑ+1))
}
. (2.3)

The above convergence rate is slower than that of the CUME method, derived

in Theorem 1. Moreover, determining an optimal H that satisfies (2.2) is an

issue, partly because ϑ is unknown. It is thus encouraging that avoiding a slicing

estimation not only overcomes this longstanding computational issue, but also

means the CUME method possesses a better convergence rate than that of the

SIR.

In Theorem 1, we show that the usual moment estimate of the CUME matrix

is consistent when p = o(n). Next, we demonstrate that such an estimate is

inconsistent when p/n → γ, for some γ ∈ (0, 1). This indicates that p = o(n) is
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a necessary and sufficient condition for the usual moment estimate of the CUME

matrix to be consistent. In Section 1, we illustrate the inconsistency issue using

simulated examples when p/n→ γ, for some γ ∈ (0, 1). We further demonstrate

this inconsistency issue by means of the following analytical example.

Example 1. Assume Y = X1 + σε, where x = (X1, . . . , Xp)
T follows a multi-

variate standard normal distribution, and ε is standard normal. In this example,

Σ
def
= var(x) = Ip×p, where Ip×p denotes the p × p identity matrix. Because

x is standardized, we can simply estimate the basis matrix B using the first

d principal eigenvectors of Λ̂. With a slight abuse of notation, we denote the

estimated basis as B̂. Define P = B(BTB)−1BT and P̂B̂(B̂TB̂)−1B̂T. In the

Supplementary Material, we show that

pr

{
‖P̂−P‖2F ≥

γ

6π2(1 + σ2)(1 + γ)2

}
−→ 1.

This indicates that the usual moment estimate of the CUME matrix is no longer

consistent when p/n→ γ, for some γ ∈ (0, 1).

2.3. Regularized estimate for the CUME method when log p = o(n)

In this section, we derive the convergence rate for the CUME method when

log p = o(n). When p is greater than n, Σ̂ is no longer invertible, even when Σ is

nonsingular. To address this issue, we turn to sparsity assumptions, and propose

sparse solutions, denoted as Ω̂s and Θ̂s, to estimate Ω
def
= Σ−1 and Θ

def
= ΩΛΩ,

respectively. Let B̂s be composed of the first d principal eigenvectors of Θ̂s.

In this section, we derive the consistency of B̂s under certain sparsity assump-

tions. Define P̂s = B̂s(B̂
T

s B̂s)
−1B̂T

s . We study the consistency of B̂s under

the Frobenius norm ‖P̂s − P‖F , spectral norm ‖P̂s − P‖, and trace correlation

r2(d) = trace(P̂sP)/d.

We suggest an estimation of the precision matrix Ω first, and then propose

a sparse estimation for Θ based on the sparse solution Ω̂s.

Estimation of Ω: Estimations of precision matrices have been studied exten-

sively in the literature; see, for example, Meinshausen and Bühlmann (2006), Cai,

Liu and Luo (2011) and Zhang and Zou (2014), and a recent review article by

Fan, Liao and Liu (2016). In this work, we adapt the constrained `1 minimization

for the inverse covariance matrix estimation (CLIME) proposed by Cai, Liu and

Luo (2011). The CLIME method is implemented as follows. For a given tuning
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parameter λ1n, let Ω̂ be the solution set of the following optimization problem:

Ω̂ ∈ arg min
Ω
‖Ω‖1, subject to ‖Σ̂Ω− I‖∞ ≤ λ1n,

where Σ̂ is defined in (2.1). The above solution Ω̂ is not symmetric, in general.

To obtain a symmetric estimate, the CLIME estimator Ω̂s is defined as Ω̂s
def
=(

Ω̂s,k,l

)
, where

Ω̂s,k,l = Ω̂s,l,k = Ω̂k,lI
(
|Ω̂k,l| ≤ |Ω̂l,k|) + Ω̂l,kI

(
|Ω̂k,l| > |Ω̂l,k|).

In other words, we select Ω̂k,l or Ω̂l,k with the smallest magnitude. The resultant

estimate Ω̂s is symmetric and, more importantly, positive definite with high

probability. By assuming the covariates have exponential-type tails, and λ1n =

C1(log p/n)1/2 for some generic constant C1, Cai, Liu and Luo (2011) show that

‖Ω̂s −Ω‖ = Op

{
M2−2qs1(p)

(
log p

n

)(1−q)/2
}

holds uniformly for

Ω ∈ U1{q, s1(p)}

def
=

{
Ω : Ω > 0, ‖Ω‖1 ≤M and max

1≤k≤p

p∑
l=1

|Ωk,l|q ≤ s1(p)

}
, (2.4)

for some 0 ≤ q < 1. For brevity, we assume ‖Ω‖1 ≤ c0. Then

‖Ω̂s −Ω‖ = Op

{
s1(p)

(
log p

n

)(1−q)/2
}
. (2.5)

Next, we suggest a thresholding estimate for Θ.

Thresholding Estimation of Θ: For a given tuning parameter λ2n, we propose

the following sparse estimation:

Θ̂s
def
=
(
Θ̂s,k,l

)
p×p =

{
Θ̂k,l I(|Θ̂k,l| ≥ λ2n)

}
p×p,

where Θ̂k,l is the (k, l)th element of Θ̂
def
= Ω̂sΛ̂Ω̂s, and Ω̂s is the CLIME estima-
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tion. Assume

Θ ∈ U2{q, s2(p)}
def
=

{
Θ : max

1≤k≤p

p∑
l=1

|Θk,l|q ≤ s2(p)

}
, for some 0 ≤ q < 1.

Note that s1(p) and s2(p) are constants that may depend on p. We control the

sparsity levels with s1(p) and s2(p) in the respective classes, U1{q, s1(p)} and

U2{q, s2(p)}. In particular, when q = 0, we require that the number of nonzero

entries in each row be no greater than s1(p) or s2(p). The class U1{q, s1(p)}
was introduced by Bickel and Levina (2008) and Cai, Liu and Luo (2011). It

is straightforward to verify that the band covariance matrices and the covari-

ance matrices with power decay correlations satisfy the sparsity condition in

U1{q, s1(p)}. The class U2{q, s2(p)} is defined in a similar manner to the class

U1{q, s1(p)}. It can also be verified that the sparsity condition in U2{q, s2(p)} is

satisfied if the number of truly important covariates is small. In particular, the

matrix Θ in models (1.2)−(1.7) is sufficiently sparse, with its upper-left block

submatrix being nonzero. In effect, the class U2{q, s2(p)} includes many common

dimension-reduction models (Zhu, Zhu and Feng (2010, Thm. 1)).

Theorem 2. Assume conditions (A1)−(A3) and (2.4). Let λ1n = C1(log p/n)1/2

and λ2n = C2(log p/n)1/2, for some generic nonnegative constants C1 and C2.

Then, as n→∞,

‖Θ̂s −Θ‖ = Op

{
s1−q1 (p)s2(p)

(
log p

n

)(1−q)2/2
}
. (2.6)

Theorem 3 states the consistency of B̂s.

Theorem 3. Under the conditions of Theorem 2,

1. ‖P̂s −P‖F = Op

{
s1−q1 (p)s2(p)(log p/n)(1−q)

2/2
}
,

2. ‖P̂s −P‖ = Op

{
s1−q1 (p)s2(p)(log p/n)(1−q)

2/2
}
.

Theorem 3 ensures that the estimated central space is consistent, even when

(log p/n) vanishes slowly, as long as s1(p) and s2(p) are small. This generalizes

the applicability of the CUME method to ultrahigh-dimensional data.

Tuning Parameter Selection: It remains to choose the appropriate λ1n and

λ2n values for the thresholding regularized CUME method. The selector for λ1n is

discussed extensively by Cai, Liu and Luo (2011). Simply, λ1n is decided under
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a likelihood loss function coupled with five-fold cross-validation. We suggest

choosing λ2n using five-fold cross validation such that the distance correlation

(Székely, Rizzo and Bakirov (2007); Székely and Rizzo (2009)) between (B̂T

sx)

and Y is maximized. The distance correlation retains the model−free flavor of the

SDR, because it can measure the nonlinear dependence between Y and (B̂T

sx).

In our proposed five-fold cross-validation procedure, we randomly partition the

original sample into five equal-sized subsamples. We retain a single subsample

as the test set, and use the remaining four subsamples as the training set. For

each λ2n, we obtain an estimate Θ̂s and, accordingly, B̂s, using the training set.

We calculate the distance correlation between (B̂T

sx) and Y using the test set.

The cross-validation procedure is repeated five times, where each subsample is

used exactly once as a test set. The five distance correlations are averaged to

produce a single estimation. We choose λ2n, which maximizes the average of the

five distance correlations. Our limited experience indicates that this procedure

is effective.

3. Numerical Studies

3.1. Simulations

We illustrate the finite-sample performance of our proposed sparse estimate

B̂s using simulations. We also compare the proposed method with the classical

CUME method, that is, the SIR method, using different numbers of slices. We

use the trace correlation r2(d) to assess the the finite-sample performance of the

methods. We adapt models (1.2)−(1.7) in our simulations. Throughout, we draw

x = (X1, . . . , Xp)
T from a multivariate normal distribution with mean zero and

covariance matrix Σ, and draw ε independently from a standard normal distri-

bution. We consider three scenarios. In the first two scenarios, we fix n = 200,

and p = 10, 50, 100, 200 and 300. In the last scenario, we fix n = 400 and let

p = 1,000 and 5,000. We set Σ = Ip×p, Σ = (0.2|k−l|)p×p, and Σ = (0.5|k−l|)p×p
in the first, second, and last scenarios, respectively. In the first two scenarios,

we directly implement our proposed sparse estimate procedure, the CUME and

the SIR method, to estimate SY |x. In the third scenario, we first implement

the sure independent ranking and screening method (Zhu et al. (2011)) to re-

duce the covariate dimension from p to p0 using the first 200 observations. In

other words, we retain p0 covariates after screening. We choose p0 = [n/ log n],

2[n/ log n], . . . , 5[n/ log n], corresponding to 38, 76, 114, 152, and 190, respec-

tively. Next, we implement our proposed sparse estimate, CUME and SIR, using
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the remaining 200 observations and the retained p0 covariates. We repeat each

scenario 1,000 times, and report the mean and standard deviation of the r2(d)

values. Table 1 presents the results for Σ = (0.2|k−l|)p×p. Additional simulations

are relegated to the Supplementary Material.

The simulation results indicate that the SIR is sensitive to the number of

slices when p is relatively large. In the linear model (1.2) in scenario 2, with

p = 100 and Σ = (0.2|k−l|)p×p, the r2(d) value obtained by SIR20 is 0.894,

whereas that obtained by SIR2 is 0.519. In model (1.4) in scenario 2, the r2(d)

value obtained by SIR20 is 0.882, whereas that obtained by SIR2 is 0.439. In

the third scenario, the effect of the number of slices appears more substantial

than in the first two scenarios. For example, in model (1.2), with p = 1,000

and p0 = 114, the r2(d) value obtained by SIR20 is 0.827, whereas that obtained

by SIR5 is only 0.659. In model (1.2), with p = 5,000 and p0 = 152, the r2(d)

value obtained by SIR20 is 0.612, whereas that obtained by SIR5 is as small as

0.454. These simulation results indicate that the number of slices in the SIR

has a nonignorable effect on its performance when the covariate dimension is

relatively large. Recall that the CUME method does not rely on choosing an

optimal number of slices. Nevertheless, the performance of the classical CUME

method also deteriorates quickly when the covariate dimension p increases. For

example, in model (1.2) in scenario 1, the r2(d) value obtained by the CUME

method is 0.992 when p = 10, and is 0.551 when p = 150. In contrast, our

proposed sparse estimate of the CUME matrix is stable across all scenarios. The

r2(d) values obtained using the proposed method are all larger than 0.950 in the

one-dimensional models, and are all greater than 0.700 in the two-dimensional

models. This is in line with our expectation that estimating a two-dimensional

SY |x is more difficult than estimating a one-dimensional SY |x.

3.2. Real-data analysis

We demonstrate our proposed sparse estimate for the CUME method using

breast cancer data collected by Van’t Veer et al. (2002). In this study, 24,481

gene expression levels were collected from 97 lymph node-negative breast cancer

patients. We remove observations that contain missing values, leaving 24,188

gene expression levels. We aim to predict the tumor size based on levels. Because

the covariates are ultrahigh dimensional, we first apply the sure independent

ranking and screening procedure of Zhu et al. (2011) to select the top 50 gene

expression levels, which we expect will best predict the tumor size. We split the

data set into two sets: a training set containing 65 observations, and a test set
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Table 1. The averages (standard deviations) of the trace correlations (× 100) for Scenario
2, where SIRk denotes SIR with k slices, and Σ = (0.2|k−l|)p×p.

p CUME SIR2 SIR5 SIR10 SIR20 NEW

(1.2)

10 98.9(0.6) 95.7(2.0) 98.8(0.6) 99.3(0.4) 99.5( 0.3) 98.4( 1.6)

50 93.0(2.0) 76.4(4.8) 92.5(2.0) 95.5(1.2) 96.5( 0.9) 98.7( 1.7)

100 79.0(5.0) 51.9(6.3) 79.6(4.2) 87.1(2.9) 89.4( 2.4) 98.6( 1.7)

200 - - - - - 98.4( 2.0)

300 - - - - - 98.4( 2.0)

(1.3)

10 96.8(1.8) 94.2(3.1) 96.5(1.9) 96.6(2.0) 96.4( 2.1) 96.3( 3.9)

50 81.8(5.2) 71.4(6.8) 80.4(5.5) 80.5(5.6) 78.6( 6.4) 98.2( 5.6)

100 59.2(8.6) 45.0(8.3) 56.7(9.0) 55.6(9.8) 48.8(11.9) 98.4( 6.1)

200 - - - - - 99.0( 5.1)

300 - - - - - 99.0( 4.9)

(1.4)

10 98.6(0.8) 94.2(2.7) 98.7(0.7) 99.2(0.4) 99.4( 0.3) 98.3( 1.9)

50 90.3(2.6) 69.8(5.5) 91.5(2.0) 95.0(1.3) 96.0( 1.1) 99.0( 1.6)

100 72.6(6.0) 43.9(6.6) 77.8(4.4) 85.8(3.1) 88.2( 2.7) 98.9( 1.9)

200 - - - - - 98.9( 1.8)

300 - - - - - 98.9( 1.7)

(1.5)

10 88.7(5.4) 94.4(3.0) 85.1(7.3) 88.3(6.2) 88.0( 6.3) 93.8( 7.2)

50 58.6(5.5) 74.7(6.2) 54.1(6.4) 56.6(7.2) 54.1( 7.4) 93.4( 8.9)

100 39.4(4.3) 58.5(9.0) 36.1(4.4) 36.4(4.8) 32.8( 4.9) 92.6( 9.6)

200 - - - - - 91.0(10.2)

300 - - - - - 90.7(11.4)

(1.6)

10 85.5(7.2) 58.8(4.1) 84.2(7.7) 85.1(8.0) 82.8( 9.7) 91.7( 9.3)

50 48.7(7.2) 42.3(5.8) 49.9(7.3) 49.7(8.0) 45.4( 7.3) 85.3(15.8)

100 27.9(5.4) 27.7(8.7) 28.7(5.3) 28.8(5.5) 25.9( 5.3) 82.4(16.3)

200 - - - - - 81.7(16.9)

300 - - - - - 81.2(16.3)

(1.7)

10 96.8(1.2) 48.1(1.1) 95.7(1.7) 96.5(1.3) 96.6( 1.3) 96.4( 2.8)

50 80.4(3.3) 38.0(2.5) 75.9(3.7) 79.1(3.6) 78.7( 3.8) 95.0( 5.1)

100 55.9(5.2) 26.1(3.3) 50.8(4.8) 54.3(5.1) 50.9( 6.0) 93.6( 7.5)

200 - - - - - 87.0(16.5)

300 - - - - - 80.0(21.4)

containing the remaining 32 observations. We estimate Θ using the training set.

Figure 3 displays a scree plot of the eigenvalues of Θ̂s. The figure clearly shows

there is an obvious nonzero eigenvalue. Figure 3 also presents scatter plots for the

response variable and the first linear combination on the test data. The first linear

combination exhibits a clear monotone trend. We further conduct a distance

correlation t-test (Székely, Rizzo and Bakirov (2007)) between each of the first
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(b) The first linear combina-
tion.

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

− − −

−

(c) Residual plot

Figure 3. (A): Scree plot of the principal eigenvalues; (B): Scatter plot of the response
on the vertical axis and the first linear combination (xTβ1) on the horizontal axis on
the test data set; (C) Scatter plot of the residuals of the nonparametric kernel regression
using the first linear combination.

Table 2. Simulation results for the breast cancer data: The averages (standard devia-
tions) of the distance correlations and mean squared errors based on the test data.

CUME SIR2 SIR5 SIR10 SIR20 NEW

MSE 1.68(0.55) 1.31(0.34) 1.69(0.60) 1.86(0.70) 2.61(1.31) 0.78(0.22)

DC 0.37(0.10) 0.39(0.10) 0.34(0.09) 0.33(0.08) 0.33(0.08) 0.57(0.10)

two linear combinations and the response variable. The p-values are 0.005 and

0.275, respectively. These results suggest that the first linear combination may

be sufficient to predict the tumor size. Therefore, it is reasonable to infer that

the central subspace SY |x may be one dimensional.

Next, we examine the performance of the first linear combination in terms

of predicting the tumor size. We randomly partition the whole data set into a

training and a test data set. We repeat this partition procedure 1,000 times. We

estimate SY |x using the different training sets, and calculate the distance corre-

lation (Székely, Rizzo and Bakirov (2007)) between the first linear combination

and the response based on the test data. We also predict the tumor size based

on the test set using a nonparametric kernel regression. We evaluate the pre-

diction performance using the mean squared errors. The averages (the standard

deviations) of the distance correlations and mean squared errors are reported

in Table 2, based on 1,000 random partitions. The prediction performance of

the SIR varies with the number of slices. Table 2 shows that, in terms of both

criteria, our sparse estimate for the CUME method is superior to the SIR and

the classical CUME method.
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4. Conclusion

We have shown that the classical CUME method is consistent if and only if

p = o(n). This is the largest possible p we can handle without a sparsity assump-

tion. When p is greater than n, we introduce a sparse estimate for the CUME

matrix, showing that the estimate is consistent as long as log(p) = o(n). The

sparse estimates involve two tuning parameters, λ1n and λ2n. Here, we suggest

selecting the optimal λ1n first, and then using this to select the optimal λ2n.

Alternatively, we can choose the two simultaneously when the computation is

not complex. Several other issues deserve further investigation. For example, for

the CUME method to be consistent, we implicitly assume the linearity condition.

This assumption is violated if some covariates are categorical or discrete. How-

ever, relaxing the linearity assumption when x is ultrahigh-dimensional is not

straightforward. In addition, how to decide the dimension of SY |x for ultrahigh-

dimensional semiparametric regressions remains unsolved. Based on the asymp-

totic theory of the proposed CUME method, one may follow Luo and Li (2016)

to combine the eigenvalues and the variation of the eigenvectors to determine the

order in high- or ultrahigh-dimension. Another interesting extension would be

to apply the thresholding idea to the functional data case.

Supplementary Material

The online Supplementary Material provides proofs for Example 1 and The-

orems 1−2, together with additional simulations.
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Székely, G. J., Rizzo, M. L. and Bakirov, N. K. (2007). Measuring and testing dependence by

correlation of distances. The Annals of Statistics 35, 2769–2794.

Van’t Veer, L. J., Dai, H., Van De Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse,

H. L., Van Der Kooy, K., Marton, M. J., Witteveen, A. T., et al. (2002). Gene expression

profiling predicts clinical outcome of breast cancer. Nature 415, 530.

Vershynin, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Com-

pressed Sensing, 210–268. Cambridge Univ. Press, Cambridge.



242 WANG, YU AND ZHU

Yu, Y., Wang, T. and Samworth, R. (2015). A useful variant of the Davis-Kahan theorem for

statisticians. Biometrika 102, 315–323.

Zhang, T. and Zou, H. (2014). Sparse precision matrix estimation via Lasso penalized D-trace

loss. Biometrika 101, 103–120.

Zhong, W., Zhang, T., Zhu, Y. and Liu, J. S. (2012). Correlation pursuit: forward stepwise

variable selection for index models. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 74, 849–870.

Zhu, L.-P., Li, L., Li, R. and Zhu, L.-X. (2011). Model-free feature screening for ultrahigh-

dimensional data. Journal of the American Statistical Association 106, 1464–1475.

Zhu, L.-P., Zhu, L.-X. and Feng, Z.-H. (2010). Dimension reduction in regressions through

cumulative slicing estimation. Journal of the American Statistical Association 105, 1455–

1466.

Zhu, L.-X., Miao, B. and Peng, H. (2006). On sliced inverse regression with high-dimensional

covariates. Journal of the American Statistical Association 101, 630–643.

Zhu, L.-X. and Ng, K. W. (1995). Asymptotics of sliced inverse regression. Statistica Sinica 5,

727–736.

Cheng Wang

School of Mathematical Sciences, MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240,

China.

E-mail: chengwang@sjtu.edu.cn

Zhou Yu

Key Laboratory of Advanced Theory and Application in Statistics and Data Science, Ministry

of Education and School of Statistics, East China Normal University, Shanghai 200241, China.

E-mail: zyu@stat.ecnu.edu.cn

Liping Zhu

Institute of Statistics and Big Data and Center for Applied Statistics, Renmin University of

China, Beijing 100872, China.

E-mail: zhu.liping@ruc.edu.cn

(Received September 2018; accepted February 2019)

mailto:chengwang@sjtu.edu.cn
mailto:zyu@stat.ecnu.edu.cn
mailto:zhu.liping@ruc.edu.cn

	Introduction
	Background
	Disadvantages of the SIR
	 Contributions to the literature

	Main Results
	Definitions and notation
	Usual moment estimate for the CUME method when p = o(n)
	 Regularized estimate for the CUME method when log  p = o(n)

	Numerical Studies
	Simulations
	Real-data analysis

	Conclusion

