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S1 Notation

We introduce some notation here which will be used in the proofs. For any
(j — 1)-dimensional vector a = (ai,...,a;_1)" € RI7' By ;(a) is defined
by By j(a) = (bi = aj_1-p+i; 1 < i < k). Let Qp, be the true precision
matrix and Qo, = (I, — Aon) Do, (I, — Agy) be its modified Cholesky
decomposition with Ay, = (agj;) and Dy, = diag(dp ;). It is easy to check

that the explicit forms of ag; = (agj1, ..., a0, j-1)" and do; are

aop,; = var(Xl,lz(j—l))_ICOV(XLl:(j—l)a Xij),
(SL.1)

do,; = Var(X1;) — Cov(X1j, X1,1.G-1)) Var (X1,1.5-1)) ™ Cov(Xi 1.1, X1),
where X1 44 = (Xia, - .- , X1p)T denotes the sub-vector of the first observa-
tion X; = (Xy1,...,X1,)T € RP for any positive integers 1 < a < b < p.

Since we assume X1,..., X, i N,(0, Q&;), Xi.a0 can be replaced by X 4.
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for any ¢ = 2,...,n. For more details on the above expression (S1.1), refer
to Bickel and Levina (2008) (pages 202 and 221).

For a given k, we denote

k _
ag) = Var(Xy (i g.g-n) " Cov(XiGop:g-1, X17),
doji = Var(Xy;) — Cov(Xuj, X1 -r:(-1) Var(Xi,g-uy:g-1) " Cov(XGory:(-1), X15).
We denote the empirical estimators by Var(Xy j_).(j—1)) = n_lX.,T&jfk):(jfl)X.,(j,k);(j,l)

and COV(XL(J-_]C):(j_l), Xi,) = n‘lX.’T(j_k):(j_l)X_J for any j =2,...,p. For

any j = 1,...,p, we define Var(X,,) = n~ 1| X.;|2.
yJ J J112

S2 Proofs

S2.1 Proof of Proposition 1

Proof. First, we prove only the exponentially decreasing case, (k) = Ce=5*
for some 5 > 0 and C' > 0, because the proposition trivially holds for the
exact banding case.

Suppose o, = (wo,4j) € U(ep,7y) and let Qp,, = (I, — Ao,n)TDO_’}I(Ip —
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Ay,) where Ag,, = (aop;j) and Dy, = diag(dy ;). Note that

IDgall = maxdy;
-2

1 2

= max Hval"1/2<X1,1:j) <_a0’j)
j

R P
< max Amin(Var(Xy1,5)) H 7
j 1 2
< max Apin(Var(Xy1,5)) 7"
J
S )\mln(QO,n) ! < 60_1
and
o —1
lAp il < max g ;12 = ma [Var(Xy 15-1) ™ Cov(X -1, Xl
< max [ Var(Xy,1.5-0) 7| Cov(Xu -1, X17)ll2
< max | Var(Xy 1) 7 [Var(Xu)ll < &

by the assumption €y < Amin(Q0.0) < Amax(Q0.) < €

Furthermore,

||A0n _Bk(AOn Hoo maX Z ‘GOljl S f)/(k)? <822>
j<i—k

Ao — Bi(Aon)ll = mjaX Z o] < ZV(m) < C'y(k),(52.3)
i>j+k m=k

for some C” > 1 because (k) = Ce™?*. Note that wp,, = dg, and

p
Woij = —da}}ag,ﬂ + Z da’lla(],liao’lj forany 1 <i<j<p. (S2.4)
I=j+1
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Then for 1 <1 < p, define k so that ¢ = p — k — 1. Then, £ > 0 and

wopl = dgplaopil

< e (k)

by (S2.2). On the other hand, for 1 < i < j < p — 1, define k so that

j—1=k+1. Then, k> 0 and

p
woisl = | —dojaozi+ Y dylaouaoyl
I=j+1

p
d&;’aﬂ,ﬂ + Z d&,“ao,hao,zg’
I=j+1

p
" (Iaoml + ) |a07li|>

I=j+1

IN

IN

P
= ") lagul < €°C'y(k)

I=j

by (S2.3). Thus, we have

19200 = Br(Qon)lloc = max > lwogl

Jili—jl>k
< max Z |wo,ij| + max Z |wo,il
Y iSitk "\ j<iok

IN

26,°C" > ~(m) < C"y(k)
m=k

for some constant C” > 0. This proves the first inequality.
Suppose ., € U*(€o,7). We need to prove that max; Zj<i—k |ag,ij| =

max; Zéj_l lagij| < Cv(k) for some constant C' > 0. Note that from
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(S2.4), we have

p—k—1

—k—
dop > laoy| = Z woipl < V(K), (52.5)
=1 —1

for any 0 < k < p — 2. We will show that

p—t—k—1 t
dope Y laoprsl < k) +67 Y 1+ y(k +m)(S2.6)
Jj=1 m=1

forany 1 <t < p—k—2for some 0 < k < p—3. Then, (S2.5) and (S2.6) im-
ply Qo € U(eg, C"y) for some C’ > 0 because max; dp ; < max; Var(Xy;) <
;' and we assume that (k) = Ce ¥ and 8 > log(e;? + 1).

By (S2.4) and the assumption Qg ,, € U* (o, "),

p—k—2 p—k—2

> = dopyrt0p-1y + dyptopitopp-il = D lwojp-1] < (k) (S2.7)

j=1 Jj=1
for any 0 < k < p — 3. Thus, (S2.5) and (S2.7) imply that

p—k—2 p—k—2

p—k—2
dy ! la | < | —dy) qa 4 dy Lao pia | + |y tao pia
0,p—1 0,p—1,31 = 0,p—140,p—1,j 0,p%0,p3 %0,p,p—1 0,p%0,p3 “0,p,p—1
i—1 j=1

j=1
< (k) + ey (k+ 1)

because 2, € U*(€p,y) means |agpp 1] < |[Aon|lmax < €5°. Thus, (S2.6)

holds for ¢ = 1. Now assume that (S2.6) holds for ¢ — 1 and consider for

the case of t. Note that

p—t—k—1

p
_ —1 E -1
- _dO,pfta’Ovp*tJ + dO,l aoyl.]a/oyl)pft ?
Jj=1 I=p—t+1
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which implies that

p—t—k—1
oyt > laop sl
j=1
p—t—k—1 P
k) + Z d01|(101](101p tl
Jj=1 l=p—t+1
p—t—k—1
et Y bl Y ol
l=p—t+1 j=1

p—t1—(k+t—t1)—1

_'_60 E dOp t1 § : ’CLO,p*tlJ

t1=0 j=1

< (k) +eg v (k +1)

t—1 t1
+e” Yy ('y(k} tt—t) e’ Y (L+e?)" Ik +t—t+ m)> .

t1=1 m=1

(52.8)

n (52.8), one can check that the coefficient of y(k +t —t') is

t—t'—1
o et > 1+ = 21+

m=1

for 0 <t <t —1, and the coefficient of (k) is 1. Thus,

oyt Y laop-igl < (B +6° > (14+¢>)™ vk +m).
Jj=1 m=1

This completes the proof by induction.
Now suppose that y(k) = Ck~® for some constant C' > 0 and Qq,, €
U(eo,y). We will show that Qq,, € U*(en,7’), where v/'(k) = C'k'~* for

some constant C’ > 0. Let Q = D_l/Q(I — Ap,), then by the proof of
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Lemma 2 in Liu and Ren (2017),

||QO,n - Bk(QO,n) Hoo

< Q= Bu(@))" Qll + 1Q7(Q — Bi(@)) |« + 1(Q — Br(@)"(Q — Bi(Q))|S2.9)

+ 1Be[(Q = Bi(Q))" Br(Q)]llso + | B [Be(@)"(Q — Br(@))] I
+ IBe[(Q — Br(Q)"(Q — Bi(Q))]]l-

The two terms in (S2.10) are bounded above by C'k'~2* for some constant
C" > 0 by the proof of Lemma 2 in Liu and Ren (2017). With a slightly
modified version of Lemma 24 and Lemma 25 in Liu and Ren (2017) by
considering |||y and ||-||o instead of |||, one can show that the term (52.11)
is also bounded above by C'k'~2%. Three terms in (S2.9) are bounded above
by C'k'~® by the modified version of Lemma 24 in Liu and Ren (2017) and

Lemma 8. It completes the proof. O

S2.2 Proof of Minimax Lower Bounds: Theorem 1 and Theorem

3

Proof of Theorem 1. We follow closely the line of a proof in Cai et al. (2010).
Consider the polynomially decreasing case, y(k) = Ck~, first. Two pa-

rameter classes are considered depending on the relation between p and n.

(S2.10)

(S2.11)
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For exp(n'/(?*+1)) > p case, we show that

~ 1/2
inf sup Eou|0, — o, 2 min (n-a/@aﬂx(ﬁ) ),<sz.12>

Qpn Qo,n€UIL n

and for exp(n'/(o*t1) < p case, we show that

1/2
log p ) (S2.13)

inf sup IEOnHQn—Qo,nH 2 (
n

Qpn Qo,n€U12

for some Uy; U Uya C U(€p,7y). Then, it gives a lower bound for the param-

eter space U(eg, ),

inf  sup Eo, || — Qonl| > inf  sup Eoy || — Qo.nll

Qn Qo,n€U(e0,7) Qn Qo,n€U11 U2
> inf sup E0n||§n — Qo,n||](exp(n1/(2°‘+1)) > p)
Qn Qo,n€ULL
+ inf sup E0n||§n - QoﬁnHI(eXp(nl/@aH)) < p)
Qpn Qo,n€UL2

Vv

1/2
min { (logp) 4 po/at) <£)1/2 } |
n n

which is the desired result.

Consider exp(n'/?*+1)) > p case first. Without loss of generality, we as-
sume k = min(n'/2*V p) is an even number, and define a class of precision
matrices

Uy — {me) e R™P - Q(6) = (I, — A(0))7(I, — A(6)),

k)2
A(9) = —T@ZHmB(m, k),0 = (0,1 <m <k/2) € {0, 1}’“/2}

m=1

where B(m,k) = (bjj = I[(i = m+1,....,kand j = m),1 < i,j < p) is

a p X p matrix and @ = (nk)~/2. If we choose sufficiently small constant
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7 > 0, it is easy to check that for any Q(0) € Ui, €0 < Amin(2(0)) <
Amax (2(0)) < ;' and ||A(0) — By, (A(0))|loo < Chky™® for any k; > 0, so
that Uy, C U(eg,y) for all sufficiently large n.

We use the Assouad’s lemma (Assouad, 1983)

. 3 o 19200) = Q@) k2
f 2|2, — QO)]] > Py A\ Py
a0 ok, % =000 > TGy o i P Pl

where H(0,60') = 2 160,, — 0/ |, [Py A Py || = [ po A pordp, and Py and

m=1
pe are the joint distribution function and density function, with respect

to a dominating measure p, of observation Xi,..., X, “ N,(0,Q(0)71),

respectively. If we show that

o [1900) - Q@] o
b HEe) < S
and
min ||[PyAPy| > ¢ (52.15)

H(0,0")=1
for some constant ¢ > 0, it will complete the proof. To show (S2.14),
define a p-dimensional vector v = (I(k/2 < i < k),1 < i < p). By the

construction of () and v, one can check that

)
(Ta)?5 (01652 — 0165 /2) + a5 +1)(6, —0;) if1<i<i-—1

(ra)2E (Bhys — 0} ) + 70k (B2 — 0 ) i1 = &
((Q0)-())), = pew po

Ta(6k+1_l — (9;@—&—1—[) if g +1 S l S k

0 itl>k+1.

\
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Then, we have ||(Q(0) — Q(0))v|]3 > (1a)*(k/2)?H(6,0") and

[1(62(6) — ©2(6"))vll2

122(0) — (&) >
[v]]2
_ [I82(0) — (6"))vllz
k/2
(k/2 x Ta)*H(0,0)\ "
- k/2
/2 1/2
= H(,0
(w)  rem0)
> TaH(0,6").
Thus, we have shown the first part.
To show (S2.15), note that
PonBol = [ pwdit [ pud
Do >Dg/ Do <Py
1 1/ 1 1 1 1
= (5—3 pefdu+—/ pordp) + (5 — —/ pedu+—/ Podp
<2 2 Po<py! 2 Po>Dy! ) <2 2 D6 >Dg! 2 Do <Py >

1 1
= 1- —/ (po — por)dp — 5/ (por — po)dp
Do >Pgr Po<pyr

2
1
= 1—5 |p9—p9/|d,u.

Let |Py—Py |1 = [ |po — per|dpe. Thus, it suffices to show that [Py —Pg||3 <
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1/2 when H(0,0") = 1. Also note that

[Py —Pyfly < 2K(Py | Po)
= n[tr(Q6)7'Q(0)) — log det(2(¢)'Q(6)) — p]
= n[tr(Q(0) ' Dy) — logdet(Q(0') "' Dy + I,)]

= n[tr(QO) ' Di0')/?) — log det(Q() 2Dy 0") 2 + 1,)]

where K(Py | Py) = [ log(%)pgfd,u is the Kullback-Leibler divergence and
Dy = Q(0) — Q). Let Q(¢')~! = UVUT be the diagonalization of Q(6')".
U is a orthogonal matrix whose columns are the eigenvectors of Q(8')7,
and V is a diagonal matrix whose ¢th diagonal element is the eigenvalue of

Q(0")! corresponding to the ith column of U. It is easy to check that

12(0") 2 DuQ(0) 25 = IlUVRUTDUVYRUTE

IVY2UT DUV

IN

IVIPIUT DuU %
= [2@) " I*IDall7

< COk(ra)?
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for some constant C' > 0 because ||Q(0)7!]| < ¢;' and

(

L+ (Ta)*0;(k — i) fl<i—j<t

(ra)8; + (1a)?0;0;(k —j) if1<iAj<%k
(Q(Q))(i’j): Tab; fl1<i<itii<ji<k

Taf; ifEy1<i<k1<j<t

0 otherwise.

\

Also note that, if A\ (6,0) < --- < \,(6, ') are the eigenvalues of Q(6')~1/2D,Q(0")~1/2,
we have Y77 A;(0,0)* = 12(0)~2D1Q(0) V2|2 < Ck(ra)? = CT2/n,

which implies [\;(0,0")| < VC1/y/nforall1 < j < p. Thus, Q(0")~/2D,Q(6")~/*+
I, is a positive definite matrix for all large n. Since ||Q(6")~/2D,Q(6")~/2||%

is small, by Lemma C.2 in Lee and Lee (2018),
[Py —Pols < nRy

where R, < C||Q0")~2DQ(6")~'/?||% for some constant C' > 0. Thus, we
have ||Py — Py||; < 1/2 for some small 7 > 0 because nka® = 1.
Now consider exp(n'/?*+D) < p case. To show (S2.13), define a class

of diagonal precision matrices

1 1/2
Uy = {QmGRpoiQmI[p+T<ng) (I<Z:j:m)),0§m§p}

n

for some small 7 > 0. Since p < exp(cn) for some constant ¢ > 0, Uy C

U(ep,7y) holds trivially. Let rpm = infi<m<p, [0 — Qn|]. We use the Le
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Cam’s lemma (LeCam, 1973)

~ 1 _
inf sup E,[[Q —Qnll > 5 7mi [[Po AP
Qn Qm€u12 2

where P =p~1 3P | P, and P, is the distribution function of N,(0,Q;})

12 We only need to show

with observation X,,. Note that r,, = 7(logp/n)
that ||Po A P|| > ¢ for some constant ¢ > 0. By the same argument with

Cai et al. (2010) (page 2129), it suffices to show that

/( P ; 1 fm)” dp—1 — 0, (S2.16)
0

as n — oo where f,, is the density function of P,, with respect to a o-finite

measure 4. Note that

St - 1 [ e

and [ fyf;/ fodp =1 for any m # j. Also note that

) b n/2

< 6nb2/(1+2b)

< enb2 — €T2 log p

where b = 7(logp/n)'/2. Thus, (S2.16) holds for some small 7 > 0. It
completes the proof for the case of polynomially decreasing (k).

For the case of exponentially decreasing (k) = Ce ¥, consider k =
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2a+1)

min(logn, p) for Uy, instead of k = min(n'/( ,p). Then, similar argu-

ments for the lower bounds of Uy, and Uy give the desired result.
1/2

For the exact banding y(k), consider U;; with k = kg and a = (logp/n)

then it completes the proof. O]

Proof of Theorem 3. We follow closely the line of a proof in Cai and Zhou
(2012). Consider the polynomially decreasing case, y(k) = Ck~%, first.
Two parameter classes are considered depending on the relation between p

and n. For exp(n'/(?*+2)) > p case, we show that

inf sup Eo || — Qonllee 2 min (n_a/(2a+2), L) , (S2.17)
Qn QO,negll

and for exp(n'/(2*2) < p case, we show that

R 1 o/(204+1)
inf sup Eoul| O — Qonllec = ( ng) (S2.18)
Qn QO,nEQlQ

for some G13 U G1o C U(eo, ).

2a+2))

Consider exp(n'/( > p case first. Define a class of precision ma-

trices
Gy = {9(9) e RP? . Q6) = (I, — A0))" (I, — A(9)),

k
A(0) = =70y 0,1G.,0 = (6,) € {0, 1}k—1}

where G, = (I(i = 5,j = 1)) is a p x p matrix and a = n™"2 and k =

min(n'/?e+2) p). Tt is easy to show that Gy, C U(ep,) for some small
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constant 7 > 0 and all sufficiently large n.

We use the Assouad’s lemma,

— / _
inf sup 2E||Q, — QO)[|le > 12(6) — (Ol k-1

Qn Q(0)€011 T OH(0.0)>1 H(9,0") 2
It is easy to see that

e -
H(0,6")>1 H(6,0) -

min
H(0,0")=1

[Po A Por||.

To show mingg,ey=1 ||Po A Py/|| > ¢ for some ¢ > 0, it suffices to prove that

|IPy — Py||1 < 1. Note that

IPs — Por||? < 2K (P | Py)

IN

CnllQ(0) 2D, (0") 2|17

for some constant C' > 0 where Dy = Q(0) — Q(#'). By the same argument

used in the proof of Theorem 1, one can show that ||Py — Py||? < C'n(ra)?

for some constant C’ > 0, and it is smaller than 1 for some small constant

7 > 0. Thus, we have proved the (52.17) part.

Now consider exp(n'/(22*2)) < p case. To show (S2.18) part, define a

class of precision matrices

Gio = {Qm ERPP: Q= (I, — Ap) (I, — An), Am = —7By, (logp)

nk

1/2
1

where B, = (I(m+1 <i < m+k—1, j = m)) is a pxXp matrix, m, = p/k—1

and k = (n/logp)"/ot1) . Without loss of generality, we assume that p can



KYOUNGJAE LEE AND JAEYONG LEE

be divided by k. By the definition of G5, tedious calculations yield that
Gia C U(eo, ).
Let Qy = I, and P, be the distribution function of N(0,%,!) with

observation X,,. It is easy to check that for any 0 < m #£ m/ < m,,

i1 1/2 1 o/(20+1)
HQm - Qm’Hoo > T ( ng> = T ( ng>
n n

by the definition of G5 and k. Since k? < p, for any 1 < m < m,,
K(Py |Po) < Cnl|Q, D1, 7
< C't*logp

< clogm,

for some constants C,C’" > 0,0 < ¢ < 1/8 and small 7 > 0, which implies

that for any 1 < m < m,,

(Pm“P)O) < Clogm*

for some 0 < ¢ < 1/8, so we can use Fano’s lemma,

A Qm - Qm’ 00 *1/2 2 1/2
inf sup E,[|Q2% — Qnlle = min | e _m (1—20—( ‘ ) )

On Qn€Gio ~ 0<m#AmI<m,, 4 1+ m, /2 log m,

It completes the proof. For more details about Fano’s lemma, see Tsybakov
(2008).

For the case of exponentially decreasing (k) = Ce ¥, consider k =

20-+2)

min([log n log p]'/2, p) for Gy, instead of k = min(n'/( ,p). Then, similar



S2. PROOFS

arguments for the lower bound of G;; give the desired result.
For the exact banding (k), consider Gy, with k = kg and a = (logp/n)*/?,

then it completes the proof. n

S2.3 Proof of the P-loss Convergence Rates: Theorem 2 and

Theorem 4

Lemma 1-5 are used to prove the main theorems.

Lemma 1. Let Xy,..., X, © N (0,Q0,) with Qo, € Uleo,) defined at

(2.8),

Ny, = <{X,: mjax H\//a\r(XL(j_k);j)” < Cl} ;

3

1/2
Ns, = Xn:maXHVar (X1,(j—k)5) — Var(Xy _py)|| < (Cg(k:—{—log(n\/p))/ ) }7

J

N4n =

Ny, = {X :mjcfoH\//a\r_l(XL(j_k);j)H < Cg},
{Xn : mjaxHVar (X1 G-kyg) — Var H(Xy owy)|| < <C4 (k+log(nVp))/n >1/2} |
where Cy = e (2+ ((k + 1)/n)1/2)2, Cy=4e ' (1—((k+ 1)/n)1/2)—2, C, =

C3C2¢y? and N, = ﬂ?zl Nj,. If k+logp =o0(n) and 1 <k <p—1, then

or any warge constan 3 ere exrists a postiive consian 5 SUC a
f l tant Cs, th 51 1) tant C, h that
POn (Xn c Nrcz) < 6p€ n(1—((k+1)/n)*/2)2/8 +4 % 5k C’3C5e%(log(n\/p)qtk:)7

for all sufficiently large n. Here, C5 does not depend on Cs.



KYOUNGJAE LEE AND JAEYONG LEE

Proof of Lemma 1. We will show that for any large constant Cfs,

< open (52.19)
< ope (- ()RS, (52.20)
< 9% 5ke—030563(k+log(an))7 (52.21)

< 2 x 5Fe~CaCaei(ktlog(nvp) 4 ope-n(1=y/(k+1)/n)*/8 (g9 99)

for some positive constants Cy and C5. The inequalities (52.19) and (52.20)

follow from Lemma B.7 in Lee and Lee (2018). Note that for any large

constant C5 > 0,

]P)On (Xn c N3cn) < p5k+1 (efcgcaeg(k+log(n\/p)) + 67031./20760{n(k+10g(n\/p))}1/2)<82'23)

for all sufficiently large n and some positive constants Cs and C; by Lemma

B.6 in Lee and Lee (2018). If we take C5 = Cg/2, the right hand side (RHS)

of (52.23) is bounded by 2x 5% exp{—C5C5e2(k+log(nVp))} for any constant

C3 > 0 and all sufficiently large n because k + log(n V p) = o(n). Similarly,

Pon (Xn € an)

IN

IA

Py, <mJaX [Var (X1,-1)5) — Var(X1,-uyy)|| > C3teo (04

POn (Xn S szn A NQ”) + IP)On(}in € Ng”)

n

4 Qpefn(lf((’Prl)/n)m)?/8

IA

2 % 5k6—03056(2)(k+10g(an)) + 2p€—n(1—((k+1)/n)1/2)2/8

k +log(n V p)

)")
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for Cy = C302¢,? and all sufficiently large n. Since the inequalities (S2.21)

and (S2.22) also hold, this completes the proof. O

Lemma 2. Consider model X1, ..., X, " N, (0,90,,) with Qo € Uleo, )

defined at (2.8) and )~ °_, v(m) < co. Denote Qi = (I, — A\nk>Tﬁ;k1(]p -
ﬁnk), ZA)nk = dz’ag(&\jk) and ﬁnk = (a§’;)) for 1 < k < p—1, where
(k)

a; ,andag.];):()iflgjglgpor]j—l]>k. 55“

(ag.’j)_k, . ,ag-,j)_l)T

and (@k are defined at (2.6). If k*?(k +log(n V p)) = O(n), then

~Y Y

~ k + log(n V 1/2
Bon [0~ a1, € )] 5 100 | (EEREEEEN) T

n

and if k(k +log(n V p)) = O(n), then

~ k+log(nVp)\ "
B (I~ ol (% € )] 5 | (FEEIEE)

n

Y

where the set N,, is defined at Lemma 1.

Proof of Lemma 2. Let
Ao = (alh)  and Do = diag(do i), (S2.24)

where (agf]?’jfk,...,ag?’jfl)T = ag?, and aé’?l =0ifl1<j< [ <por



KYOUNGJAE LEE AND JAEYONG LEE

|j — 1] > k. Define Qg = (I, — AO,nk>TD0_7711k(Ip — Aonk). Note that

Eon | @k — Qonll (X0 € No)|
< Eon [0 = Qonell [(Xn € No)] + 120, = Do,
T —

< o |47 — ALl 10535l 1y = Aot (X, € N)|
+Eon (1D} = Dyl 11y = AT il 1y = Aol I (X € )|
+ Eon |14k = Ao | 1Dl 11, = ATl 1K € )

) (52.25)
+ Bon |y = ATl 1D = Dyl 1Ak = Aosall (X, € N,)|

o ~
+ Bon | | Do nill 1Ak = A il | Ank = Ao i |11(X € Nn)}

+ Eon |11y = Aol 145 = ATl 1D5} = DghlT(Xs € M)

. - B R
+ Eon, HAnk - Ag,nk” Hanl - ‘DO,711k:|| HAnk - AO,nk‘”I(Xn € NN)}
+ ”QO,nk - QO,nH

by the triangle inequality (See page 223 of Bickel and Levina (2008)). Also

note that

||Ip_A0,nk||oo ]-+ ||A0,nk: _AO,n||oo+ ||A0,n||oo

IN

IA

14 C(EY?y(k) + 1),

H[p - AO,nkHl S 1 + HAO,nk - AO,nHoo + HAO,nH1

IN

1+ Chy(k) + ) y(m),

for some constant C' > 0 by Lemma 10, and ||D0_711k|| < max; || Var ™ (X j_n)4) || <
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€, using the similar argument to (S3.42). If we show that, on (X,, € N,,),

N 1 1/2
1A — Aoilloo < K2 <w) 7 (S2.26)
n
~ k+log(n Vv p)\ "/
”Ank - AO,nkHl 5 k (W) 5 (8227)
~ k4 log(n Vv p)\ "/
1D = Dolloe S (M) : (S2.28)

||QO,nk - QO,nH 5 k3/47(k:) and ||Qﬂ,nk - Q0,n||c><> S k"}/(k‘), the pl"OOf Is com-

pleted by (S52.25).

IA

To show (S2.26), note that

HAnk: - AO,nkHoo
max @ — ag) s
k' max [[al"” — af)]l,
] 9,
—1 —
k2 max HVal" (X1,G=k):G—1)) Cov (X1, (j—k):(—1)» X15)

‘ 2

l{fl/2 { HljaX HVar_l(Xl,(j,k);(j,l)) (COV(XL(J‘,]C);(]',D, le) — COV(le(j,k);(jfl), le))

5"

—Var ™ (X1, (j_r):(j—1)) Cov (X1, (jr):(-1), X15)

‘ 2

——1 _ —
(Var (X1 (j-ky-1) — Var ™ (X -uy:-)) Cov(Xi i1 X15)

+ max’
J
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The first part of the last line can be bounded above by

kY max HVaI“_l(Xl,(j—k):u—l)) (Cov(Xs,G-#ti-1> X15) = Cov(Xy,Grygi1)s le))H2

IN

K2 mae [ Var™ (X1 i) | | Cov (X a1 X5) = Cov (X aygn: X))

< kY max|[Var™ (X )| H\/fa\r(XL(j—k’):j) = Var(Xi,-u)

< 12 (M)m on (X, € N,,).

n
The first inequality holds by the definition of the spectral norm, and the
second inequality holds because the spectral norm of a matrix is larger than

a f5 norm of any columns. The second part can be bounded similarly

—1 —
k' max H(Vaf (X1,G-ry-1)) — Var H(Xy (iry:(-1))) Cov (X (k-1 X1j) ‘2

— 1 Sy
< EY? max H\/ar (X1,G-k):(G-1)) — Varil(XL(j—k)!(j—l))H HVM(XL(F@U)

1 1/2
L1/2 (M) on (X, € N,).
n

AN

By similar arguments, we can show that the inequality (S2.27) holds:

Ak = Aol < e |25 — g mex

< kmax[a” - o]l

1/2

n

To show (52.28), note that

HD;kl_D(IolmHOO < ||D;Icl||00||Da,71Lk||00||an_DO,nkHoo
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~ —1
and || D, oo - [ Dg i lloe < max; [[Var (X1 gyl - €' < Cagg! on (X, €
N,) for Cy > 0 used in set Ny,, by the similar argument to (S3.42). The

rest part is easily bounded above as follows:

||ﬁnk_D0,nk||oo = mjaxlgi\jk_dodkl

IA

max @(le) - Var(le)

J

+ max Cov(Xuj, X1 oky-) @5 ) — Cov(X1j, X1 G-rg—) ab.)

IN

max \//a\r(le) — Var(Xy;)
j

e ‘COV(XU’ X1G-w:G-1)) (ag'k) - aék?> ‘

sJ

+ max <6&(X1jaX1,<j—k)=u—1>) - COV(XuaXl,(j—m:(j—l))) all)

j )]

1 1/2
< (W) on (X, € N,,).

n

Hence, by (52.25), we have shown that
Eon |[Quk — ol [(Xa € No)| S KP4 (w) - 190 — Qo
when k3/2(k + log(n V p)) = O(n), and
Eon [”ﬁnk — Qonk ||l (X, € Nn)} Sk (%W)m + Q006 — Q00|

when k(k +log(nV p)) = O(n). The conditions k*2(k +1log(n V p)) = O(n)

and k(k +log(n Vv p)) = O(n) are required due to the term
Eon | Dy nill 1A% = AT il | Ak = Aol (X € Nn)]

in (S2.25).
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If we show that || Q0.6 — Qonll < k¥4 (k) and || Q0. — Qo.nllee < ky(k),
this completes the proof. By Lemma 10, we have || Agnr—Aonlloo < kY27 (k)

and || Aok — Aonlli S kvy(k). Note that

| Dok — Donllee = max ‘CLS?TVM(XL(J‘—M:U—l))a((f} — ag ;Var(X1,1.-1))ao,;

J
0
((07,a8)") — al ) Var(X 1.-1) ((a(k)) + ao,j) ‘

0,3

= max
j

k
< Ani — Aolloo max (Jlaf a4 llao 2 ) || Var(X,1.-0)||

< EY(k).

Thus, it is easy to show that [|Q,6—Q0.,] < E/4y(k) and [|Q20. 0k —0.0/l00 <
k7 (k) by the triangle inequality in (S2.25). O
Lemma 3. Consider model X1, ..., X, N,(0,9,,) and the k-BC prior.

Assume that Q,, € U(ey,7) defined at (2.8) and Y~ ~v(m) < co. Let
nd; | X,) = 16 (d; | 5 Sy d; < M),
i1 Xa) = 1G (451, 5dn).
22
for 3 = 1,... p, where c/l\]k defined at (2.6). If M > 9e;*, vy = o(n),

k+logp=o(n) and 1 <k <p-—1, then on (X, € N,),

E*@

W(AmDn ’ Xn) - 7T-(dl | Xn) ﬂ-(aj | deXn>7T(dj | Xn)

i
[N}

(S2.29)

z@

5 %(dl | Xn) W(aj | dj7Xn>%<dj | Xn)

i
[\

for all sufficiently large n, where the set N,, is defined at Lemma 1.
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Proof of Lemma 3. We have

G (dj | n;/2, ndy, /2) I(d; < M)

w(d; | X,) = —
’ S G (& 1 ng/2,nd5/2) dd

for j =1,...,p. To show (52.29), it suffices to prove, on (X,, € N,),
—-Pp
min(e, <M1 X,)| < ©
j
for some constant C' > 0. Note that on (X,, € N,,), C;' < d;kl < (5 and

T(d; <M|[X,) = 7(M ' <di'|X,)
~ -1 Nje -1 N5
= F (M =T < a7 - A X,)
_ ~( -1 _ T -1 o
= - (d = Sy < M7 =2 X,).

By page 29 of Boucheron et al. (2013), if X is a sub-gamma random variable

with variance factor v and scale parameter c,
max [P(X > (2vt)'? + ct), P(X < —(2vt)"? —ct)] < e7(S2.30)

for all ¢ > 0. Since a centered Gamma(a,b) random variable is a sub-
gamma random variable with v = a/b* and ¢ = 1/b, applying t = nt’ with
t'= (M —2C1)?/(8M)? < 1 to the inequality (52.30),

a7t = M < <2 P ) - 0 X,)

g ~ n;
ent Z T J

a7t = Byl < M7 - | X,)

n J*

> 7 (d.—l — %Ej—lj < —Ad; ()| Xn>

> 7
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because M > 9¢;' > 20 for all sufficiently large n and vy = o(n). Thus,

for some constant C' > 0, on (X,, € N,,),

Td; <M|X,) > 1—e 9 (S2.31)
and
—-p
min7(d; < M | X,,) < (1—e @M
J

_ (1 . efcn)fecnxp/ecn

< (et — 1
as n — oo for some constant C’ > 0. ]

Lemma 4. Consider the model X1,..., X, < N,(0,9,,) and the k-BC

prior. Assume that €, € U(ey,7y) defined at (2.8) and Yy °_, v(m) < oo.

If M > 9¢;', vo = o(n), k+logp =o(n) and 1 <k < p—1, then

- kol
E (||An—Ank||§o]Xn> < Ck (ﬂ) on (X, € N,)),

n

E”(||An—ﬁnk||f|Xn> < Ck <’“+ﬂ) on (X, € N,,),

n

for some constant C > 0 and all sufficiently large n, where A\nk 18 defined

at Lemma 2.

Proof of Lemma 4. Let E™(- | X,,) denote the expectation with respect to

7(dy | Xp) [Tj—y 7(a; | dj, X,)7(d; | X,,) in Lemma 3. Note that on (X, €
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Ny,
E” (] 4, = Aulls | X,)
< kE" (maxHaj — a3 | Xn>
J
. d;[|———1 n\2—1/2 RN
< kE (mjax# Var (Xl,(jfk):(jflﬁH H(d—) Var (Xl,(j—k):(jfl))(aj_ag‘ )) ) | Xn)
J
kMCy . n\1/2=—1/2 NONE
< P (]| () i) @ -2 1%,
k- n\1/2—1/2 NONIE
S EE (mj«i’lXH(d—) Var (Xl,ufk):(jfn)(aj—aﬁ ))H2 | Xn)
k 2
= HE<m]aXXjk)
by Lemma 3. X?,g is a chi-square random variable with k; = min(j —

1, k) degree of freedom. By the maximal inequality for chi-square random

variables (Example 2.7 in Boucheron et al. (2013)),

E <max X?k) = Kk +E (max x?k — k:j)
J j

< C(k+logp)

for some constant C' > 0. Thus, we have

~ k+lo
B (I, - Al 1 X,) < o (FE0E2)

on (X, € N,), for some constant C' > 0.
Let ac; = (@jq1,- - , Qmin(j+k,p),j) be the nonzero column vector of A,,.
Since the posterior distributions for a.,’s are the independent multivariate

normal distributions with finite variances whose rate is 1/n on (X,, € N,),
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it is easy to show that

-~ k+1
B (I, - Auld 1X,) < ok (S5EL)
n
on (X, € N,), for some constant C' > 0 using similar arguments. O

Lemma 5. Consider the model Xy, ..., X, w Np(O,Qa,}T) and the k-BC

prior. Assume that ., € U(ey,7y) defined at (2.8) and Yy °_ v(m) < oo.
If M > 9¢y*, vy = o(n), k+logp = o(n), 1 <k <p—1and k* = O(nlogp),

then

R 1 1/2
B (107" - Dbl 1X,) < (22} on X, € M)
n

for some constant C' > 0 and all sufficiently large n, where D is defined

at Lemma 2.

Proof of Lemma 5. By Lemma 3, on (X,, € N,),
B (D" = Dl 1 X)) < CE (11D = Dyl | X

for some constant C' > 0. It is easy to show that

n—nj

71
djk

J J

E* (IID;" = Dytll | Xo) < 7 (max a7t =2 IXn) + max

1 7 F 2k
< JlogexpE” (Amax|d! = M| | X, ) + 226
A P n J n
1 ~ —1_M"j 71 2k
< < logE” <maxekdﬂ' Tl | Xn) + ¢,
A j n
1 i R 2k
< flog {p max 7 (" xn)] + 2,
A j n
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for any A > 0, on (X,, € N,,). Let A < na@k/Q Note that the upper bound

for the moment generating function of |d; ! n] m '/n] is

()
~ —1_mj5 -1_"j -1
]ETI’ (e>\|dj P djk | | Xn) — ek‘dj n d]k |Gamma/ ( -1 ‘ djk) dd !
0 2 2
1
njdjk /n ~
/ AL —dy Gamma( -1 |
0

w50 )

IN

2 i)

IN

eknjdjkl/ e—)\d;lGamma( —1 | 2j Zdjk> ddj—l
0
TL]‘/\2
+ exp = =
ndjk(ndjk — 2)\)

~ nj/Q
Ay A”dj’f texp | — nf\/\z .
ndjk + 2\ ndjk(ndjk — 2)\)

The second inequality follow from page 28 of Boucheron et al. (2013). Since

IN

A< nc/i\]k/Q,

o J n;/2 —n;/2
HNd [ Mk = Mny/(ndi) [ 4 20
ndjk + 2 nd]k

2\ Ang/( 2ndjk
S —_—=

ndgk

2)\ ndjx/(2X) A2n; /(n2d )
= I+ —

nd jk
<

nzdgk
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where the first inequality follows from Lemma 7. Thus, on (X,, € N,,),

_ ~ 1 ~ —1_mj o 2k
E (07" = Dl | X0) < 5 log [p R xn)] + =,
j n
1 1 A2n; %
< O§p+xmaxlog [exp( 222]) —l—exp( = n]A >]
J n2dz, nd;i(ndj; — 2\)
2k
+ —C
n
1 2log 2 AN A 2k
< o§p+ (;\g +max< T/L\;—I— = ni )-I——C'g
i\ n?d5,  ndg(nd — 2X) n
logp 2log2 \C3 ACo 2k
< —C.
R W S o e s VR
(logp)l/2
< C
n
for some constant C' > 0 if we choose A < (nlogp)'/2. O
Proof of Theorem 2. Note that
EonE™ (/|2 — Qonll | X2)
< Eou [E™ (|0 — Qonll | X0) I(X,, € N,)] (52.32)
+ Eo, [E™ (]| — Qonll | Xn) I(X, € NS (52.33)

where the set NN, is defined at Lemma 1. The term (S2.33) is bounded
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above by

<

IS

Eon [(ET(20] | X0) + [1R20n]]) 1(Xn € N7)]

Eon [(E™ (11, = AnllillZ, = Aullooll Dy 1 | X) + [1Q0,0]1) 1(Xn € N7)]

s - 2 1/2 (&
{Eon [E°(11, = Auli1T, = Anllc| D 1 X))} Pon(Xa € N2

HQO,nHooIPOn(Xn € Nﬁ)

pﬁ ]P)On(Xn S N;)l/Q + HQO,RHOO]POH(XH € Ni)

(p/{ + C) (6pefn(1f((k+l)/n)1/2)2/8 +4 % SkeCgC’56(2)(k+log(an))>1/2

-1

n

for all sufficiently large n and some positive constants x, C3 and C;. The

fourth inequality follows from Lemmas 1 and 8. The third inequality holds

because

IA

IA

IN

IA

IN

2
E" (11, = AullullTy = Aulloe | D] X))

2
B0 max [, = A Py - [ D7 s | X,

=]

4p

lE (0 S %))
Jsl J
:ZE”<dj‘1 | Xn> +IE”< Zaﬂ Zd X )]
J
:pmJaXIE” (alj’1 | Xn) +p° Eﬂ(%%( a?ldj’,1 \ Xn>]

i ) 2
plrrlaLXIEYr (dj_l | Xn> + p® m;/x}l(E” (a?ld;l | Xn>]

pmax—d +p° ma:;c (( § ))2 + M[(”Var(Xl,(j—k):(j—l)))_1](l—j+k+1,l—j+k+1))

o~ 2
'I’L]/ d_l
7'k
n

Y
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whose expectation is bounded above by p¢ for some constant ¢ > 0 by
Lemma 6 and its proof, where the fifth and sixth inequalities follow from
Lemma 3.

We decompose the term (52.32) as follows:
Eon [E™ (€20 — Qonll | X0) I(Xp € Ni)]
< Eon [E" (119, = Qull 1 X0) (X, € N,)| (32.34)
+ Ky, [Hﬁnk — QllI(X, € Nn)} , (52.35)
where an is defined at Lemma 2. By Lemma 2, the upper bound for (S2.35)
is Ck34[((k+1log(nVp))/n)"?+~(k)] for some constant C' > 0 because we

assume that k%2(k + log(n V p)) = O(n). Note that the term (S2.34) can

be decomposed as (S2.25) and

1L — Al < 1L, — Aosrlls + || Ak — Aol

IN

/{%—log(n\/p))l/2
n )

1+ i v(m) + Cky(k) + Ck (

-~

17, = Auklloe < 1y = Apyurlloo + 1Ak = Ao nelloc

/’{;—i-log(’lz\/go))l/2
n Y

IN

1+7(1) + CkY2y(k) + CEY/? (

17, = Aull < 11y = Aggurl] + ([ Ani = Ao

k+log(n\/p)>1/2
n

< 14 ) y(m) + CkY (k) + CEY* (
m=1

and ||l37;kl]| < Cy on (X, € N,) for some constant C' > 0. By Lemma

4 and Lemma 5, it is easy to show that the upper bound for (52.34) is
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CEY2((k + log(n V p))/n)Y/? for some constant C' > 0 because we assume

that £%2(k + log(n V p)) = O(n). O

Proof of Theorem 4. We can use the same arguments used in the proof of

Theorem 2. It suffices to prove that
1, = Aukl S K72 on (X, € ).

It trivially holds because we assume that k(k + log(n V p)) = O(n). O

S2.4 Proof of Corollary 1

Lemma 6 is used to prove Corollary 1.

Lemma 6. Consider the model X1, ..., X, ~ N, (0,9,,) and Qg € U(eo, )

defined at (2.8). If k = o(n), then for given positive integer m,

-~

Eon(dy") < (k+1)""

Eo, (@)™ S (k+ 1),

where c/l;k and ay;) be defined at (2.6).

Proof. Note that

-~

~-m ——1 m
Eon(dy") < EoullVar  (Xi,—k),)l
— 1 m
S ]E()n [t?“ (Var (Xl,(j—k):j>>]

k+1

(k+1)"™> Eon [@_I(Xuj—k):j)(l)]

=1

IN



KYOUNGJAE LEE AND JAEYONG LEE

where for any p x p matrix A, Ay is the (4,7) component of A. Also
note that [\//a}_l(XL(j_k);j)](l) is a inverse-gamma distribution IG((n —
k)/2,n[Var— (X1 j—r)j)]@)/2) because diagonal elements of a inverse-Wishart
matrix are inverse-gamma random variables (Huang and Wand, 2013).

Since o, € U(eo, ),

-1 m

. 1 m mtl negy

(k+1) ;Em [Var (Xl,ufk):j)(l)] < (k+1) (m>
5 (l{? + 1)m+1.

Similarly,

Eon(@d)") < Bon [IVar  (Xu,-we) " IVar(Xs o)™
< Eon { [““ (ﬁfl(XL(j—k):j))}m [tr (Va\r(Xl,(j—k):j))]m}

< {EOn [tr (@1(X17(j_k):j)>}2m Eop, [tr <@(Xl,(j—k)5j)>i|2m}l/2

< (k,_'_1>2m+1

because diagonal elements of a Wishart matrix are gamma random variables
(Rao, 2009), i.e. [Var(Xy j—w);)@ ~ Gamma(n/2, n[Var(le(j_k):j)](_l)l/Q).

[]

Proof of Corollary 1. Since

EOnHﬁfﬂg - QO,nH < EOn”Eﬂ(Qn | Xn) - QO,nH + EUnHEﬂ(Qn | Xn) - ﬁﬁl&”

< EOnEW(HQn - Q0,n|| | Xn) + EOnHEﬂ(Qn | Xn) - ﬁlekLHa



S2. PROOFS

it suffices to prove

~ Ck?
E0n||E7r(Qn | Xn) - Qszlfnoo < T
k+log(nVp)\ ">
< K (—Oi(” p)) + (k)

for some constant C' > 0 because of the assumption k(k+log(nVp)) = O(n).

Let ©,, = (w;;) and QLL — (@5F), then for i < j <i+k,

IEOH\IE wij | X)) — G-

l]

< Eon |E™(d;  aji | X,) — dj—,jAﬂ (S2.36)
i+k
+ Y EOH‘ (d gy | Xo) — —dl‘klA Ma®l (s2.37)
I=j+1
by (S2.4). The (S2.36) term can be decomposed by
Koy, (E“(d;laﬁ|xn) %dj_klAﬂ>I(X e N, (S2.38)
+ Eon (E’T(d;laﬂ 1X,) — djk“ﬂ ) I(X, € NO)|.  (52.39)

To deal with the above terms, we need to compute the expectation of
truncated distributions. When Y is a truncated gamma distribution ¥ ~

Gamma®" (o, B,¢; <Y < ¢y), the expectation of YV is

a fccf Gamma(y | a + 1, 8)dy
5 Cammaly| . By

EY =

(Coffey and Muller, 2000). Thus, one can show that (52.38) is bounded
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above by
M —1 N, 1
Gammal(d; " | 5 + 1, 5d;i.)dd;
Eo, |Ldal® Jy 7 “, |1 . ) 1) I(X, € N,)
n Jo Gamma(d;* | 5,5 Jk)dd
S 010226_0”'

for all sufficiently large n and some positive constant ¢ by the same argument

with (52.31). On the other hand, (52.39) is bounded above by

1/2
C |Eon(d;2(@5)%)| " Pon(X, € NE)

< (k4 1)7Py, (X, € N°)

1
< =
n2

for some constant C' > 0 and all sufficiently large n by Lemma 1, Lemma 6
and the choice of large C5 in the set N,,.

The (S2.37) can be decomposed by

i+k

Z EOn

I=j+1
i+k

Z ]E’OTL

I=j+1

( (d  aary | X,) — dlklA’f>A )J(X e N,)

(52.40)

(B ey | X0) = "3, 300l ) 1(X, € N)

(S2.41)
Note that in (S2.40),

]E”(d;lalialj | Xn) = ]E”(dflE”(al,;alj | dl,Xn) | Xn)
= E7(d"E(ay | dy, X,)E™ (@ | di, X,) | X)

+ E™(d; 'Cov™(ay, aj | di, X,) | X))
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If we prove that S0*%  Eon|E™(d  Cov™(a, ay; | di, X)) | Xo)I(X, €

l=j+1

N,)| < k/n, (52.40) is bounded above by Ck/n for some constant C' > 0

by the similar arguments used in (S2.38). It is easy to show that

i+k

> Eon |E7(d; Cov™ (a, ayjldi, X) | X)) (X, € N,
I=j+1

i+k

> Eon { (dl1‘C0V”(ali,alj]dl,Xn)’ ‘ Xn> (X, € Nn)]
l=j+1

i+k

S Eon (E“ (d;l [Var™ (ay;|dy, X)) Var™ (ay|di, X,.)] Y
I=j+1

k

n

IA

IA

Xn> I(X, € Nn))

AN

Similar to (52.39), (S2.41) is bounded above by C/n? for some constant

C > 0. Thus, we have shown

" k
Eon |E™(wij | Xn) —05"| S =

for any i < j < i+ k. Since wy = d;' + Z;Jjﬂ d'a? for i < p and

g1
Wpp —dp ,

~ k
Eon |E™ (R | X5) = Q| S =
n
can be shown easily for 1 <14 < p by similar arguments. Thus, it implies

s Fay k2
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S3 Auxiliary results

Lemma 7. For any x,n > 0,

T\ ntz/2
e’ < <1+—> .
n

The proof can be obtained by a simple algebra.

Lemma 8. If we assume that Qy,, € Ul(ey,7) (defined at (2.8)) andy ;- v(k) <

oo, then
”QO,nHoo < C

for some C' > 0 not depending on p.

Proof. Let Qo = (I, — Ao)" Dy, (1, — Aon) be the modified Cholesky

decomposition of €. Since ||Qonlle < |1, — Ao

1||D&TIL||OO||IP - AO,nHoo

and

1y = Aomllee <14 [[Aonllec <1+ (1),

1Dgalloe = maxdy

-2

ot (71)
J

2
< max Apin (Var<X1,1:j))_1 = max Hvarfl(szj)H <6l

J j
(53.42)

we only need to prove ||Ap,|1 < C for some C' > 0. By the definition of
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U(eo, ), it is easy to show |ag ;| < (i — j) for all ¢ > j. Thus,
p
[Aonli = max Y |agl
TS
p
< max 11—
< max y y(i- )

i=j+1
(o]

< Z”y(m) < 00.

Lemma 9. For any positive integers py and ps, let Aj1, A1s and Asg be a

P1 X P1,P1 X P2 and pa X py matriz,

A Ap
[Arz]| < ,
Afy Az
where || - || is the matriz Ly norm.
Proof. Note
A Ap A Ap
= sup x
=1
AI{Z A22 llll2 A{Q A22
2
—  sup <A119U1+A12$2)
lzllo=1 || \A22x2 + Alyz1 /) ||,
Aoy
> s (4 > sup [ Auall = |Au
l[z2[[2=1 2222/ |l2 llz2ll2=1

where z = (21, 2])" and z; € RP*, 25 € RP2. This completes the proof. [J
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Lemma 10. If we assume that Q,, € U(ep,y), which is defined at (2.8),

then

HAO,nk_AO,nHoo S Ck1/27<k)7

||A0,nk - AO,n”l

IA

Chy(k)
for some C' > 0, where Ag i is defined at (S2.24).

Proof of Lemma 10. We only consider k < j — 1 case because Ay ,x = Ao

trivially holds when k& > 7 — 1. Note first that

HAO,nk: - AO,nHoo < HAO,nk - Bk(AO,n>Hoo + HBk(AO,n) - AO,nHoo'

The second term is bounded above by ~(k) by the definition of U(ep, ).

Denote

Vaf_l(X1,1:(j—1)) = 7 o,

S
COV<X1,1:(j—1)7X1j) = (213)7
2j

where (217 ;isa (j —k—1) x (j —k — 1) matrix, Qg ; is a k X k matrix and
Yo; = Cov(Xi,(j_k):(j—1); X1;) is a k-dimensional vector. Since max; |lag; —

By_1,(ap;)|1 <~(k) by assumption, it directly implies

m]E‘LX ||Qll,j21j + 9127]‘22]“1 S ’}/(k) (8343)



S3. AUXILIARY RESULTS

Also note that Var_l(le(j,k):(j,l)) = Qg —le,jﬂl_ﬁleg,j by the inversion
of partitioned matrix. With this fact, we have the following upper bound
fOI' HAO,nk - Bk<A0,n)HOO7
k
| Aok = Bi(Aoa)lloe = max [lagy — By j(an;)]l
= max 101,551 + Q1,207 Q12,;595) |h

= max 1921525 (Q11,,51; + Q25525 |1

IN

max 190,30 11101 5505 + Q12,5510

IN

max 21 Q01 0 11,5 15 + Q25505

IN

mex 2 Qo g 19051 - (k)
< 62k ?y(E).

172|| A|| for any p; X p, matrix

The second inequality holds because [|A||; < p;
A (Horn and Johnson, 1990). The third inequality follows from the Cauchy-
Schwarz inequality and (S3.43). The last inequality holds because || ;|| <
[Var (X 1.-1)]| = Amin(Var(Xi1.6-1)) " < Auin(Qon) ™t < €' and
1051 = Aunin (Q11,5) ™" < A (Var ™ (X11:6-1))) ™ = Amax(Var(Xy15-1))) <
Amax(Qo.n) < €' by Lemma 9 and Qy,, € U(eo, 7). It proves the first part

of Lemma 10.

To show the second argument of Lemma 10, note that

| Aok — Aonlli < || Aomk — Br(Aon)ll1 + || Be(Aon) — Aonllr-
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The first term is bounded above by

| Aok = Bi(Aom)ll < kmax [lag — Bi1,j(a0,) lmes

IN

kmax oy — Bi1,1(ao)]

=k max 19215075 (1,515 + 2,;595) |2

IN

k max 19215007 11101,5515 + Q2 B0l

IA

e 2k (k)

by the similar arguments used in the previous paragraph. Also note that

P
IBe(Aon) = Aonlli = D laol

i=j+k

P J
< DD laoyl
i=jtk j'=1
p
> A=)
i=j+k
oo

> A(m).

m=k

IN

IN

If we assume the polynomially decreasing v(k) = Ck~*, wehave Y °_ v(m) <
C'k~y(k) for some constant C’ > 0. If we assume the exact band or exponen-
tially decreasing v(k) = CeP*, it is easy to show that > >, y(m) < C'y(k)

for some constant ¢’ > 0. Thus, ||Aonx — Aonll1 is bounded above by

C"k~y(k) for some constant C” > 0. O
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