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S1. Proofs

Proof of Lemma 1. By Assumption 3 we have,

√
T (Ŝτ −Dτ ) = Op(1), for all τ ∈ T ∪ {0},

where D0 = Ip. This instantly implies the equivalent result for the sym-

metrized autocovariance matrices R̂τ ,

√
T (R̂τ −Dτ ) = Op(1), for all τ ∈ T .

Let vect be the row-vectorization operator that takes the row vectors of a

matrix and stacks them into a long column. That is, vect(X) ∈ Rmn for

any X ∈ Rm×n and vect(AXB) = (A⊗B)vect(X) for any A ∈ Rs×m,X ∈
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Rm×n,B ∈ Rn×t. By linearizing and row-vectorizing the definition 0 =

√
T (Ŝ

−1/2
0 Ŝ0Ŝ

−1/2
0 − Ip) and using Slutsky’s theorem, we obtain,

B̂
√
Tvect(Ŝ

−1/2
0 − Ip) = −

√
Tvect(Ŝ0 − Ip) + op(1),

where B̂ = Ip⊗Ŝ0Ŝ
−1/2
0 +Ip⊗Ip. As B̂→p 2Ip2 , its inverse is asymptotically

well-defined, allowing us to multiply the relation from the left by B̂−1, after

which Slutsky’s theorem and Assumption 3 yield that
√
T (Ŝ

−1/2
0 − Ip) =

Op(1).

Linearize next as,

√
T (Ĥτ −Dτ ) =

√
T (Ŝ

−1/2
0 − Ip)R̂τ Ŝ

−1/2
0 +

√
T (R̂τ −Dτ )Ŝ

−1/2
0

+ Dτ

√
T (Ŝ

−1/2
0 − Ip),

(S1.1)

where the right-hand side is by the previous convergence results expressible

as
√
T (R̂τ −Dτ ) +Op(1). The first claim now follows after the division by

√
T and the addition of Dτ on both sides.

For the second claim we observe only the lower right p0 × p0 corner

block Ĥτ00 and write,

Ĥτ00 = T̂
>
1 R̂τ,−0T̂1+T̂

>
1 R̂τ,offT̂2 + T̂

>
2 R̂

>
τ,offT̂1 + T̂

>
2 R̂τ00T̂2, (S1.2)

where (T̂>1 , T̂
>
2 )>, T̂1 ∈ R(p−p0)×p0 , T̂2 ∈ Rp0×p0 denotes the final p × p0
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column block of Ŝ
−1/2
0 and R̂τ has been partitioned correspondingly as

R̂τ =

R̂τ,−0 R̂τ,off

R̂
>
τ,off R̂τ00

 .

These matrices satisfy T̂1 = Op(1/
√
T ), T̂2 − Ip0 = Op(1/

√
T ), R̂τ,off =

Op(1/
√
T ) and R̂τ00 = Op(1/

√
T ) and we can write (S1.2) as

Ĥτ00 = T̂
>
1 R̂τ,−0T̂1+T̂

>
1 R̂τ,off(T̂2 − Ip0) + T̂

>
1 R̂τ,off

+ (T̂2 − Ip0)
>R̂

>
τ,offT̂1 + R̂

>
τ,offT̂1 + (T̂2 − Ip0)

>R̂τ00(T̂2 − Ip0)

+ R̂τ00(T̂2 − Ip0) + (T̂2 − Ip0)
>R̂τ00 + R̂τ00

= R̂τ00 +Op(1/T ),

concluding the proof.

Proof of Lemma 2. The SOBI-solution is found as Û>Ŝ
−1/2
0 where the or-

thogonal matrix Û is the maximizer of

ĝ(U) =
∑
τ∈T

∥∥∥diag
(
U>ĤτU

)∥∥∥2

. (S1.3)

Let Û be a sequence of maximizers of (S1.3) and partition Û in the blocks

Ûij in a similar way as in the problem statement (ignoring the sequence of

permutations P̂ for now). The proof of the lemma is divided into two parts.

First, we establish the consistency of the off-diagonal blocks, Ûij →p 0,

and, second, we show the rate of convergence,
√
T Ûij = Op(1). That
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the diagonal blocks Ûii are stochastically bounded follows simply from the

compactness of the space of orthogonal matrices.

1. Consistency

Our aim to is to use a technique similar to the M -estimator consistency

argument (Van der Vaart, 1998, Theorem 5.7), for which we need the Fisher

consistency of the off-diagonal blocks, along with the uniform convergence

of the sample objective function to the population objective function with

respect to U. By Fisher consistency we mean that all maximizers U of the

population objective function,

g(U) =
∑
τ∈T

∥∥diag
(
U>HτU

)∥∥2
,

where Hτ = S
−1/2
0 RτS

−1/2
0 , can have their columns ordered to satisfy Uij =

0 for all i 6= j.

Recall the partitioning of the latent components in Section 3 into groups

of sizes p1, . . . , pv, p0 and denote the autocovariance of the jth group for lag

τ by λτj. The population autocovariance matrices satisfy,

S0 = Ip and Hτ = Rτ = Sτ = Dτ ,

where Dτ = diag(λτ1Ip1 , . . . , λτvIpv ,0) ∈ Rp×p are diagonal matrices, τ ∈
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T . The population objective function has the upper bound,

g(U) =
∑
τ∈T

∥∥diag
(
U>DτU

)∥∥2 ≤
∑
τ∈T

∥∥U>DτU
∥∥2

=
∑
τ∈T

v∑
j=1

λ2
τjpj, (S1.4)

with equality if and only if U>DτU, τ ∈ T are diagonal matrices, i.e. U

is an eigenvector matrix of all Dτ , τ ∈ T . One such matrix is U = Ip and

the maximal value of g(U) is thus indeed
∑

τ∈T
∑v

j=1 λ
2
τjpj.

We next show that a both sufficient and necessary condition for W to

be a maximizer of g is that W has, up to the ordering of its columns, the

form

W =



W11 0 · · · 0

0
. . . . . .

...

...
. . . Wvv 0

0 · · · 0 W00


, (S1.5)

where the partition into blocks is as in the statement of the lemma and the

diagonal blocks W00,W11, . . . ,Wvv are orthogonal.

We start with a the “necessary”-part. Let W be an arbitrary maxi-

mizer of g and take its first column w = (w>1 , . . . ,w
>
v ,w

>
0 )>, partitioned in

subvectors of lengths p1, . . . , pv, p0. As equality is reached in the inequality

(S1.4) only when U is an eigenvector of all Dτ , we have that Dτw = πτw
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for some πτ ∈ R for all τ ∈ T . It then holds for all τ that,

0 = (Dτ −πτIp)w =



(λτ1 − πτ )Ip1 0 · · · 0

0
. . . . . .

...

...
. . . (λτv − πτ )Ipv 0

0 · · · 0 −πτIp0





w1

...

wv

w0


,

which yields the equation group,

0 =



(λτ1 − πτ )w1

...

(λτv − πτ )wv

−πτw0


.

We next proceed by proof through contradiction. Assume that two distinct

subvectors of w, say wk and w`, both contain a non-zero element. Then

λτk = πτ and λτ` = πτ , ∀τ ∈ T , (S1.6)

and we recall that λτ0 = 0 for all τ ∈ T . The identities (S1.6) imply that

λτk = λτ` for all τ ∈ T , i.e., that the kth and `th blocks have perfectly

matching autocovariance structures. If k 6= 0 and ` 6= 0, this is a con-

tradiction as the blocks were defined such that two distinct blocks always

correspond to differing autocovariance structures. Moreover, if either k = 0

or ` = 0, then λτk = λτ` = 0 and we have found a signal (block) that has all

autocovariances zero, contradicting Assumption 1. Consequently, exactly
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one subvector of w is non-zero. As the choice of w within W was arbitrary,

the result holds for all columns of W.

We next show that exactly pj columns of W have non-zero jth subvec-

tor, j = 0, 1, . . . , v. Again the proof is by contradiction. Pick an arbitrary

j = 0, 1, . . . , v and assume that more than pj columns of W are such that

their non-zero part lies in the jth subvector. Then these subvectors form

a collection of more than pj linearly independent vectors of length pj (the

linear independence follows as W is invertible and as each of its columns

has non-zero elements in exactly one of the subvectors). This is a contra-

diction as no sets of linearly independent vectors with cardinality greater

than n exist in Rn. Thus at most pj columns of W have non-zero jth

subvector. Since the choice of j was arbitrary, the conclusion holds for all

j = 0, 1, . . . , v and we conclude that the size of the jth block must be ex-

actly pj. Ordering the columns now suitably shows that W must have the

form (S1.5), proving the first part of the argument.

To see the sufficiency of the block diagonal form (S1.5) we first notice

that any matrix W that can be column-permuted so that WP is of the
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form (S1.5) satisfies DτWP = WPDτ , τ ∈ T . Thus,

g(W) =
∑
τ∈T

∥∥diag
(
W>DτW

)∥∥2

=
∑
τ∈T

∥∥diag
(
PP>W>DτWPP>

)∥∥2

=
∑
τ∈T

∥∥diag
(
PDτP

>)∥∥2

=
∑
τ∈T

v∑
j=1

λ2
τjpj,

and we see that any W that is column-permutable to the form (S1.5)

achieves the maximum. The sufficiency in conjunction with the necessity

now equals the Fisher consistency of the population level problem.

We next move to the sample properties of the sequence of SOBI-solutions

Û and show the consistency of its “off-diagonal blocks”. That is, we prove

that any sequence of maximizers Û of ĝ can be permuted such that the

off-diagonal blocks satisfy Ûij →p 0.

Let the set of all p × p orthogonal matrices be denoted by Up. To

temporarily get rid of the unidentifiability of the ordering of the columns,

we work in a specific subset of Up.

U0 = {U = (u1, . . . ,up) ∈ Up | n>u2
1 ≥ · · · ≥ n>u2

p},

where u2 ∈ Rp is the vector of element-wise squares of u ∈ Rp and n =

(p, p− 1, . . . , 1)>. All orthogonal matrices U ∈ Up may have their columns
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permuted such that the permuted matrix belongs to U0. In case of ties in

the condition defining U0, we arbitrarily choose one of the permutations.

Let then Û be an arbitrary sequence of maximizers of ĝ, every term of

which we assume, without loss of generality, to be a member of U0.

We first note that the uniform convergence of the sample objective

function to the population objective function,

sup
U∈U0

|ĝ(U)− g(U)| →p 0, (S1.7)

can be seen to hold as in the proof of (Miettinen et al., 2016, Theorem 1).

Let the set of all U ∈ Up of the form (S1.5) be denoted by UP and

define the set of all population level SOBI-solutions in U0 as

US = {U ∈ U0 | g(U) ≥ g(V), for all V ∈ U0}.

We now claim that the set U0 is constructed such that we have US ⊂ UP .

To see this, we prove the contrapositive claim that U \UP ⊂ U \US. Take an

arbitrary U ∈ U \UP . If U is not a maximizer of g, then clearly U ∈ U \US

and we are done. If instead U is a maximizer of g, then it must have two

columns uk,u` such that k < ` and uk belongs to the ith column block

and u` belongs to the jth column block with i > j (the two columns are

in wrong order with respect to UP ). However, then n>u2
k ≤ p−

∑i−1
k=1 pk <

p−
∑j

k=1 pk + 1 ≤ n>u2
` and U /∈ U0, implying that again U ∈ U \ US. Us
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having exhausted all cases, any U ∈ US is thus also a member of UP and

has Uij = 0 for all i 6= j where the partitioning is as in the statement of

the lemma.

We prove the consistency via showing that the sequence of solutions Û

gets arbitrarily close to the solution set US in the sense that,

P( inf
V∈US

‖Û−V‖2 > ε)→ 0, ∀ε > 0.

To see this, fix ε > 0 and define the ε-neighbourhood of US in U0 as

USε = {U ∈ U0 | inf
V∈US

‖U−V‖2 ≤ ε}.

Then

P( inf
V∈US

‖Û−V‖2 > ε) = P(Û ∈ U0 \ USε).

As all maximizers of g in U0 lie in US, there exists δ = δ(ε) > 0 strictly

positive such that for all V ∈ U0 \ USε we have g(V) < g(US) − δ where

US is an arbitrary element of US. This gives us,

P( inf
V∈US

‖Û−V‖2 > ε) ≤ P(g(US)− g(Û) > δ).

By the definition of Û as a maximizer of ĝ, we have ĝ(Û) ≥ ĝ(US) and can
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construct the sequence of inequalities,

0 ≤ g(US)− g(Û)

≤ ĝ(Û)− g(Û) + g(US)− ĝ(US)

≤ 2 sup
U∈U0

|ĝ(U)− g(U)| ,

where invoking (S1.7) shows that g(US)− g(Û)→p 0. Consequently,

P( inf
V∈US

‖Û−V‖2 > ε) ≤ P(g(US)− g(Û) > δ)→ 0,

and we have that infV∈US ‖Û −V‖2 = op(1). Writing this block-wise and

remembering that all elements of US ⊂ UP have off-diagonal blocks equal

to zero, we get,

inf
V∈US

‖Û−V‖2 = inf
V∈US

(
v∑
i=0

‖Ûii −Vii‖2 +
∑
i 6=j

‖Ûij‖2

)
≥
∑
i 6=j

‖Ûij‖2,

implying that all off-diagonal blocks of Û satisfy ‖Ûij‖ = op(1). Conse-

quently, for every arbitrary sequence of solutions Û, there exists a sequence

of permutation matrices P̂ (chosen so that ÛP̂ ∈ U0) such that the off-

diagonal blocks of ÛP̂ converge in probability to zero.

2. Convergence rate

We next establish that the off-diagonal blocks of any sequence of so-

lutions Û ∈ U0 converge at the rate of root-T . The claimed result then

follows for an arbitrary sequence of solutions Û by choosing the sequence
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of permutations P̂ such that ÛP̂ ∈ U0.

By (Miettinen et al., 2016, Definition 2), the estimating equations of

the SOBI-solution Û = (û1, . . . , ûp) are,

u>k
∑
τ∈T

Ĥτ û`u
>
` Ĥτ û` = u>`

∑
τ∈T

Ĥτ ûku
>
k Ĥτ ûk, ∀k, ` = 1, . . . , p, (S1.8)

along with the orthogonality constraint U>U = Ip. The set of estimating

equations (S1.8) can be written in matrix form as,∑
τ∈T

Û>ĤτÛdiag(Û>ĤτÛ) =
∑
τ∈T

diag(Û>ĤτÛ)Û>ĤτÛ,

which is equivalent to claiming that the matrix Ŷ =
∑

τ∈T Û>ĤτÛdiag(Û>ĤτÛ)

is symmetric, Ŷ = Ŷ>.

We next take Ŷ, multiply it by
√
T and expand as Ĥτ = Ĥτ −Dτ +Dτ

to obtain,

√
T Ŷ =

∑
τ∈T

Û>
√
T (Ĥτ −Dτ )Ûdiag(Û>ĤτÛ)

+
∑
τ∈T

Û>DτÛdiag(Û>
√
T (Ĥτ −Dτ )Û)

+
√
T
∑
τ∈T

Û>DτÛdiag(Û>DτÛ).

(S1.9)

As Û = Op(1) by its orthogonality and
√
T (Ĥτ−Dτ ) = Op(1) by Lemma 1,

the first two terms on the right-hand side of (S1.9) are bounded in proba-

bility and we may lump them under a single Op(1)-symbol,

√
T Ŷ =

√
T
∑
τ∈T

Û>DτÛdiag(Û>DτÛ) +Op(1). (S1.10)
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Inspect next the term D̂τ = diag(Û>DτÛ). Performing the matrix multi-

plication block-wise we get as the (i, j)th block of Û>DτÛ,

(Û>DτÛ)ij =
v∑
k=0

λτkÛ
>
kiÛkj.

As Û>ij →p 0 and Û>iiÛii →p Ipi (the latter follows from the orthogonality

of Û and the consistency of its off-diagonal blocks), we have,

(Û>DτÛ)ij = δijλτiIpi + op(1),

where δ·· is the Kronecker delta. Consequently,

D̂τ = diag(Û>DτÛ) = Dτ + op(1).

Denote by Ûi,−j ∈ R(p−pj)×pi the ith column block of Û with the jth

block removed, by Dτ,−j ∈ R(p−pj)×(p−pj) the result of removing the jth

column and row blocks of Dτ and by D̂τj →p λτjIpj the jth pj×pj diagonal

block of D̂τ . Our main claim is equivalent to requiring that,

Ûj,−j = Op
(

1√
T

)
, for all j = 0, . . . , v.

To show this, fix next j and take the (i, j)th block of the matrix
√
T Ŷ

where i 6= j is arbitrary and separate the jth term in the block-wise matrix

multiplication of (S1.10) to obtain,

√
T Ŷij =

√
T
∑
τ∈T

Û
>
i,−jDτ,−jÛj,−jD̂τj +

√
T
∑
τ∈T

λτjÛ
>
jiÛjjD̂τj +Op(1).

(S1.11)
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Opening up the (i, j)th block (still with distinct i, j) of the orthogonality

constraint Û>Û = Ip and again separating the jth term lets us write,

Û
>
jiÛjj = −Û

>
i,−jÛj,−j.

Plugging this in to (S1.11) gives us,

√
T Ŷij =

√
T
∑
τ∈T

Û
>
i,−jDτ,−jÛj,−jD̂τj −

√
T
∑
τ∈T

λτjÛ
>
i,−jÛj,−jD̂τj +Op(1).

(S1.12)

Next we invoke the symmetry form,
√
T Ŷ =

√
T Ŷ>, of the estimating equa-

tions (S1.8). In block form the equations claim that
√
T Ŷij =

√
T (Ŷji)

>.

Performing now the expansion equivalent to (S1.12) also for
√
T (Ŷji)

>

(again separating the jth block in the summation) and plugging in the

expansions into the symmetry relation, we obtain,

Op(1) =
√
T
∑
τ∈T

Û
>
i,−jDτ,−jÛj,−jD̂τj −

√
T
∑
τ∈T

λτjÛ
>
i,−jÛj,−jD̂τj

−
√
T
∑
τ∈T

D̂τiÛ
>
i,−jDτ,−jÛj,−j +

√
T
∑
τ∈T

λτjD̂τiÛ
>
i,−jÛj,−j.

(S1.13)

We then pre-multiply (S1.13) by Ûi,−j = Op(1) and sum the result over the

index i ∈ {0, . . . , v} \ {j}. Denoting Âi = Ûi,−j this gives us,

Op(1) =
√
T
∑
τ∈T

∑
i 6=j

ÂiÂ
>
i Dτ,−jÂjD̂τj −

√
T
∑
τ∈T

∑
i 6=j

λτjÂiÂ
>
i ÂjD̂τj

−
√
T
∑
τ∈T

∑
i 6=j

ÂiD̂τiÂ
>
i Dτ,−jÂj +

√
T
∑
τ∈T

∑
i 6=j

λτjÂiD̂τiÂ
>
i Âj.

(S1.14)
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We next row-vectorize (S1.14) to obtain us,

Op(1) =
∑
τ∈T

∑
i 6=j

[
ÂiÂ

>
i Dτ,−j ⊗ D̂τj − λτjÂiÂ

>
i ⊗ D̂τj

− ÂiD̂τiÂ
>
i Dτ,−j ⊗ Ipj + λτjÂiD̂τiÂ

>
i ⊗ Ipj

]√
Tvect(Âj).

(S1.15)

By the consistency of the off-diagonal blocks of Û, we have Ûij →p 0 for all

i 6= j and ÛiiÛ
>
ii →p Ipi for all i. Consequently, we have the following con-

vergences in probability,
∑

i 6=j ÂiÂ
>
i →p Ip−pj ,

∑
i 6=j ÂiD̂τiÂ

>
i →p Dτ,−j

and D̂τj →p λτjIpj . Calling next the matrix in the square brackets on the

right-hand side of (S1.15) by Ĉ ∈ R(p−pj)pj×(p−pj)pj , the convergences imply

that,

Ĉ→p C =
∑
τ∈T

[
λτjDτ,−j ⊗ Ipj − λ2

τjI(p−pj)pj −D2
τ,−j ⊗ Ipj + λτjDτ,−j ⊗ Ipj

]
.

(S1.16)

The matrix C in(S1.16) is a diagonal matrix and its diagonal is divided into

v segments of lengths pipj, i ∈ {0, . . . , v}\{j}. Each segment matches with

the vectorization of the corresponding block Ûij in the vectorized matrix

vect(Âj) = vect(Ûj,−j). All elements of the ith segment of the diagonal of

C are equal to,

∑
τ∈T

(
λτjλτi − λ2

τj − λ2
τi + λτjλτi

)
= −

∑
τ∈T

(λτi − λτj)2 < 0,
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where the inequality follows from our definition of the blocks such that

they differ in their autocovariances for at least one lag τ ∈ T . Thus the

matrix C is invertible and we may pre-multiply (S1.15) by Ĉ−1 which is

asymptotically well-defined. By Slutsky’s theorem (for random matrices)

we obtain,

√
Tvect(Âj) = Ĉ

−1
Op(1) = Op(1). (S1.17)

As the choice of the column block j was arbitrary, the result (S1.17) holds

for all Âj = Ûj,−j, concluding the proof of Lemma 2.

Proof of Corollary 1. The jth diagonal block of the orthogonality constraint

Û>Û = Ip reads, ∑
k 6=j

Û
>
kjÛkj = Ipj − Û

>
jjÛjj,

where the left-hand side is by Lemma 2 of order Op(1/T ), giving the first

claim. The second one follows in a similar way by starting with ÛÛ> = Ip

instead.

Proof of Lemma 3. Recall the definition of m̂q as,

m̂q =
1

|T |r2

∑
τ∈T

‖Ŵ
>
q ĤτŴq‖2,

where Ŵq contains the columns of the SOBI-solution that correspond to

the smallest q sums of squared pseudo-eigenvalues
∑

τ∈T diag(Û>ĤτÛ)2.
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By Lemma 2, Û>ĤτÛ = P̂Ũ>ĤτŨP̂> where Ũ is the block-diagonal

matrix on the right-hand side of Lemma 2. We derive an asymptotic ex-

pression for the ith diagonal block Êτii of the matrices Êτ = Ũ>ĤτŨ. By

Lemmas 1, 2, Corollary 1 and Assumption 3,

Êτii =
v∑
s=0

v∑
t=0

Û>siĤτstÛti

=
∑
s 6=t

Û>siĤτstÛti +
v∑
s=0

Û>si(Ĥτss − λτsIps)Ûsi +
v∑
s=0

λτsÛ
>
siÛsi

= λτiIps + Û>ii(Ĥτii − λτiIpi)Ûii +Op(1/T ),

(S1.18)

where Ĥτst is the (s, t)th block of Ĥτ in the indexing of Lemma 2 and λτj

denotes the autocovariance of the jth group for lag τ in the correspond-

ing grouping. As (Ĥτii − λτiIpi) = Op(1/
√
T ), we have by (S1.18) that

the pseudo-eigenvalues converge in probability to the respective population

values,

∑
τ∈T

diag(Êτ )
2 →p

∑
τ∈T

D2
τ . (S1.19)

Let Aq denote the event that the last q columns of Û are up to ordering equal

to the last q columns of Ũ, that is, the ordering based on the estimated sums

of squared pseudo-eigenvalues correctly identifies the noise components. By

Assumption 1, the signals are well-separated from the noise in the sense

that no signal corresponds to the value zero in the diagonal of
∑

τ∈T Λ2
τ
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and consequently, by (S1.19), we have P(Aq)→ 1.

Denote next the final column block of Ũ by Ũq ∈ Rr. Conditional on

Aq, the two column blocks are the same up to a permutation, Ŵq = ŨqP̂q

for some sequence of permutation matrices P̂q ∈ Rr×r, and we can write

for an arbitrary ε > 0,

P
(√

T
∣∣∣‖Ŵ>

q ĤτŴq‖ − ‖Ũ
>
q ĤτŨq‖

∣∣∣ < ε
)

=P
(√

T
∣∣∣‖Ŵ>

q ĤτŴq‖ − ‖Ũ
>
q ĤτŨq‖

∣∣∣ < ε | Aq
)
P(Aq)

+P
(√

T
∣∣∣‖Ŵ>

q ĤτŴq‖ − ‖Ũ
>
q ĤτŨq‖

∣∣∣ < ε | Acq
)
P(Acq)

=P(Aq) + P
(√

T
∣∣∣‖Ŵ>

q ĤτŴq‖ − ‖Ũ
>
q ĤτŨq‖

∣∣∣ < ε | Acq
)

(1− P(Aq))→ 1,

showing the convergence in probability,
√
T‖Ŵ

>
q ĤτŴq‖ =

√
T‖Ũ>q ĤτŨq‖+

op(1), for all τ ∈ T . Furthermore, by (S1.18),

√
T‖Ũ>q ĤτŨq‖ =

√
T‖Êτ00‖ = ‖

√
T Û>00Ĥτ00Û00 +Op(1/

√
T )‖ = Op(1),

showing that,

T‖Ŵ
>
q ĤτŴq‖2 = ‖

√
T Û>00Ĥτ00Û00 +Op(1/

√
T )‖2 + op(1)

= ‖
√
T Û>00Ĥτ00Û00‖2 + op(1)

= T · tr(Û00Û
>
00Ĥτ00Û00Û

>
00Ĥτ00) + op(1)

= T‖Ĥτ00‖2 + op(1)

= T‖R̂τ00‖2 + op(1),
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where the second-to-last equality uses Corollary 1 and the last one Lemma 1.

Substituting now into the definition of m̂q, we obtain the claim,

T · m̂q =
T

|T |r2

∑
τ∈T

‖Ŵ
>
q ĤτŴq‖2 =

T

|T |r2

∑
τ∈T

‖R̂τ00‖2 + op(1).

Proof of Lemma 4. Write first,

Ŝτ =
1

T − τ

T−τ∑
t=1

(xt − x̄)(xt+τ − x̄)>

=
1

T − τ

T−τ∑
t=1

xtx
>
t+τ − x̄

1

T − τ

T−τ∑
t=1

x>t+τ −
1

T − τ

T−τ∑
t=1

xtx̄
> + x̄x̄>.

By Assumption 2 and (Brockwell and Davis, 1991, Proposition 11.2.2), the

latent series zt = xt (we use identity mixing) satisfy a central limit theorem,

implying that x̄ = Op(1/
√
T ). Thus,

√
T (Ŝτ −Dτ ) =

√
T (

1

T − τ

T−τ∑
t=1

xtx
>
t+τ −Dτ ) +Op(1/

√
T ),

and it is sufficient to show the limiting result for the non-centered covariance

and autocovariance matrices. Consequently, in the following we implicitly

assume that no centering is used.

The blocks R̂τ100, . . . , R̂τ|T |00 are the symmetrized autocovariance ma-

trices of the white noise part of zt. By Assumption 2, the latent series

zt has an MA(∞)-representation and by considering only the last r com-

ponents of the representation we see that also the white noise part has
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separately an MA(∞)-representation. Now the lower right diagonal blocks

of the matrices Ψj take the roles of Ψj and by Assumption 2 these blocks

equal Ψj00 = δj0Ir. Consequently, by (Miettinen et al., 2016, Lemma 1) the

vector,

√
Tvec

(
R̂τ100, . . . , R̂τ|T |00

)
,

admits a limiting multivariate normal distribution with zero mean and the

covariance matrix equal to

V =


V11 · · · V1|T |

...
. . .

...

V|T |1 · · · V|T ||T |

 ∈ R|T |r2×|T |r2 , (S1.20)

where V`m = diag(vec(D`m))(Krr −Drr + Ir2). The matrices D`m ∈ Rr×r,

`,m = 0, . . . , |T | (we do not use the zero index here but it appears in the

following formulas so it is included), are defined element-wise as,

(D`m)ii = (βi − 3)(F`)ii(Fm)ii +
∞∑

k=−∞

[(Fk+`)ii(Fk+m)ii + (Fk+`)ii(Fk−m)ii]

(D`m)ij = (βij − 1)(F` + F>` )ij(Fm + F>m)ij

+
1

2

∞∑
k=−∞

[(Fk+`−m)ii(Fk)jj + (Fk)ii(Fk+`+m)jj] , i 6= j.

(S1.21)

where βi = E(ε4ti), βij = E(ε2tiε
2
ti) and εti, i = 1, . . . , r, refers to the ith

innovation component in the MA(∞)-representation of the white noise part.
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The matrices F` are defined as F` =
∑∞

j=−∞ψjψ
>
j+` where the vectors

ψj ∈ Rr contain the diagonal elements of the matrices Ψj00.

Under Assumption 2 we have ψj = δj01r where the vector 1r ∈ Rr

consists solely of zeroes. Consequently F` = δ`0Jr. Plugging this in to

(S1.21) gives for the diagonal elements of D`m that

(D`m)ii = (βi − 3)δ`0δm0 +
∞∑

k=−∞

[
δ(k+`)0δ(k+m)0 + δ(k+`)0δ(k−m)0

]
= (βi − 3)δ`0δm0 + δ`m + δ`0δm0,

which implies that the matrices V`m, `,m = 1, . . . , |T |, have non-zero di-

agonals precisely when ` = m and then the diagonal is filled with ones.

Plugging F` = δ`0Jr in to the definition of the diagonal elements in (S1.21)

gives,

(D`m)ij = (βij − 1)2δ`02δ`0 +
1

2

∞∑
k=−∞

[
δ(k+`−m)0δk0 + δk0δ(k+`+m)0

]
= 4(βij − 1)δ`0δ`0 +

1

2
(δ`m + δ`0δm0),

which says that the matrices V`m, `,m = 1, . . . , |T |, have non-zero off-

diagonals precisely when ` = m and then the off-diagonal is filled with

one-halves.

Combining the forms for the diagonals and off-diagonals, we get D`m =

δ`m(Jr + Ir)/2, `,m = 1, . . . , |T |. Plugging this in to (S1.20) now gives the
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claim and concludes the proof.

Proof of Lemma 5. The case k = q follows immediately from Proposition 1.

For the case k > q, we note that,

|T |(p−k)2 ·m̂k =
∑
τ∈T

‖Ŵ>
k ĤτŴk‖2 ≤

∑
τ∈T

‖Ŵ>
q ĤτŴq‖2 = |T |(p−q)2 ·m̂q,

as Ŵ>
k ĤτŴk is a sub-matrix of Ŵ>

q ĤτŴq. The case k > q now follows

from the case k = q and the positivity of the test statistic.

Finally, for the case k < q, we write,

|T |(p− k)2 · m̂k =
∑
τ∈T

‖Ŵ>
k ĤτŴk‖2 ≥

∑
τ∈T

(v̂>Ĥτ v̂)2, (S1.22)

where v̂ is the column of Û which corresponds to the qth largest diagonal

element of
∑

τ∈T diag(Û>ĤτÛ)2 (the final presumed signal component).

Denote the pv columns of the block matrix on the right-hand side of

Lemma 2 that are associated with the vth signal group by ṽ1, . . . , ṽpv . For

large values of T we expect the vector v̂ to equal one of these vectors with

high probability. Indeed, denoting g(v) =
∑

τ∈T (v>Ĥτv)2, we can show

using the conditional probability trick of Lemma 3 that

min
j=1,...,pv

|g(v̂)− g(ṽj)| = op(1).

By Lemmas 1, 2 and Corollary 1 we additionally have for all j = 1, . . . , pv
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that g(ṽj)→p b =
∑

τ∈T λ
2
τv, where λτv are the autocovariances of the final

signal group. By Assumption 1, moreover b > 0.

We then bound,

|g(v̂)− b| ≤ |g(v̂)− g(ṽj)|+ |g(ṽj)− b| ≤ |g(v̂)− g(ṽj)|+
pv∑
j′=1

|g(ṽj′)− b| ,

which holds for all j = 1, . . . , pv, and consequently,

|g(v̂)− b| ≤ min
j=1,...,pv

|g(v̂)− g(ṽj)|+
pv∑
j′=1

|g(ṽj′)− b| = op(1).

This implies that g(v̂) →p b > 0, which, when plugged in into (S1.22),

yields the final part of the claim.

Proof of Proposition 1. By Lemma 3, the limiting distribution of T |T |r2·m̂q

is the same as the limiting distribution of

T |T |r2 · m̂∗q =
∑
τ∈T

‖
√
T R̂τ00‖2

= ‖
√
Tvec

(
R̂τ100, . . . , R̂τ|T |00

)
‖2

=
√
Tvec>

(
R̂τ100, . . . , R̂τ|T |00

)√
Tvec

(
R̂τ100, . . . , R̂τ|T |00

)
.

By Lemma 4 and the continuous mapping theorem, the limiting distribution

of T |T |r2 ·m̂∗q is the same as the distribution of y>y where y is a mean-zero

multivariate normal random vector with the covariance matrix V given in

Lemma 4. Equivalently, the limiting distribution of T |T |r2 · m̂∗q is the same

as the distribution of y>0 Vy0 where y0 is a standardized multivariate normal
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random vector. By (Serfling, 2009, Chapter 3.5), if V is idempotent and

symmetric, then the limiting distribution of y>0 Vy0 is χ2
tr(V). To see that V

is indeed idempotent, we inspect the square of its arbitrary diagonal block

V0,

V2
0 = [diag(vec(Jr + Ir)/2)(Krr −Drr + Ir2)]

2 .

We simplify using diag(vec(Jr)) = Ir2 , diag(vec(Ir)) = Drr, DrrKrr = Drr,

D2
rr = Drr and K2

rr = Ir2 , to obtain V0 = (Krr+Ir2)/2, which is symmetric,

and,

V2
0 =

[
1

2
(Krr + Ir2)

]2

=
1

4
(2Krr + 2Ir2) = V0.

Thus V0 is idempotent and symmetric and consequently V, constituting

solely of the |T | diagonal blocks each equal to V0, is also idempotent and

symmetric. The trace of V is |T | times the trace of V0, which equals,

tr(V0) =
1

2
tr(Krr) +

1

2
tr(Ir2) =

1

2
(r + r2) =

1

2
r(r + 1).

The trace of V is then |T |r(r + 1)/2 and we have proved that the limiting

distribution of y>0 Vy0, and consequently that of T |T |r2 · m̂q, is χ2
|T |r(r+1)/2.

Proof of Proposition 2. Fix an arbitrary ε > 0. We want to show that

P(|q̂ − q| < ε)→ 1. Denote by Bk the event that T |T |(p− k)2 · m̂k < ck,T .
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Then,

P(|q̂ − q| < ε) ≥ P(q̂ = q) = P(Bq ∩Bc
q−1 ∩Bc

q−2 ∩ · · · ∩Bc
0)

= P
[
(Bc

q ∪Bq−1 ∪Bq−2 ∪ · · · ∪B0)c
]

= 1− P(Bc
q ∪Bq−1 ∪Bq−2 ∪ · · · ∪B0)

≥ 1− P(Bc
q)−

q−1∑
k=0

P(Bk),

where the final inequality uses the union bound. The desired result follows

by showing that P(Bc
q)→ 0 and P(Bk)→ 0 for all k = 0, . . . , q − 1.

The first of these probabilities has the form,

P(T |T |(p− q)2 · m̂q ≥ cq,T ), (S1.23)

where the left-hand side of the inequality (denoted in the following by ĥq)

is by Lemma 5 asymptotically Op(1) and by our assumptions cq,T → ∞.

As such, for an arbitrary δ > 0, there exists M > 0 and T0 such that

P(ĥq > M) < δ and cq,T > M for all T > T0. Consequently, for all T > T0,

we have for the probability (S1.23) that

P(T |T |(p− q)2 · m̂q ≥ cq,T ) ≤ P(ĥq > M) < δ,

yielding P(Bc
q)→ 0.

By Lemma 5, the probabilities P(Bk), k = 0, . . . , q − 1, satisfy,

P
(
|T |(p− k)2 · m̂k <

ck,T
T

)
≤ P

(
ŝ <

ck,T
T

)
, (S1.24)
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where we denote ŝ = b + op(1) and ck,T/T → 0 by our assumptions. Con-

sequently, for an arbitrary δ > 0, there exists T0 such that for all T > T0

we have P(|ŝ− b| > b/2) < δ and ck,T/T < b/2. Taking then T > T0, these

combine to give for the probability (S1.24) that,

P
(
|T |(p− k)2 · m̂k <

ck,T
T

)
≤ P

(
ŝ <

b

2

)
< δ,

yielding P(Bk)→ 0 for any k < q and concluding the proof.

S2. Mixed signals of the data example

The 20 mixed components of the data example in Section 5 are shown in

Figure S1.
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Figure S1: The 20-variate sound data time series.
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S3. Supplementary simulations

The following subsections contain additional simulations to complement

Sections 4.1 and 4.2. The result are in general quite similar to the ones

shown in the main text, and only between Settings H3 and H3t are there

any notable differences.

S3.1 Evaluation of the hypothesis testing under heavy tails

To evaluate the effect of non-Gaussian innovations and non-Gaussian white

noise we modify settings H1–H3 from Section 4.1 as follows:

Setting H1t: MA(3), AR(2) and ARMA(1,1) having univariate t5-distributed

innovations together with two t5-distributed white noise components.

Setting H2t: MA(10), MA(15) and M(20) processes having univariate t5-

distributed innovations together with two t5-distributed white noise

components.

Setting H3t: Three MA(3) processes having univariate t5-distributed in-

novations and identical autocovariance functions together with two

t5-distributed white noise processes.

In all three cases the t5-distributions were standardized to have unit

variances.
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Table S1: Rejection frequencies of H02 in Setting H1t at

level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 1.000 1.000 1.000 1.000 0.998 1.000

500 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000

2000 1.000 1.000 1.000 1.000 1.000 1.000

5000 1.000 1.000 1.000 1.000 1.000 1.000

Table S2: Rejection frequencies of H03 in Setting H1t at

level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.052 0.050 0.079 0.054 0.103 0.056

500 0.051 0.052 0.060 0.048 0.066 0.050

1000 0.051 0.050 0.052 0.044 0.052 0.041

2000 0.043 0.046 0.046 0.050 0.050 0.054

5000 0.049 0.051 0.046 0.052 0.050 0.046
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Table S3: Rejection frequencies of H04 in Setting H1t at

level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.002 0.008 0.016 0.005 0.026 0.008

500 0.008 0.010 0.009 0.006 0.010 0.002

1000 0.009 0.008 0.012 0.004 0.008 0.004

2000 0.004 0.008 0.006 0.004 0.011 0.004

5000 0.008 0.012 0.008 0.003 0.005 0.002

Table S4: Rejection frequencies of H02 in Setting H2t at

level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.039 0.040 0.594 0.473 0.908 0.845

500 0.098 0.098 0.980 0.982 1.000 1.000

1000 0.172 0.162 1.000 1.000 1.000 1.000

2000 0.272 0.270 1.000 1.000 1.000 1.000

5000 0.570 0.576 1.000 1.000 1.000 1.000
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Table S5: Rejection frequencies of H03 in Setting H2t at

level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.002 0.006 0.124 0.047 0.142 0.053

500 0.004 0.009 0.078 0.046 0.084 0.056

1000 0.012 0.018 0.055 0.042 0.054 0.048

2000 0.017 0.022 0.053 0.052 0.060 0.058

5000 0.031 0.038 0.049 0.045 0.057 0.055

Table S6: Rejection frequencies of H04 in Setting H2t at

level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.000 0.002 0.036 0.005 0.038 0.006

500 0.000 0.006 0.012 0.004 0.014 0.004

1000 0.002 0.006 0.010 0.004 0.006 0.002

2000 0.003 0.004 0.008 0.005 0.014 0.006

5000 0.002 0.010 0.007 0.004 0.010 0.004
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Table S7: Rejection frequencies of H02 in Setting H3t at

level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 1.000 1.000 1.000 1.000 0.996 0.993

500 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000

2000 1.000 1.000 1.000 1.000 1.000 1.000

5000 1.000 1.000 1.000 1.000 1.000 1.000

Table S8: Rejection frequencies of H03 in Setting H3t at

level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.058 0.054 0.082 0.043 0.134 0.058

500 0.051 0.047 0.059 0.047 0.073 0.054

1000 0.054 0.054 0.052 0.050 0.060 0.054

2000 0.040 0.044 0.060 0.047 0.058 0.060

5000 0.049 0.050 0.050 0.048 0.046 0.044
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Table S9: Rejection frequencies of H04 in Setting H3t at

level α = 0.05.

AMUSE SOBI6 SOBI12

n Asymp Boot Asymp Boot Asymp Boot

200 0.006 0.008 0.018 0.006 0.032 0.006

500 0.006 0.010 0.012 0.004 0.012 0.004

1000 0.005 0.008 0.008 0.004 0.011 0.006

2000 0.006 0.008 0.008 0.006 0.011 0.006

5000 0.005 0.006 0.006 0.002 0.007 0.002

S3.2 Evaluation of determining the dimension of the signal un-

der heavy tails

To evaluate the effect of non-Gaussian innovations and non-Gaussian white

noise we modify settings D1–D3 from Section 4.2 as follows:

Setting D1t: AR(2), AR(3), ARMA(1,1), ARMA(3,2) and MA(3) pro-

cesses having univariate t5-distributed innovations together with five

t5-distributed white noise components.

Setting D2t: Same processes as in D1t but the MA(3) is changed to an

MA(1) process with the parameter equal to 0.1.
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Figure S2: Estimating q by divide-and-conquer in Setting D1t.

Setting D3t: Five MA(2) processes with parameters (0.1, 0.1) having uni-

variate t5-distributed innovations together with five t5-distributed white

noise processes.

In all three cases the t5-distributions were standardized to have unit

variances.
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Figure S3: Estimating q by divide-and-conquer in Setting D2t.
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Figure S4: Estimating q by divide-and-conquer in Setting D3t.
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