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1. Appendix A1

Lemma 2 Let g : S → R, where S ⊂ Rd is a compact set. Assume that

g ∈ C2(S) and that λ is such that there exists 0 < δ1 < λ for which

∇g(x) 6= 0 for all x ∈ Gg(λ− δ1) \ Gg(λ + δ1) := Gg(λ, δ1). Then, for all

ε < δ1,

dH
(
Gg(λ− ε), Gg(λ+ ε)

)
≤ 3M

m2
ε, (1)

where M = max{x∈Gg(λ,δ1)} ‖∇g(x)‖, and m = min{x∈Gg(λ,δ1)} ‖∇g(x)‖.

Proof. Let x ∈ Gg(λ − ε), yt = x + t∇g(x) and t = 3ε/m2. We have

‖yt−x‖ < 3εM/m2. To prove (1) it is enough to verify that yt ∈ Gg(λ+ε).
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From a Taylor expansion at x, we obtain that for some θ ∈ [x, yt]:

g(yt) = g(x) +∇g(x)T (yt − x) +
1

2
(yt − x)THθ(yt − x)

> λ− ε+
3ε

m2
‖∇g(x)‖2 +

9ε2

2m4
∇g(x)THθ∇g(x),

where Hθ is the Hessian matrix of g at θ. Since g is C2, there exists a

constant C > 0 such that |∇g(x)THθ∇g(x)| ≤ C‖∇g(x)‖2, from where it

follows that for ε < 2m4/(9M2C),

g(yt) > λ+ 2ε− 9M2C/2m4ε2 ≥ λ+ ε,

and yt ∈ Gg(λ+ ε), concluding the proof.

Lemma 3 Let S ⊂ Rd be a compact set and g : S → R a C2 function

such that that there exists an ε0 > 0 and a c > 0 such that ‖∇g(x)‖ > m for

all x ∈ U , where U is an open set containing Gg(lτ − ε0)\Gg(lτ +ε0). Then

{Gg(λ) : lτ−ε0/2 ≤ λ ≤ lτ +ε0/2} is a P -uniformity class for all probability

distributions P on S absolutely continuous w.r.t. Lebesgue measure.

Proof. It is enough to prove that there exists an r > 0 such that for all

lτ − ε0 < λ < lτ + ε0, reach(Gg(λ)) > r > 0. By Theorem 2 and theorem

1 of Walther (1999), there exists an r > 0 such that for all lτ − ε0 < λ <

lτ+ε0, Gg(λ) satisfies the inner and outer r-rolling conditions. This together

with lemma 2.3 in Pateiro-López and Rodŕıguez-Casal (2009) implies that

reach(Gg(λ)) > r > 0 for all lτ − ε0/2 ≤ λ ≤ lτ + ε0/2.
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The following Lemma can be derived from Lemma 2b) in Walther

(1997), for the sake of completeness we keep the proof, which is a straight-

forward consequence of Lemma 2.

Lemma 4 Under the hypotheses of Lemma 2, for all 0 ≤ ε < ε0/2 and

all lτ − ε < λ < lτ + ε, Gg(λ− ε) \Gg(λ+ ε) ⊂ B
(
∂Gg(λ), 3εM/m2

)
where

M = max{x∈Gg(lτ−ε0)\Gg(lτ+ε0)} ‖∇g(x)‖ and

m = min{x∈Gg(λ−δ1)\Gg(λ+δ1)} ‖∇g(x)‖.

Proof. By Lemma 2, for all ε < ε0/2 and all lτ − ε < λ < lτ + ε,

dH(Gg(λ+ ε), Gg(λ− ε)) ≤ 3εM/m2.

If we take x ∈ Gg(λ − ε) with g(x) ≤ λ and y ∈ Gg(λ + ε), then there

exists a t ∈ [x, y] (the segment joining x and y) such that g(t) = λ, and so

t ∈ ∂Gg(λ), which concludes the proof.

2. Appendix B

Proposition 1. Let D ⊂ Rd be a bounded domain such that ∂D is C2. Let

{Xt}t≥0 be the solution of

Xt = X0 +Bt +

∫ t

0

µ(Xs)ds+

∫ t

0

n(Xs)ξ(ds), where Xt ∈ D, ∀t ≥ 0. (2)
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Then for all Borel set A such that µL(A ∩D) > 0, we have that

sup
x∈D

Ex(TA) <∞,

where Ex denotes the expectation w.r.t. Px, which implies Harris recurrence.

Proof. The proof is based on the ideas used to prove Proposition 1.4 (ii) in

Burdzy, Chen and Marshall (2006) and the following result (whose proof

can be found in Cattiaux (1992) 610–613):

inf
(x,y)∈D×D

p(0, x, t, y) = ct > 0,

where p(0, x, t, y) is the density function introduced in Remark 1. Let A be

a Borel set such that µL(A ∩D) > 0. Then for all t ≥ 1,

Px(TA ≤ t) ≥ Px(TA ≤ 1) ≥
∫
A

p(0, x, 1, y)dy ≥ c1µL(A ∩ C) = c′ > 0.

By the Markov property, for every x ∈ D, Px(TA ≥ k) ≤ (1 − c′)k, for all

k ≥ 1, which implies that

sup
x∈D

Ex(TA) ≤ sup
x∈D

∞∑
k=0

Px(TA ≥ k) <∞.

This proves supx∈D Ex(TA) <∞,

Proposition 2. Let D ⊂ Rd be a bounded domain such that ∂D is C2. De-

note by π the invariant distribution of {Xt}t≥0. If D is a non-trap domain

for {Xt}t≥0, then there exist positive constants α and β such that

sup
x∈D

∥∥Px(Xt ∈ ·)− π(·)
∥∥
TV
≤ βe−αt.
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Proof. Let x0 ∈ D and η > 0 be such that B(x0, 3η) ⊂ D.

Since supx∈D ExTB(x0,η) < ∞, by the Markov inequality there exists an

n1 such that infx∈D Px(TB(x0,η) ≤ n1) > 1/2. Let Zt = x+ Bt +
∫ t
0
µ(Xs)ds

be the d-dimensional Brownian motion with drift given by µ(x). Observe

that, since |µ(x)| < L, by Doob’s maximal inequality, we have

Px

(
sup
s∈[0,t]

|Zs| < η

)
≥ 1−

√
dt+ Lt

η
.

Now take t0 small enough so that 1 − (
√
dt0 + Lt0)/η =: p0 > 0. By the

strong Markov property,

inf
x∈D

Px
(
TB(x0,η) ≤ n1 and Xt ∈ B(x0, 2η) for t ∈ [TB(x0,η), TB(x0,η)+t0]

)
>

1

2
p0.

Let Y = inf{n ∈ N : Xn ∈ B(x0, 2η)}, then infx∈D Px(Y ≤ n1 + t0) > p0/2.

Applying the Markov property at times kb(n1 + t0)c,

sup
x∈D

Px(Y ≥ kb(n1 + t0)c) ≤ (1− p0/2)k,

from which it follows that

sup
x∈D

Ex(Y ) ≤ sup
x∈D

∞∑
k=0

kb(n1 + t0)cPx(Y ≥ kb(n1 + t0)c) <∞.

Applying theorem 16.0.2 of Meyn and Tweedie (1993a), we obtain, for every

n > 0, that

sup
x∈D
‖Px(Xn ∈ ·)− π(·)‖TV ≤ c3e

−c4n,
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where c3, c4 are positive finite constants. Using the semigroup property of

{Xt}t≥0 and the fact that π is invariant,

sup
x∈D
‖Px(Xt ∈ ·)− π(·)‖TV =

sup
x∈D

∣∣∣∣∫
D

Py(Xt−n ∈ ·)dPx(Xn ∈ dy)−
∫
D

Py(Xt−n ∈ ·)π(y)

∣∣∣∣ ≤
sup
x∈D
‖Px(Xn ∈ ·)− π(·)‖TV ,

for all t and n, with t ≥ n.

3. Appendix C

Theorem 5 Assume that T → ∞, ∆ → 0, hn → 0, ∆nh2n → ∞, and

∆nh3n → 0. Then, for all x ∈ int(S) µ̂n,T (x)→ µ(x) in probability.

Proof. Let γn ≥ 2hn, γn → 0, ∆→ 0 and denote

In = {i : Xti ∈ B(x, hn),∃s0 : ti < s0 ≤ ti+1, Xs0 /∈ B(x, γn)}.

According to our model, the estimator can be written as

µ̂n(x) =
1

∆Nx

n∑
i=1

(Bti+1
−Bti)I{Xti∈B(x,hn)} +

1

∆Nx

∑
i∈In

∫ ti+1

ti

µ(Xs)ds+

1

∆Nx

∑
i∈ICn

∫ ti+1

ti

µ(Xs)ds+
1

∆Nx

∑
i∈In

∫ ti+1

ti

η(Xs)dLs =: An,T+B1
n,T+B2

n,T+Cn,T .
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First will prove that Cn,T → 0 in probability. Observe that, we can bound,

using Theorem 4.2 in Saisho (1987)∥∥∥∫ ti+1

ti

η(Xs)dLs

∥∥∥ ≤ Ls[ti, ti+1] ≤ C
√

∆,

being C a positive constant, then Cn,T ≤ C#In/(
√

∆Nx) a.s. Let us fix

ε > 0, we will prove that

P
( #In√

∆Nx

> ε
)
→ 0. (3)

Let Ain = {∃si : ti ≤ si ≤ ti+1, Xsi /∈ B(x, γn)}. Then,

P(Ain ∩ {Xti ∈ B(x, hn)}) ≤

P
(

sup
s∈[ti,ti+1]

‖Xs −Xti‖ > γn − hn|Xti ∈ ∂B(x, hn)
)
P(Xti ∈ B(x, hn)) ≤

(
√

2 + ν)
√

∆

hn
P(Xti ∈ B(x, hn)). (4)

Consider the random variable κ = bε
√

∆Nxc. Observe that if

#In/(
√

∆Nx) > ε then there exists {i1, . . . , iκ} where 1 ≤ ij < n− 1 for all

j = 1, . . . , κ, such that ∃sij : tij < sij ≤ tij+1 and Xsij
/∈ B(x, γn), Xtij

∈

B(x, hn) for all j = 1, . . . , κ. Let us denote mn = 2(nεπh2ng(x)
√

∆), observe

that mn →∞, and from (4) we get

P
( #In√

∆Nx

> ε
)
≤ P

( #In√
∆Nx

> ε, I{κ≤mn}
)

+ P
(
κ > mn

)
≤

mn∑
j=1

(
√

2 + ν)
√

∆

hn
P
(
Xtij
∈ B(x, hn)

)
+ P

(
κ > mn

)
. (5)
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By the Ergodic theorem κ/(εnπh2ng(x)
√

∆) → 1 a.s., then with prob-

ability one, for n large enough, κ ≤ mn from where it follows that P(κ >

mn)→ 0. Lastly, again by ergodicity, we have that

1

mnπh2n

mn∑
j=1

P
(
Xtij
∈ B(x, hn)

)
→ g(x), (6)

from h3nn∆→ 0 we get (3) from (5) and (6).

The proof will be complete if under our asymptotic scheme, we have

An,T → 0, in probability, (7)

B1
n,T → 0 in probability, (8)

B2
n,T → µ(x) in probability. (9)

Since µ is Lipschitz and γn → 0, (9) follows.

Regarding B1
n,T observe that

∫ ti+1

ti
µ(Xs)ds ≤ maxx∈S ‖µ(x)‖∆ and then

from (3) we get B1
n,T → 0 in probability.

Let us consider now (7). Each random variable I{Xti∈B(x,hn,T )} is Fti

measurable, due to the independence of Bti+1
− Bti w.r.t. Fti . Then

E(Bti+1
− Bti |Fti) = E(Bti+1

− Bti) = 0, giving E(An,T ) = 0. (In fact

this proves that the numerator in An,T is a martingale.) We now turn to

the computation of the variance. First, by the ergodic theorem, we obtain

that

Nx

nπh2n
→ g(x), a.s. (10)
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Defining

Ân,T =
1

an(x)

n−1∑
i=1

(Bti+1
−Bti)I{Xti∈B(x,hn)},

with an(x) = ∆nπh2ng(x), by (10) we know that An,T and Ân,T have the

same limit in probability. Furthermore

E((Ân,T )2) =
1

an(x)2
E

(
n−1∑
i=1

I{Xti∈B(x,hn)}(Bti+1
−Bti)

)2

=
1

an(x)2

n−1∑
i=1

E
(
I{Xti∈B(x,hn)}(Bti+1

−Bti)
2
)

since the cross–terms are zero.

We then conclude that

E((Ân,T )2) =
1

(∆nπh2ng(x))2

n−1∑
i=1

P
(
I{Xti∈B(x,hn)}

)
∆

≤ 1

∆nπh2ng(x)2
1

nπh2n

n−1∑
i=1

P(Xti ∈ B(x, hn)).

By ergodicity, we have

1

nπh2n

n−1∑
i=1

P (Xti ∈ B(x, hn))→ g(x),

then, taking into account (10), we obtain

E((An,T )2) /
1

∆nπh2ng(x)
→ 0.
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