A class of multi-resolution approximations
 for large spatial datasets

Matthias Katzfuss and Wenlong Gong
Department of Statistics, Texas A \mathcal{B} M University

Supplementary Material

S1 Proofs

In this section, we provide proofs for the propositions stated throughout the main manuscript. We also state and prove three lemmas that are used in the proofs of the propositions.

Proof of Proposition 1. From (2.6), we have $y_{M}(\cdot)=\mathbf{b}(\cdot)^{\prime} \boldsymbol{\eta}$, where $\boldsymbol{\eta} \sim$ $\mathcal{N}_{r}\left(\mathbf{0}, \boldsymbol{\Lambda}^{-1}\right)$ and $\mathbf{b}(\cdot)$ is a vector of deterministic functions (for given C_{0}, \mathcal{Q}, and T). Hence, it is trivial to show that $y_{M}(\cdot)$ is a Gaussian process with mean zero. The covariance function is derived by combining the expression for $y_{M}(\cdot)$ on the right-hand side of (2.4) with the equations in (2.5).

Lemma 1 (Exact predictive process). The predictive process is exact at any
knot location; that is, if $x^{(m)}(\cdot)$ is the predictive process of $x(\cdot) \sim G P(0, C)$
based on knots \mathcal{Q}_{m} (see Definition 1), and $\mathbf{s}_{1} \in \mathcal{Q}_{m}$ (or $\mathbf{s}_{2} \in \mathcal{Q}_{m}$), then

$$
\operatorname{cov}\left(x^{(m)}\left(\mathbf{s}_{1}\right), x^{(m)}\left(\mathbf{s}_{2}\right)\right)=C\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)
$$

Proof of Lemma 1. By the law of total covariance, we have

$$
\begin{aligned}
\operatorname{cov}\left(x^{(m)}\left(\mathbf{s}_{1}\right), x^{(m)}\left(\mathbf{s}_{2}\right)\right) & =\operatorname{cov}\left(E \left(x\left(\mathbf{s}_{1}\right) \mid \mathbf{x}\left(\mathcal{Q}_{m}\right), E\left(x\left(\mathbf{s}_{2}\right) \mid \mathbf{x}\left(\mathcal{Q}_{m}\right)\right)\right.\right. \\
& =\operatorname{cov}\left(x\left(\mathbf{s}_{1}\right), x\left(\mathbf{s}_{2}\right)\right)-E\left(\operatorname{cov}\left(x\left(\mathbf{s}_{1}\right), x\left(\mathbf{s}_{2}\right) \mid \mathbf{x}\left(\mathcal{Q}_{m}\right)\right)\right)=C\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right),
\end{aligned}
$$

because $\operatorname{cov}\left(x\left(\mathbf{s}_{1}\right), x\left(\mathbf{s}_{2}\right) \mid \mathbf{x}\left(\mathcal{Q}_{m}\right)\right)=0$ if $\mathbf{s}_{1} \in \mathcal{Q}_{m}\left(\right.$ or $\left.\mathbf{s}_{2} \in \mathcal{Q}_{m}\right)$.

Proof of Proposition 2. The proof will be carried out by induction. For $l=$ 1, we have $v_{m+1}(\mathbf{q}, \mathbf{s})=\left(v_{m}(\mathbf{q}, \mathbf{s})-\operatorname{cov}(\widetilde{\tau}(\mathbf{q}), \widetilde{\tau}(\mathbf{s}))\right) T_{m+1}(\mathbf{q}, \mathbf{s})=0$, because using Lemma 1. we can see that $\operatorname{cov}(\widetilde{\tau}(\mathbf{q}), \widetilde{\tau}(\mathbf{s}))=\operatorname{cov}\left(\widetilde{\delta}^{(m)}(\mathbf{q}), \widetilde{\delta}^{(m)}(\mathbf{s})\right)=$ $\operatorname{cov}(\widetilde{\delta}(\mathbf{q}), \widetilde{\delta}(\mathbf{s}))=v_{m}(\mathbf{q}, \mathbf{s})$. For $l>1$, assuming that $v_{m+l-1}(\mathbf{q}, \mathbf{s})=0$, we have

$$
v_{m+l}(\mathbf{q}, \mathbf{s})=\left(v_{m+l-1}(\mathbf{q}, \mathbf{s})-\mathbf{b}_{m+l-1}(\mathbf{q})^{\prime} \boldsymbol{\Lambda}_{m+l-1}^{-1} \mathbf{b}_{m+l-1}(\mathbf{s})\right) \cdot T_{m+l}(\mathbf{q}, \mathbf{s})=0
$$

because $\mathbf{b}_{m+l-1}(\mathbf{q})=v_{m+l-1}\left(\mathbf{q}, \mathcal{Q}_{m+l-1}\right)=\mathbf{0}$.

Lemma $2(M$-RA covariance at knot location $\mathbf{s})$. If $\mathbf{s}_{1} \in \mathcal{Q}$, then
$C_{M}\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)=\sum_{m=0}^{M-1} v_{m}\left(\mathbf{s}_{1}, \mathcal{Q}_{m}\right) v_{m}\left(\mathcal{Q}_{m}, \mathcal{Q}_{m}\right)^{-1} v_{m}\left(\mathcal{Q}_{m}, \mathbf{s}_{2}\right)+v_{M}\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right), \quad \mathbf{s}_{2} \in \mathcal{D}$.

Proof of Lemma 2. In the expression for C_{M} in Proposition 1, we have $v_{M}\left(\mathbf{s}_{1}, \mathcal{Q}_{M}\right) v_{M}\left(\mathcal{Q}_{M}, \mathcal{Q}_{M}\right)^{-1} v_{M}\left(\mathcal{Q}_{M}, \mathbf{s}_{2}\right)=v_{M}\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)$ for $\mathbf{s}_{1} \in \mathcal{Q}$. This fol-
lows from Lemma 1 if $\mathbf{s}_{1} \in \mathcal{Q}_{M}$, and from Proposition 2 for $\mathbf{s}_{1} \in \mathcal{Q}_{m}$ for $m<M$ (because then both sides of the equation are zero).

Lemma 3 (Sum of predictive processes). For the decomposition in 2.1, the sum of predictive processes up to resolution m is equal in distribution to the predictive process based on the union of the knots up to resolution m, for any $m=0,1, \ldots, M$; that is, $\sum_{l=0}^{m} \tau_{l}(\cdot) \stackrel{d}{=} E\left(y_{0}(\cdot) \mid y_{0}\left(\cup_{l=0}^{m} \mathcal{Q}_{l}\right)\right)$.

Proof of Lemma [3. For $m=1, \delta_{1}(\mathbf{s}) \Perp y_{0}\left(\mathcal{Q}_{0}\right)$, for any $\mathbf{s} \in \mathcal{D}$, because $E\left(\delta_{1}(\mathbf{s}) y_{0}\left(\mathcal{Q}_{0}\right)\right)=E\left(\left(y_{0}(\mathbf{s})-E\left(y_{0}(\mathbf{s}) \mid y_{0}\left(\mathcal{Q}_{0}\right)\right)\right) y_{0}\left(\mathcal{Q}_{0}\right)\right)=E\left(y_{0}\left(\mathcal{Q}_{0}\right)\right) E\left(\delta_{1}(\mathbf{s})\right)=$ 0 , and $y_{0}\left(\mathcal{Q}_{0}\right), \delta_{1}(\mathbf{s})$ are jointly Gaussian. And we have $E\left(y_{0}(\cdot) \mid \delta_{1}\left(\mathcal{Q}_{1}\right), y_{0}\left(\mathcal{Q}_{0}\right)\right)=$ $E\left(y_{0}(\cdot) \mid y_{0}\left(\mathcal{Q}_{1}\right), y_{0}\left(\mathcal{Q}_{0}\right)\right)$, because for the σ-algebras
$\sigma\left(\delta_{1}\left(\mathcal{Q}_{1}\right), y_{0}\left(\mathcal{Q}_{0}\right)\right)=\sigma\left(y_{0}\left(\mathcal{Q}_{1}\right)-E\left(y_{0}\left(\mathcal{Q}_{1}\right) \mid y_{0}\left(\mathcal{Q}_{0}\right)\right), y_{0}\left(\mathcal{Q}_{0}\right)\right)=\sigma\left(y_{0}\left(\mathcal{Q}_{1}\right), y_{0}\left(\mathcal{Q}_{0}\right)\right)$,
since $\left.\sigma\left(y_{0}\left(\mathcal{Q}_{1}\right)-E\left(y_{0}\left(\mathcal{Q}_{1}\right) \mid y_{0}\left(\mathcal{Q}_{0}\right)\right), y_{0}\left(\mathcal{Q}_{0}\right)\right)=\sigma\left(y_{0}\left(\mathcal{Q}_{1}\right)-f\left(y_{0}\left(\mathcal{Q}_{0}\right)\right)\right), y_{0}\left(\mathcal{Q}_{0}\right)\right) \subset$ $\sigma\left(y_{0}\left(\mathcal{Q}_{1}\right), y_{0}\left(\mathcal{Q}_{0}\right)\right)$, and the opposite also holds. Therefore,

$$
\begin{aligned}
E\left(\delta_{1}(\mathbf{s}) \mid \delta_{1}\left(\mathcal{Q}_{1}\right)\right) & =E\left(\delta_{1}(\mathbf{s}) \mid \delta_{1}\left(\mathcal{Q}_{1}\right), y_{0}\left(\mathcal{Q}_{0}\right)\right) \\
& =E\left(y_{0}(\mathbf{s}) \mid \delta_{1}\left(\mathcal{Q}_{1}\right), y_{0}\left(\mathcal{Q}_{0}\right)\right)-E\left(E\left(y_{0}(\mathbf{s}) \mid y_{0}\left(\mathcal{Q}_{0}\right)\right) \mid \delta_{1}\left(\mathcal{Q}_{1}\right), y_{0}\left(\mathcal{Q}_{0}\right)\right) \\
& =E\left(y_{0}(\mathbf{s}) \mid y_{0}\left(\mathcal{Q}_{1}\right), y_{0}\left(\mathcal{Q}_{0}\right)\right)-E\left(y_{0}(\mathbf{s}) \mid y_{0}\left(\mathcal{Q}_{0}\right)\right)
\end{aligned}
$$

And so,
$\tau_{0}(\mathbf{s})+\tau_{1}(\mathbf{s})=E\left(y_{0}(\mathbf{s}) \mid y_{0}\left(\mathcal{Q}_{0}\right)\right)+E\left(\delta_{1}(\mathbf{s}) \mid \delta_{1}\left(\mathcal{Q}_{1}\right)\right)=E\left(y_{0}(\mathbf{s}) \mid y_{0}\left(\mathcal{Q}_{1}\right), y_{0}\left(\mathcal{Q}_{0}\right)\right)$.

Then, $\delta_{2}(\mathbf{s})=y_{0}(\mathbf{s})-E\left(y_{0}(\mathbf{s}) \mid y_{0}\left(\mathcal{Q}_{0} \cup \mathcal{Q}_{1}\right)\right)$, which implies $y_{0}\left(\mathcal{Q}_{0} \cup \mathcal{Q}_{1}\right) \Perp \delta_{2}(\mathbf{s})$. Iteratively repeat this argument to obtain $\sum_{l=0}^{m} \tau_{l}(\mathbf{s})=E\left(y_{0}(\mathbf{s}) \mid y_{0}\left(\cup_{l=0}^{m} \mathcal{Q}_{l}\right)\right)$.

Proof of Proposition (3. Using $T_{m}(\mathbf{s}, \mathbf{s})=1$ and independence of $\widetilde{\tau}_{0}, \ldots, \widetilde{\tau}_{M}$, we have $C_{M}(\mathbf{s}, \mathbf{s})=\operatorname{var}\left(\sum_{m=0}^{M} \widetilde{\tau}_{m}(\mathbf{s})\right)=\operatorname{var}\left(\sum_{m=0}^{M} \tau_{m}(\mathbf{s})\right)$. Hence, using Lemma 3. we have $C_{M}(\mathbf{s}, \mathbf{s})=\operatorname{var}\left(E\left(y_{0}(\mathbf{s}) \mid y_{0}\left(\cup_{m=0}^{M} \mathcal{Q}_{m}\right)\right)\right)=\operatorname{var}\left(y_{0}(\mathbf{s})\right)=$ $C_{0}(\mathbf{s}, \mathbf{s})$, because $\mathbf{s} \in \mathcal{Q}=\cup_{m=0}^{M} \mathcal{Q}_{m}$.

Proof of Proposition \& First, note that $y_{0}(\cdot)$ is p times (mean-square) differentiable at \mathbf{s} if and only if $C_{0, \mathbf{s}}(\mathbf{h}):=C_{0}(\mathbf{s}, \mathbf{s}+\mathbf{h})$ is $2 p$ times differentiable at the origin $(2 p \mathrm{DO})$.

By Lemma 2, we have $C_{M, \mathbf{s}}(\mathbf{h}):=C_{M}(\mathbf{s}, \mathbf{s}+\mathbf{h})=\sum_{m=0}^{M-1} f_{m}(\mathbf{s}, \mathbf{s}+\mathbf{h})+$ $v_{M}(\mathbf{s}, \mathbf{s}+\mathbf{h})$, where $f_{m}\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right):=\sum_{j=1}^{r_{m}} a_{m, j}\left(\mathbf{s}_{1}\right) v_{m}\left(\mathbf{q}_{m, j}, \mathbf{s}_{2}\right)$, and $a_{m, j}(\mathbf{s})$ is the j-th element of the vector $\mathbf{a}_{m}(\mathbf{s})=v_{m}\left(\mathcal{Q}_{m}, \mathcal{Q}_{m}\right)^{-1} v_{m}\left(\mathcal{Q}_{m}, \mathbf{s}\right)$. We now show by induction for $m=0, \ldots, M-1$ that
$v_{m, \mathbf{q}, \mathbf{s}}(\mathbf{h}):=v_{m}(\mathbf{q}, \mathbf{s}+\mathbf{h})$ (for any $\left.\mathbf{q} \in \mathcal{Q}\right)$ and $f_{m, \mathbf{s}}(\mathbf{h}):=f_{m}(\mathbf{s}, \mathbf{s}+$
$\mathbf{h})$ are at least $2 p \mathrm{DO}$, and $v_{m, \mathbf{s}, \mathbf{s}}(\mathbf{h})$ is exactly $2 p \mathrm{DO}$.
For $m=0, v_{0, \mathbf{q}, \mathbf{s}}(\mathbf{h})=C_{0}(\mathbf{q}, \mathbf{s}+\mathbf{h}) \cdot T_{0}(\mathbf{q}, \mathbf{s}+\mathbf{h})$ is at least $2 p \mathrm{DO}$ by assumption and hence so is $f_{0, \mathbf{s}}(\mathbf{h})=\sum_{j=1}^{r_{0}} a_{0, j}(\mathbf{s}) v_{0}\left(\mathbf{q}_{0, j}, \mathbf{s}+\mathbf{h}\right)$. Further, $v_{0, \mathbf{s}, \mathbf{s}}(\mathbf{h})$ is exactly $2 p \mathrm{DO}$. Now assume that (S1.1) holds for m. Then, using Equation 2.2, $v_{m+1, \mathbf{q}, \mathbf{s}}(\mathbf{h})=\left(v_{m, q, \mathbf{s}}(\mathbf{h})-f_{m}(\mathbf{q}, \mathbf{s}+\mathbf{h})\right) \cdot T_{m+1}(\mathbf{q}, \mathbf{s}+\mathbf{h})$, which
is at least $2 p \mathrm{DO}$, and so is $f_{m+1, \mathbf{s}}(\mathbf{h})=\sum_{j=1}^{r_{m+1}} a_{m+1, j}(\mathbf{s}) v_{m+1, \mathbf{q}_{m, j}, \mathbf{s}}(\mathbf{h})$. Also, $v_{m+1, \mathbf{s}, \mathbf{s}}(\mathbf{h})$ is exactly $2 p \mathrm{DO}$. This proves (S1.1) for $m=1, \ldots, M$.

In summary, we have $C_{M, \mathbf{s}}(\mathbf{h})=\sum_{m=0}^{M-1} f_{m, \mathbf{s}}(\mathbf{h})+\left(v_{M-1, \mathbf{s}, \mathbf{s}}(\mathbf{h})-f_{M-1, \mathbf{s}}(\mathbf{h})\right)$. $T_{M}(\mathbf{s}, \mathbf{s}+\mathbf{h})$, where $T_{M, \mathbf{s}}(\mathbf{h})=T_{M}(\mathbf{s}, \mathbf{s}+\mathbf{h})$ and $f_{m, \mathbf{s}}(\mathbf{h}), m=0, \ldots, M-1$, are all at least $2 p \mathrm{DO}$, and $v_{M-1, \mathbf{s}, \mathbf{s}}(\mathbf{h})$ is exactly $2 p \mathrm{DO}$.

Thus, $C_{M, \mathbf{s}}(\mathbf{h})=C_{M}(\mathbf{s}, \mathbf{s}+\mathbf{h})$ is $2 p \mathrm{DO}$, and so the corresponding M RA process $y_{M}(\cdot) \sim G P\left(0, C_{M}\right)$ is p times (mean-square) differentiable at s.

Proof of Proposition 5. First, note that realizations are (mean-square) continuous at $\mathbf{s} \in \mathcal{D}$, if $\lim _{\mathbf{h} \rightarrow \mathbf{0}} C_{M}(\mathbf{s}, \mathbf{s}+\mathbf{h})=C_{M}(\mathbf{s}, \mathbf{s})$. Further, we have $\mu_{M}(\mathbf{s})=E\left(y_{M}(\mathbf{s}) \mid \mathbf{z}\right)=\mathbf{z}^{\prime} \operatorname{cov}(\mathbf{z})^{-1} C_{M}(\mathcal{S}, \mathbf{s})$. From the proof of Proposition 4. we have that $C_{M}\left(\mathbf{s}_{0}, \mathbf{s}+\mathbf{h}\right)=\sum_{m=0}^{M} \sum_{j=1}^{r_{m}} a_{m, j}\left(\mathbf{s}_{0}\right) v_{m}\left(\mathbf{q}_{m, j}, \mathbf{s}+\right.$ h). It is straightforward to show using a proof by induction very similar to that for Proposition 4, that $\lim _{\mathbf{h} \rightarrow \mathbf{0}} v_{m}\left(\mathbf{q}_{m, j}, \mathbf{s}+\mathbf{h}\right)=v_{m}\left(\mathbf{q}_{m, j}, \mathbf{s}\right)$ if $\lim _{\mathbf{h} \rightarrow \mathbf{0}} T_{m}\left(\mathbf{q}_{m, j}, \mathbf{s}+\mathbf{h}\right)=T_{m}\left(\mathbf{q}_{m, j}, \mathbf{s}\right)$ for all m. In contrast, if \mathbf{s} is on a region boundary, at least one $T_{m}\left(\mathbf{q}_{m, j}, \mathbf{s}+\mathbf{h}\right)$ will be discontinuous as a function of \mathbf{h}, and so will $C_{M}\left(\mathbf{s}_{0}, \mathbf{s}+\mathbf{h}\right)$ (unless $v_{m}(\mathbf{s}, \mathbf{s}+\mathbf{h})=w_{m}(\mathbf{s}, \mathbf{s}+\mathbf{h})$ and hence the M-RA-block is exact - see Proposition 6).

Lemma 4 (Block-independence for exponential covariance). Assume $y_{0}(\cdot) \sim$ $G P\left(0, C_{0}\right)$, where C_{0} is an exponential covariance function on the real line,
$\mathcal{D}=\mathbb{R}$, and consider a domain partitioning as in (2.7) with $r_{m}=(J-1) J^{m}$ knots for $m=0, \ldots, M-1$, which are placed such that at each resolution m a knot is located on each boundary between two subregions at resolution $m+1$. Then, for any $m=1, \ldots, M$, if $\mathbf{s}_{i} \in \mathcal{D}_{i_{1}, \ldots, i_{m}}$ and $\mathbf{s}_{j} \in \mathcal{D}_{j_{1}, \ldots, j_{m}}$, we have $w_{m}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=0$ (defined in (2.2) if $\left(i_{1}, \ldots, i_{m}\right) \neq\left(j_{1}, \ldots, j_{m}\right)$.

Proof of Lemma 4. For any $m=1, \ldots, M$, using Lemma 3, we have

$$
w_{m}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=C_{0}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)-C_{0}\left(\mathbf{s}_{i}, \mathcal{Q}^{m-1}\right) C_{0}\left(\mathcal{Q}^{m-1}, \mathcal{Q}^{m-1}\right)^{-1} C_{0}\left(\mathcal{Q}^{m-1}, \mathbf{s}_{j}\right)
$$

where $\mathcal{Q}^{m-1}:=\cup_{l=0}^{m-1} \mathcal{Q}_{l}$. By the law of total covariance,

$$
\begin{aligned}
w_{m}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right) & =C_{0}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)-\operatorname{Cov}\left(E\left(y_{0}\left(\mathbf{s}_{i}\right) \mid y_{0}\left(\mathcal{Q}^{m-1}\right)\right), E\left(y_{0}\left(\mathbf{s}_{j}\right) \mid y_{0}\left(\mathcal{Q}^{m-1}\right)\right)\right) \\
& =E\left(\operatorname{Cov}\left(y_{0}\left(\mathbf{s}_{i}\right), y_{0}\left(\mathbf{s}_{j}\right) \mid y_{0}\left(\mathcal{Q}^{m-1}\right)\right)\right)
\end{aligned}
$$

Because $\left(i_{1}, i_{2}, \ldots, i_{m-1}\right) \neq\left(j_{1}, j_{2}, \ldots, j_{m-1}\right)$, there is a $\mathbf{q} \in \mathcal{Q}^{m-1}$ that lies between \mathbf{s}_{i} and \mathbf{s}_{j}. As $y_{0}(\cdot)$ is a Markov process (e.g., Rasmussen and Williams, 2006, Ch. 6), $E\left(\operatorname{Cov}\left(y_{0}\left(\mathbf{s}_{i}\right), y_{0}\left(\mathbf{s}_{j}\right) \mid y_{0}\left(\mathcal{Q}^{m-1}\right)\right)\right)=E\left(\operatorname{Cov}\left(y_{0}\left(\mathbf{s}_{i}\right), y_{0}\left(\mathbf{s}_{j}\right) \mid y_{0}(\mathbf{q})\right)\right)=$ $w_{m}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=0$.

Proof of Proposition 6. Comparing the expression for C_{M} in Lemma 2 to the expression for C_{0} in (2.3), it is clear that $C_{M}\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)=C_{0}\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)$ if

$$
\begin{equation*}
v_{m}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=w_{m}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right), \quad \text { for } m=0, \ldots, M \text { and any } \mathbf{s}_{i}, \mathbf{s}_{j} \in \mathcal{D} \tag{S1.2}
\end{equation*}
$$

We now prove (S1.2) by induction. For $m=0$, we have $v_{0}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=$
$C_{0}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right) T_{0}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=C_{0}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)$, because $T_{0}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right) \equiv 1$ for the M-RA-block.
For $m>0$, assume that $v_{m-1}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=w_{m-1}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)$. Then, we can write

$$
\begin{equation*}
v_{m}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=w_{m}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right) T_{m}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right) \tag{S1.3}
\end{equation*}
$$

Assume that $\mathbf{s}_{i} \in \mathcal{D}_{i_{1}, \ldots, i_{m}}$ and $\mathbf{s}_{j} \in \mathcal{D}_{j_{1}, \ldots, j_{m}}$. Then, if $\left(i_{1}, \ldots, i_{m}\right)=$ $\left(j_{1}, \ldots, j_{m}\right)$, S1.3) holds because $T_{m}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=1$. If $\left(i_{1}, \ldots, i_{m}\right) \neq\left(j_{1}, \ldots, j_{m}\right)$, we have $T_{m}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=0$ but also $w_{m}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)=0$ by Lemma 4. This proves (S1.3), which proves (S1.2), which in turns proves Proposition 6.

Proof of Proposition 7. From (3.10), we have $\mathbf{W}_{m, l}^{k+1}=\left(\mathbf{W}_{m, l}^{k}-\mathbf{X}_{m, l}^{k}\right) \circ$ $T_{k+1}\left(\mathcal{Q}_{m}, \mathcal{Q}_{l}\right)$, where $\mathbf{X}_{m, l}^{k}:=\mathbf{W}_{m, k}^{k} \boldsymbol{\Lambda}_{k}^{-1} \mathbf{W}_{l, k}^{k}{ }^{\prime}$. The (i, j) th element of this matrix is

$$
\begin{equation*}
\left(\mathbf{X}_{m, l}^{k}\right)_{i, j}=\sum_{a, b=1}^{r_{k}} v_{k}\left(\mathbf{q}_{m, i}, \mathbf{q}_{k, a}\right) v_{l}\left(\mathbf{q}_{l, j}, \mathbf{q}_{k, b}\right)\left(\boldsymbol{\Lambda}_{k}^{-1}\right)_{a, b} \tag{S1.4}
\end{equation*}
$$

where $v_{k}\left(\mathbf{q}_{m, i}, \mathbf{q}_{k, a}\right)=0$ if $\left\|\mathbf{q}_{m, i}-\mathbf{q}_{k, a}\right\| \geq d_{k}$, and $v_{l}\left(\mathbf{q}_{l, j}, \mathbf{q}_{k, b}\right)=0$ if $\left\|\mathbf{q}_{l, j}-\mathbf{q}_{k, b}\right\| \geq d_{k}$. Further, we only need the (i, j) th element of $\mathbf{W}_{m, l}^{k+1}$ (and thus of $\left.\mathbf{X}_{m, l}^{k}\right)$ if $(i, j) \in \mathcal{I}_{m, l}$, because $\left(\mathbf{W}_{m, l}^{l}\right)_{i, j}=0$ if $\left\|\mathbf{q}_{m, i}-\mathbf{q}_{l, j}\right\| \geq d_{l}$. Hence, we only need $\left(\boldsymbol{\Lambda}_{k}^{-1}\right)_{a, b}$ if $\left\|\mathbf{q}_{m, i}-\mathbf{q}_{l, j}\right\|<d_{l},\left\|\mathbf{q}_{m, i}-\mathbf{q}_{k, a}\right\|<d_{k}$, and $\left\|\mathbf{q}_{l, j}-\mathbf{q}_{k, b}\right\|<d_{k}$, for some $m, l \in\{k+1, \ldots, M\}$. As $d_{k+1}=d_{k} / J>$ $d_{k+2}>\ldots>d_{M}$, this means that do not need to calculate $\left(\boldsymbol{\Lambda}_{k}^{-1}\right)_{a, b}$ if $\left\|\mathbf{q}_{k, a}-\mathbf{q}_{k, b}\right\| \geq 2 d_{k}+2 d_{k+1}=(2+2 / J) d_{k}$, and so we can replace $\boldsymbol{\Lambda}_{k}^{-1}$ in $\mathbf{X}_{m, l}^{k}$ by $\mathbf{S}_{k}=\widetilde{\Lambda}_{k}^{-1} \circ \mathbf{G}_{k}$.

Further, for each $(i, j) \in \mathcal{I}_{m, l}$, the time to compute (S1.4) is $\mathcal{O}\left(r_{0}^{2}\right)$, because for any $\mathbf{s} \in \mathcal{D}$, the size of the set $\left\{\mathbf{q} \in \mathcal{Q}_{k}: v_{k}(\mathbf{s}, \mathbf{q}) \neq 0\right\}$ is $\mathcal{O}\left(r_{0}\right)$. As $\mathcal{I}_{m, l}$ is a set of size $\mathcal{O}\left(r_{m} r_{0}\right)$, the cost of computing $\mathbf{W}_{m, l}^{k}$ for each m, l, k is $\mathcal{O}\left(r_{m} r_{0}^{3}\right)$. Thus, the total computation time for $k=0, \ldots, l-1, l=0, \ldots, m$, and $m=0, \ldots, M$ is $\mathcal{O}\left(\sum_{m=0}^{M} \sum_{l=0}^{m} \sum_{k=0}^{l-1} r_{m} r_{0}^{3}\right)=\mathcal{O}\left(r_{0}^{3} \sum_{m=0}^{M} r_{m} m^{2}\right)=$ $\mathcal{O}\left(r_{0}^{4} \sum_{m=0}^{M} J^{m} m^{2}\right)=\mathcal{O}\left(r_{0}^{4} M^{2} J^{M}\right)=\mathcal{O}\left(n M^{2} r_{0}^{3}\right)$, because $n=\mathcal{O}\left(r_{0} J^{M}\right)$ and $\sum_{m=0}^{M} m^{2} J^{m} \leq 2 M^{2} J^{M}=\mathcal{O}\left(M J^{M}\right)$.

Proof of Proposition 8. We have $\left(\widetilde{\boldsymbol{\Lambda}}_{m, l}\right)_{i, j}=0$ if $\nexists \mathbf{s} \in \mathcal{D}$ such that $T_{m}\left(\mathbf{q}_{m, i}, \mathbf{s}\right) \neq$ 0 and $T_{l}\left(\mathbf{q}_{l, j}, \mathbf{s}\right) \neq 0$, or equivalently, if $\left\|\mathbf{q}_{m, i}-\mathbf{q}_{l, j}\right\| \geq d_{m}+d_{l}$. As $d_{l}=d_{m} J^{(l-m) / d}$, the i th row $\left(\widetilde{\boldsymbol{\Lambda}}_{m, l}\right)_{i,}$, has $\mathcal{O}\left(r_{0} J^{(l-m)_{+}}\right)$nonzero elements, where $(x)_{+}=x \mathbb{1}_{\{x \geq 0\}}$. The entire row of the matrix $\widetilde{\Lambda}$ corresponding to $\mathbf{q}_{m, i}$ thus has $\mathcal{O}\left(r_{0} \sum_{l=0}^{M} J^{(l-m)_{+}}\right)=\mathcal{O}\left(r_{0}\left(m+J^{M-m}\right)\right)$ nonzero elements. As there are $\mathcal{O}\left(r_{0} J^{m}\right)$ rows corresponding to resolution m, the total number of nonzero elements in $\widetilde{\boldsymbol{\Lambda}}$ is $\mathcal{O}\left(\sum_{m=0}^{M} r_{0} J^{m} \cdot r_{0}\left(m+J^{M-m}\right)\right)=\mathcal{O}\left(r_{0}^{2}\left(M J^{M}+\right.\right.$ $\left.\left.\sum_{m=0}^{M} m J^{m}\right)\right)=\mathcal{O}\left(n M r_{0}\right)$, because $\sum_{m=0}^{M} m J^{m} \leq 2 M J^{M}=\mathcal{O}\left(M J^{M}\right)$ and $n=\mathcal{O}\left(r_{0} J^{M}\right)$.

S2 Additional simulation plots

We provide here additional settings for the simulation study described in Section 4 of the main document. We consider various settings for the

Figure 1: Comparison of approximation accuracy for different sample sizes in one-dimensional space

Matérn covariance function with smoothness parameter ν, range parameter κ, and noise or nugget variance τ^{2}.

Bibliography

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press.

(a) $n=25,600, \nu=1.5, \kappa=0.05, \tau^{2}=0.05$
(b) $n=12,544, \nu=2.5, \kappa=0.05, \tau^{2}=0.05$

Figure 2: Comparison of approximation accuracy for different sample sizes in two-dimensional space

