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S1 Proofs

In this section, we provide proofs for the propositions stated throughout

the main manuscript. We also state and prove three lemmas that are used

in the proofs of the propositions.

Proof of Proposition 1. From (2.6), we have yM(·) = b(·)′η, where η ∼

Nr(0,Λ−1) and b(·) is a vector of deterministic functions (for given C0, Q,

and T ). Hence, it is trivial to show that yM(·) is a Gaussian process with

mean zero. The covariance function is derived by combining the expression

for yM(·) on the right-hand side of (2.4) with the equations in (2.5).

Lemma 1 (Exact predictive process). The predictive process is exact at any
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knot location; that is, if x(m)(·) is the predictive process of x(·) ∼ GP (0, C)

based on knots Qm (see Definition 1), and s1 ∈ Qm (or s2 ∈ Qm), then

cov
(
x(m)(s1), x(m)(s2)

)
= C(s1, s2).

Proof of Lemma 1. By the law of total covariance, we have

cov
(
x(m)(s1), x(m)(s2)

)
= cov

(
E(x(s1)|x(Qm), E(x(s2)|x(Qm)

)
= cov

(
x(s1), x(s2)

)
− E

(
cov(x(s1), x(s2)|x(Qm))

)
= C(s1, s2),

because cov(x(s1), x(s2)|x(Qm)) = 0 if s1 ∈ Qm (or s2 ∈ Qm).

Proof of Proposition 2. The proof will be carried out by induction. For l =

1, we have vm+1(q, s) =
(
vm(q, s)− cov(τ̃(q), τ̃(s))

)
Tm+1(q, s) = 0, because

using Lemma 1, we can see that cov
(
τ̃(q), τ̃(s)

)
= cov

(
δ̃(m)(q), δ̃(m)(s)

)
=

cov
(
δ̃(q), δ̃(s)

)
= vm(q, s). For l > 1, assuming that vm+l−1(q, s) = 0, we

have

vm+l(q, s) =
(
vm+l−1(q, s)− bm+l−1(q)′Λ−1

m+l−1bm+l−1(s)
)
· Tm+l(q, s) = 0,

because bm+l−1(q) = vm+l−1(q,Qm+l−1) = 0.

Lemma 2 (M -RA covariance at knot location s). If s1 ∈ Q, then

CM(s1, s2) =
∑M−1

m=0 vm(s1,Qm)vm(Qm,Qm)−1vm(Qm, s2)+vM(s1, s2), s2 ∈ D.

Proof of Lemma 2. In the expression for CM in Proposition 1, we have

vM(s1,QM)vM(QM ,QM)−1vM(QM , s2) = vM(s1, s2) for s1 ∈ Q. This fol-
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lows from Lemma 1 if s1 ∈ QM , and from Proposition 2 for s1 ∈ Qm for

m < M (because then both sides of the equation are zero).

Lemma 3 (Sum of predictive processes). For the decomposition in (2.1),

the sum of predictive processes up to resolution m is equal in distribution

to the predictive process based on the union of the knots up to resolution m,

for any m = 0, 1, . . . ,M ; that is,
∑m

l=0 τl(·)
d
= E(y0(·)|y0(∪ml=0Ql)).

Proof of Lemma 3. For m = 1, δ1(s) |= y0(Q0), for any s ∈ D, because

E
(
δ1(s)y0(Q0)

)
= E

((
y0(s)−E(y0(s)|y0(Q0))

)
y0(Q0)

)
= E

(
y0(Q0)

)
E(δ1(s)) =

0, and y0(Q0), δ1(s) are jointly Gaussian. And we haveE(y0(·)|δ1(Q1), y0(Q0)) =

E(y0(·)|y0(Q1), y0(Q0)), because for the σ-algebras

σ(δ1(Q1), y0(Q0)) = σ
(
y0(Q1)−E

(
y0(Q1)|y0(Q0)

)
, y0(Q0)

)
= σ

(
y0(Q1), y0(Q0)

)
,

since σ
(
y0(Q1)−E

(
y0(Q1)|y0(Q0)

)
, y0(Q0)

)
= σ

(
y0(Q1)−f

(
y0(Q0))

)
, y0(Q0)

)
⊂

σ
(
y0(Q1), y0(Q0)

)
, and the opposite also holds. Therefore,

E
(
δ1(s)|δ1(Q1)

)
= E

(
δ1(s)|δ1(Q1), y0(Q0)

)
= E

(
y0(s)|δ1(Q1), y0(Q0)

)
− E

(
E
(
y0(s)|y0(Q0)

)
|δ1(Q1), y0(Q0)

)
= E

(
y0(s)|y0(Q1), y0(Q0)

)
− E

(
y0(s)|y0(Q0)

)
,

And so,

τ0(s)+τ1(s) = E
(
y0(s)|y0(Q0)

)
+E
(
δ1(s)|δ1(Q1)

)
= E(y0(s)|y0(Q1), y0(Q0)).
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Then, δ2(s) = y0(s)−E
(
y0(s)|y0(Q0∪Q1)

)
, which implies y0(Q0∪Q1) |= δ2(s).

Iteratively repeat this argument to obtain
∑m

l=0 τl(s) = E
(
y0(s)|y0(∪ml=0Ql)

)
.

Proof of Proposition 3. Using Tm(s, s) = 1 and independence of τ̃0, . . . , τ̃M ,

we have CM(s, s) = var(
∑M

m=0 τ̃m(s)) = var(
∑M

m=0 τm(s)). Hence, using

Lemma 3, we have CM(s, s) = var
(
E
(
y0(s)

∣∣y0(∪Mm=0Qm)
))

= var(y0(s)) =

C0(s, s), because s ∈ Q = ∪Mm=0Qm.

Proof of Proposition 4. First, note that y0(·) is p times (mean-square) dif-

ferentiable at s if and only if C0,s(h) := C0(s, s+h) is 2p times differentiable

at the origin (2pDO).

By Lemma 2, we have CM,s(h) := CM(s, s + h) =
∑M−1

m=0 fm(s, s + h) +

vM(s, s + h), where fm(s1, s2) :=
∑rm

j=1 am,j(s1)vm(qm,j, s2), and am,j(s) is

the j-th element of the vector am(s) = vm(Qm,Qm)−1vm(Qm, s). We now

show by induction for m = 0, . . . ,M − 1 that

vm,q,s(h) := vm(q, s+h) (for any q ∈ Q) and fm,s(h) := fm(s, s+

h) are at least 2pDO, and vm,s,s(h) is exactly 2pDO.
(S1.1)

For m = 0, v0,q,s(h) = C0(q, s + h) · T0(q, s + h) is at least 2pDO by

assumption and hence so is f0,s(h) =
∑r0

j=1 a0,j(s)v0(q0,j, s + h). Further,

v0,s,s(h) is exactly 2pDO. Now assume that (S1.1) holds for m. Then, using

Equation 2.2, vm+1,q,s(h) =
(
vm,q,s(h)−fm(q, s+h)) ·Tm+1(q, s+h), which

4



S1. PROOFS

is at least 2pDO, and so is fm+1,s(h) =
∑rm+1

j=1 am+1,j(s)vm+1,qm,j ,s(h). Also,

vm+1,s,s(h) is exactly 2pDO. This proves (S1.1) for m = 1, . . . ,M .

In summary, we have CM,s(h) =
∑M−1

m=0 fm,s(h)+(vM−1,s,s(h)−fM−1,s(h))·

TM(s, s + h), where TM,s(h) = TM(s, s + h) and fm,s(h), m = 0, . . . ,M − 1,

are all at least 2pDO, and vM−1,s,s(h) is exactly 2pDO.

Thus, CM,s(h) = CM(s, s + h) is 2pDO, and so the corresponding M -

RA process yM(·) ∼ GP (0, CM) is p times (mean-square) differentiable at

s.

Proof of Proposition 5. First, note that realizations are (mean-square) con-

tinuous at s ∈ D, if limh→0CM(s, s + h) = CM(s, s). Further, we have

µM(s) = E(yM(s)|z) = z′cov(z)−1CM(S, s). From the proof of Propo-

sition 4, we have that CM(s0, s + h) =
∑M

m=0

∑rm
j=1 am,j(s0)vm(qm,j, s +

h). It is straightforward to show using a proof by induction very simi-

lar to that for Proposition 4, that limh→0 vm(qm,j, s + h) = vm(qm,j, s) if

limh→0 Tm(qm,j, s + h) = Tm(qm,j, s) for all m. In contrast, if s is on a

region boundary, at least one Tm(qm,j, s + h) will be discontinuous as a

function of h, and so will CM(s0, s + h) (unless vm(s, s + h) = wm(s, s + h)

and hence the M -RA-block is exact — see Proposition 6).

Lemma 4 (Block-independence for exponential covariance). Assume y0(·) ∼

GP (0, C0), where C0 is an exponential covariance function on the real line,
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D = R, and consider a domain partitioning as in (2.7) with rm = (J−1)Jm

knots for m = 0, . . . ,M − 1, which are placed such that at each resolution

m a knot is located on each boundary between two subregions at resolution

m + 1. Then, for any m = 1, . . . ,M , if si ∈ Di1,...,im and sj ∈ Dj1,...,jm, we

have wm(si, sj) = 0 (defined in (2.2)) if (i1, . . . , im) 6= (j1, . . . , jm).

Proof of Lemma 4. For any m = 1, . . . ,M , using Lemma 3, we have

wm(si, sj) = C0(si, sj)− C0(si,Qm−1)C0(Qm−1,Qm−1)−1C0(Qm−1, sj),

where Qm−1 := ∪m−1
l=0 Ql. By the law of total covariance,

wm(si, sj) = C0(si, sj)− Cov
(
E
(
y0(si)|y0(Qm−1)

)
, E
(
y0(sj)|y0(Qm−1)

))
= E

(
Cov

(
y0(si), y0(sj)|y0(Qm−1)

))
.

Because (i1, i2, . . . , im−1) 6= (j1, j2, . . . , jm−1), there is a q ∈ Qm−1 that

lies between si and sj. As y0(·) is a Markov process (e.g., Rasmussen and

Williams, 2006, Ch. 6), E
(
Cov

(
y0(si), y0(sj)|y0(Qm−1)

))
= E

(
Cov

(
y0(si), y0(sj)|y0(q)

))
=

wm(si, sj) = 0.

Proof of Proposition 6. Comparing the expression for CM in Lemma 2 to

the expression for C0 in (2.3), it is clear that CM(s1, s2) = C0(s1, s2) if

vm(si, sj) = wm(si, sj), for m = 0, . . . ,M and any si, sj ∈ D. (S1.2)

We now prove (S1.2) by induction. For m = 0, we have v0(si, sj) =
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C0(si, sj)T0(si, sj) = C0(si, sj), because T0(si, sj) ≡ 1 for the M -RA-block.

For m > 0, assume that vm−1(si, sj) = wm−1(si, sj). Then, we can write

vm(si, sj) = wm(si, sj)Tm(si, sj). (S1.3)

Assume that si ∈ Di1,...,im and sj ∈ Dj1,...,jm . Then, if (i1, . . . , im) =

(j1, . . . , jm), (S1.3) holds because Tm(si, sj) = 1. If (i1, . . . , im) 6= (j1, . . . , jm),

we have Tm(si, sj) = 0 but also wm(si, sj) = 0 by Lemma 4. This proves

(S1.3), which proves (S1.2), which in turns proves Proposition 6.

Proof of Proposition 7. From (3.10), we have Wk+1
m,l = (Wk

m,l − Xk
m,l) ◦

Tk+1(Qm,Ql), where Xk
m,l := Wk

m,kΛ
−1
k Wk

l,k
′. The (i, j)th element of this

matrix is

(Xk
m,l)i,j =

∑rk
a,b=1 vk(qm,i,qk,a)vl(ql,j,qk,b)(Λ

−1
k )a,b, (S1.4)

where vk(qm,i,qk,a) = 0 if ‖qm,i − qk,a‖ ≥ dk, and vl(ql,j,qk,b) = 0 if

‖ql,j −qk,b‖ ≥ dk. Further, we only need the (i, j)th element of Wk+1
m,l (and

thus of Xk
m,l) if (i, j) ∈ Im,l, because (Wl

m,l)i,j = 0 if ‖qm,i − ql,j‖ ≥ dl.

Hence, we only need (Λ−1
k )a,b if ‖qm,i − ql,j‖ < dl, ‖qm,i − qk,a‖ < dk, and

‖ql,j − qk,b‖ < dk, for some m, l ∈ {k + 1, . . . ,M}. As dk+1 = dk/J >

dk+2 > . . . > dM , this means that do not need to calculate (Λ−1
k )a,b if

‖qk,a − qk,b‖ ≥ 2dk + 2dk+1 = (2 + 2/J)dk, and so we can replace Λ−1
k in

Xk
m,l by Sk = Λ̃−1

k ◦Gk.
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Further, for each (i, j) ∈ Im,l, the time to compute (S1.4) is O(r2
0),

because for any s ∈ D, the size of the set {q ∈ Qk : vk(s,q) 6= 0} is O(r0).

As Im,l is a set of sizeO(rmr0), the cost of computing Wk
m,l for each m, l, k is

O(rmr
3
0). Thus, the total computation time for k = 0, . . . , l−1, l = 0, . . . ,m,

and m = 0, . . . ,M is O(
∑M

m=0

∑m
l=0

∑l−1
k=0 rmr

3
0) = O(r3

0

∑M
m=0 rmm

2) =

O(r4
0

∑M
m=0 J

mm2) = O(r4
0M

2JM) = O(nM2r3
0), because n = O(r0J

M)

and
∑M

m=0m
2Jm ≤ 2M2JM = O(MJM).

Proof of Proposition 8. We have (Λ̃m,l)i,j = 0 if 6 ∃ s ∈ D such that Tm(qm,i, s) 6=

0 and Tl(ql,j, s) 6= 0, or equivalently, if ‖qm,i − ql,j‖ ≥ dm + dl. As

dl = dmJ
(l−m)/d, the ith row (Λ̃m,l)i,· has O(r0J

(l−m)+) nonzero elements,

where (x)+ = x1{x≥0}. The entire row of the matrix Λ̃ corresponding to

qm,i thus has O(r0

∑M
l=0 J

(l−m)+) = O(r0(m + JM−m)) nonzero elements.

As there are O(r0J
m) rows corresponding to resolution m, the total number

of nonzero elements in Λ̃ is O(
∑M

m=0 r0J
m ·r0(m+JM−m)) = O(r2

0(MJM +∑M
m=0mJ

m)) = O(nMr0), because
∑M

m=0mJ
m ≤ 2MJM = O(MJM) and

n = O(r0J
M).

S2 Additional simulation plots

We provide here additional settings for the simulation study described in

Section 4 of the main document. We consider various settings for the
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Figure 1: Comparison of approximation accuracy for different sample sizes in one-dimensional space

Matérn covariance function with smoothness parameter ν, range param-

eter κ, and noise or nugget variance τ 2.
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Figure 2: Comparison of approximation accuracy for different sample sizes in two-dimensional space
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