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Abstract: We introduce a new class of measures that test for independence between

two random vectors using the expected difference between conditional and marginal

characteristic functions. Based on a selected weight function in the class, we propose

a new index for measuring independence and study its properties. To illustrate the

use of such an index, two empirical versions are developed: slicing and kernel

approaches. Their asymptotic properties and applications are discussed. Lastly,

simulation results demostrate the advantages of the proposed method.
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1. Introduction

Measuring and testing independence are important in statistics. The classi-

cal Pearson product-moment correlation and covariance measure the linear de-

pendence between two random variables. In a multivariate normal setting, a

diagonal covariance matrix implies independence, but this does not generalize to

all settings. Likelihood-based methods, such as Wilks’ lambda (Wilks (1935))

or that of Puri and Sen (1971) cannot be applied if the dimension exceeds the

sample size, or if the distributional assumptions do not hold. In the latter case,

multivariate nonparametric approaches have been proposed by Taskinen, Oja

and Randles (2005). Furthermore, numerous studies have examined measuring

independence, including those of Blomqvist (1950), Blum, Kiefer and Rosenblatt

(1961), Hollander and Wolfe (1999), and Anderson (2003). Székely, Rizzo and

Bakirov (2007) proposed a novel distance covariance (dCov) to test for indepen-

dence between two random vectors of arbitrary dimensions. This test is very

useful because it is nonparametric, but free of tuning parameters. As a result,

it is also widely used in other areas, such as variable selection (Li, Zhong and

Zhu (2012)) and dimension reduction (Sheng and Yin (2013)). Huo and Székely

(2016) developed a fast algorithm for dCov. Finally, Heller, Heller and Gofine

(2013) proposed a novel multivariate test of association that effectively deals with

continuous and discrete random vectors, but may have trouble handling nominal
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random vectors, owing to its use of ranks.

Dependency measures defined by density-based divergence families can flexi-

bly handle correlation-type or conditional-type relationships between two vectors,

say, X and Y . For example, the φ-divergence family (Vajda (1989)) typically

involves a term g(P,Q) = dP/dQ, where P and Q are distributions, for which

we can define the Kullback–Leibler distance (KL-distance) as

E

[
log

f(X,Y )

f(X)f(Y )

]
= E

[
log

f(X|Y )

f(X)

]
= E

[
log

f(Y |X)

f(Y )

]
. (1.1)

Here, f(·) is a density, or g(P,Q) = f(x, y)/(f(x)f(y)), where dP = f(x, y) and

dQ = f(x)f(y), which appear in the first term in (1.1). The discrepancy is calcu-

lated using the ratio of the joint distribution and the product of the two marginal

distributions (first term in (1.1)), or the ratio of a conditional distribution and a

marginal distribution (second and third terms in (1.1)). Thus, the KL-distance

flexibly deals with X and Y as a correlation-type relationship (i.e., equal roles

of X and Y ), or as a conditional-type relationship. In comparison, dCov is a

characteristic function-based divergence measure that calculates the discrepancy

as the difference between the joint characteristic function and the product of

the marginal characteristic functions; thus it is a correlation-type relationship

only. The class of measures we define (using characteristic functions) deals with

conditional-type relationships. Therefore, the combination of our proposed mea-

sures and dCov form a class that is comparable with those developed for the

φ-divergence family. In other words, our proposed method fills a gap in the lit-

erature by comparing characteristic function-based measures and density-based

measures.

We define the proposed class of measures as a conditional class based on

characteristic functions, treating one of the random vectors as a response. This

is very similar to the approach adopted in classification and discriminant analyses

and in inverse regressions. Typical classification and discriminant analysis and in

inverse regression methods measure the relations in the inverse mean function (or

moments), or dependence that involves densities, whereas our method measures

the dependence between two sets of variables using distance. This novel class

defines a general collection of new measures by choosing different weight functions

in the definition, where the weight function in the class determines the actual

measure. For the purpose of illustration, however, we use a weight function

similar to that used by Székely, Rizzo and Bakirov (2007). In general, this weight

function leads to an index that can be calculated using Euclidean distance.
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The proposed method can flexibly deal with categorical or continuous Y . Re-

gardless of whether Y is categorical or the slicing method is used for continuous

Y , our index is a variant of the distance components (DISCO; Rizzo and Székely

(2010)) method. The index has a simple population version and requires only the

calculation of Euclidean distance, while keeping the advantage of nonparametric

methods. In comparison, the test defined in DISCO applies to categorical Y only,

and is a type of generalized ANOVA from two-samples to k-samples, but using an

atypical formulation, namely, differences between groups. Our method, however,

is defined for both continuous and categorical Y . In the case of categorical Y ,

the formulation determines the difference between the group and the complete

sample. Further information on the relationship between the proposed method

and DISCO can be found in the Supplementary Material. For continuous Y , the

slicing method is just one approach, which we connect to several existing ap-

proaches. Many other estimation methods can be used, including nonparametric

estimations. Here, we employ a kernel method to demonstrate the advantage of

our approach.

The rest of the paper is organized as follows. We propose the new class of

measures in Section 2. By choosing a particular weight function, we study the

resulting index and its properties in Section 3, and obtain formulae for certain

distributions in Section 3.1. An empirical version that employs slicing on Y is

proposed in Section 4.1, where we also establish its properties. A smoothing

estimation approach using kernel methods is proposed in Section 4.2. A per-

mutation test is outlined in Section 5. Simulations are used to illustrate the

usefulness of our proposed measures in Section 6. Section 7 concludes the paper.

All derivations and proofs are provided in the online Supplementary Material.

2. The New Class of Measures

Suppose X ∈ Rp and Y ∈ Rq are random vectors, where p and q are positive

integers. If p = 1, we use X = X; if q = 1, we use Y = Y . The characteristic

functions of X, X|Y and (X,Y) are denoted by fX, fX|Y and fX,Y, respectively.

For a complex-valued function f(·), we denote f̄ as the complex conjugate of f .

Let |f |2 = ff̄ , and the Euclidean norm of X ∈ Rp be |X|p.
The hypothesis test of independence between X and Y is as follows:

H0 : fX|Y = fX vs. H1 : fX|Y 6= fX.

This is because if X is independent of Y, then fX|Y = fX, which implies that
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eis
TYfX|Y = eis

TYfX, for s ∈ Rq. Then, by taking the expectation over Y, we

obtain fX,Y = fXfY.

Definition 1. The nonnegative measure of the conditional difference using the

characteristic function of X|Y is denoted by Cw,Y(X|Y), which has a squared

value of

C2
w,Y(X|Y) = ||fX|Y(t)− fX(t)||2 =

∫
Rp

|fX|Y(t)− fX(t)|2w(t)dt, (2.1)

where w(t) ∈ Rp is an arbitrary nonnegative weight function for which the

aforementioned integral exists. Note that C2
w,Y(X|Y) ≥ 0. The term C2

w,Y(X|Y)

is a Y-measurable random variable that depends on w. That is, the subscript w

in C2
w,Y(X|Y) indicates that each w may lead to a different index. The expected

conditional difference is defined as follows.

Definition 2. The expectation of the conditional difference (ECD) using the

characteristic function of X|Y is denoted by Cw(X|Y), which has a squared

value of

C2
w(X|Y) = EY[C2

w,Y(X|Y)] = EY

[∫
Rp

|fX|Y(t)− fX(t)|2w(t)dt

]
. (2.2)

Note again that C2
w(X|Y) ≥ 0. Although C2

w(X|Y) depends on the choice of

w, we omit the subscript w and write C2
w(X|Y) as C2(X|Y) for simplicity, without

ambiguity. The following lemma indicates that C2(X|Y) = 0 is equivalent to the

independence of X and Y. Thus, C2(X|Y) is a measure of independence (see the

Supplementary Material for the proof).

Lemma 1. C2(X|Y) = 0 ⇔ C2
w,Y(X|Y) = 0 almost surely for Y ⇔ fX|Y(t) =

fX(t) almost surely, for Y and t ∈ Rp.

A direct application of (2.2) indicates that

C2(X|X) = EX[C2
w,X(X|X)] = EX

[∫
Rp

|eitX − fX(t)|2w(t)dt

]
. (2.3)

Thus, a correlation coefficient-type statistic can be defined as

Rc = Rc(X|Y) =
C(X|Y)

C(X|X)
. (2.4)

The results below indicate the properties of C(X|X), C(X|Y), and Rc.

Theorem 1. The following properties hold:
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1. C(X|X) = 0 iff X = E(X), almost surely.

2. C(W1 + W2|V1 + V2) ≤ C(W1|V1) + C(W2|V2) for independent random

vectors (W1,V1) and (W2,V2). Equality holds if and only if W1 and V1

are both constant or W2 and V2 are both constant, or if W1,V1,W2, and V2

are mutually independent.

3. C(X + Y|X + Y) ≤ C(X|X) + C(Y|Y) for independent random vectors X

and Y. Equality holds if and only if at least one of the random vectors X

and Y is constant.

4. 0 ≤ C(X|Y) ≤ C(X|X), and 0 ≤ Rc ≤ 1.

Most of the independence measures in the literature are symmetric; however

our measure is asymmetric owing to its conditional setup. If needed, it can be

modified to the following symmetric version: C2
s (X,Y) = C2(X|Y) + C2(Y|X).

Note that the combination of two measures of discrepancies, that is, C2(X|Y)

and the discrepancy between the joint characteristic function and the product

of two marginal characteristic functions (Sejdinvoc et al. (2013)), forms a larger

class that is comparable with the φ-divergence family.

In the proposed class, different weight functions result in different depen-

dency measures. For example, weight functions such as a Gaussian weight yield

a new type of measure in the spirit of the Hilbert–Schmidt independence criterion

(Gretton et al. (2005)). Hence, the choice of weight function is important. In

this paper, we consider only a weight function similar to that of Székely, Rizzo

and Bakirov (2007) which results in a very simple formula.

3. The New Index and Its Properties

Let C̃(p, α) = (2πp/2Γ(1 − α/2))/(α2αΓ((p + α)/2)), for 0 < α < 2. For

α = 1, define c̃p = C̃(p, 1) = π(1+p)/2/Γ((1 +p)/2). Suppose that t ∈ Rp. Let the

weight function be w(t) = (c̃p|t|1+p
p )−1. This is a positive weight function, and is

very similar to those of Székely, Rizzo and Bakirov (2007) and Székely and Rizzo

(2009). Hereafter, we use this weight function only.

Let (X′,Y′) be an independent and identically distributed (i.i.d.) copy of

(X,Y), XY denote a random variable distributed as X|Y (Cook (2007)), X′Y′

denote a random variable distributed as X′|Y′, and X′Y denote a random vari-

able distributed as X′|Y′, with Y′ = y and Y = y. Throughout the paper, we

assume E|X| < ∞ and E|XY| < ∞, unless otherwise stated. These assump-

tions guarantee the finiteness of C2(X|Y), and enable us to obtain a simpler,
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but equivalent formula of (2.2). The proofs are provided in the Supplementary

Material.

Theorem 2. An equivalent form of (2.2) can be expressed as follows:

C2(X|Y) = E|X−X′Y| − E|XY −X′Y| = E|X−X′| − E|XY −X′Y|, (3.1)

where the expectation is over all random vectors. For instance, the final expecta-

tion first takes the conditional expectation given Y, and then over Y.

Note that, strictly speaking, E|XY −X′Y| = EE[|X −X′||Y = y,Y′ = y].

In addition, formula (2.2) is more general than formula (3.1). For example, the

conditional Cauchy distribution in Section 3.1 can be calculated using (2.2), but

not (3.1).

Theorem 3.

1. C2(X|X) = E[C2
w,X(X|X)] = E|X−X′|.

2. C2(a + bBX|Y) = |b|C2(X|Y) for a constant vector a, a scalar b, and an

orthonormal matrix B.

3. Rc = 1 iff X is a function of Y, i.e., X = g(Y), where g is a p× 1 vector

function.

3.1. Special distributions

In this section, we describe the connection between this index and several

well-known distributions, including the normal, binomial, and Cauchy distri-

butions. The derivations of these relations are provided in the Supplementary

Material.

Conditional normal distribution. Suppose X|Y ∼ N(µY , σ
2
Y ), where Y ∈

{0, 1}. For simplicity, assume that σ2
Y = σ2 = 1, and define ∆ = µ0 − µ1. Let

py be the probability for the class Y = y, and let erf(z) = 2/
√
π
∫ z

0 e
−t2dt be the

Gaussian error function. Then, we have:

C2(X|Y ) = 4p0p1

[
∆

2
erf

(
∆

2

)
+
e−∆2/4 − 1√

π

]
.

Note that this equivalence indicates that ∆ = 0 iff C2(X|Y ) = 0, as expected.

Bivariate normal distribution. Suppose that X and Y follow a standard

normal distribution with correlation coefficient ρ. Then, we have that X|Y ∼
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N(ρY, (1− ρ2)). Our index can be expressed using ρ, as follows:

C2(X|Y ) =
2√
π

(
1−

√
1− ρ2

)
.

Once again, we have that C2(X|Y ) = 0 iff ρ = 0. In such a case, the difference

between this and the distance correlation (Székely, Rizzo and Bakirov (2007))

becomes evident.

Conditional binomial distribution. Suppose X|Y ∼ Bin(n, qY ), where Y ∈
{0, 1}. Let py be the probability for the class Y = y. For n = 1, when it is a

Bernoulli distribution, we have that

C2(X|Y ) = 4p0p1(q0 − q1)2.

For n = 2, we have that C2(X|Y ) = 4p0p1(q0− q1)2[1 + (1− q0− q1)2]. It is clear

that in both cases, C2(X|Y ) = 0 iff q0 = q1. A general formula C2(X|Y ) = 0

for the conditional binomial distribution can be found in the Supplementary

Material.

Conditional Cauchy distribution. Although we require finiteness of the con-

ditional means to develop the equivalence formula for C2(X|Y), as in (3.1), the

original definition of our index C2(X|Y) requires only the existence of its respec-

tive characteristic functions. It is well known that the Cauchy distribution has

a characteristic function, but without finite moments. Nevertheless, we can still

perform such a calculation. Suppose that the Cauchy distribution has density

p(x|y) = qy/π(q2
y + x2), where y ∈ {0, 1}. Let py be the probability for the class

Y = y. We then have that

C2(X|Y ) =
4p0p1

π

[
q0 ln

(
2q0

q0 + q1

)
+ q1 ln

(
2q1

q0 + q1

)]
.

Again, q0 ln(2q0/q0 + q1) + q1 ln(2q1/q0 + q1) ≥ 0 with strict equality iff q0 = q1.

4. Estimation Approaches

4.1. Slicing estimator

In developing the population version of our index measure, we did not require

Y to be discrete or continuous. We now consider a special sample version of

continuous Y, where we slice it into finite categories. Slicing techniques for

continuous variables have been used extensively in dimension reduction; see, for

example, Li (1991), Cook and Weisberg (1991), Li, Zha and Chiaromonte (2005),
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Li and Wang (2007), Wang and Xia (2008), and Cook and Zhang (2014). Slicing

is a natural choice for our purposes because it facilitates technical simplicity,

owing to the last term in the second equation of (3.1) in Theorem 2. To facilitate

the development of our estimator, we now assume that Y is a categorical variable

with H levels; that is, Y = {1, . . . ,H}.
Slicing in multivariate and high-dimensional situations is an interesting, yet

challenging topic. Nevertheless, efforts to address slicing have been made in

various areas, including dimension reduction. For example, methods developed

by Zhu et al. (2010), Li, Wen and Zhu (2008) and Cook and Zhang (2014) may

be beneficial to our approach.

Let (Xk, Yk), for k = 1, . . . , n, be a random sample of (X, Y ). For the purpose

of slicing, these n observations can be equivalently written as (Xy,ky , Yy,ky), where

y = 1, . . . ,H, ky = 1, . . . , ny, where ny is the number of observations for slice

y, and Yy,ky = y for any ky. The choice of H is not always independent of

the sample size n. If the number of observations in the data set is large, one

may choose a larger number of slices. However, if Y is multivariate with a high

dimension, then the number of slices for each dimension of Y should be smaller.

This strategy helps to ensure that there are enough observations in each slice.

We can now define an empirical measure and establish its corresponding

theoretical results.

Definition 3. An empirical measure is defined as the following weighted norm:

C2
n(X|Y ) =

H∑
y=1

ny
n
C2
w,y,n(X|Y = y) =

H∑
y=1

ny
n
||fnX|y(t)− f

n
X(t)||2. (4.1)

We next establish a different formula for the empirical version that facilitates

simple calculations. The proof is provided in the Supplementary Material.

Theorem 4. The empirical measure can be written as

C2
n(X|Y ) =

1

n2

H,H∑
y,y′=1

ny,ny′∑
ky,ly′=1

|Xy,ky −Xy′,ly′ | −
1

n

H∑
y=1

1

ny

ny,ny∑
ky,ly=1

|Xy,ky −Xy,ly |.

(4.2)

Theorem 4 immediately implies the next result.
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Corollary 1.

C2
n(X|Y ) =

1

n2

n,n∑
k,l=1

|Xk −Xl| −
1

n

H∑
y=1

1

ny

ny,ny∑
ky,ly=1

|Xy,ky −Xy,ly |. (4.3)

C2
n(X|Y ) ≤ C2

n(X|X) =
1

n2

n,n∑
k,l=1

|Xk −Xl|. (4.4)

Based on Definition 3, it is easy to see that the following results hold; thus,

we omit the proof.

Lemma 2. The following properties hold:

1. C2
n(X|Y ) ≥ 0.

2. C2
n(X|X) = 0 iff every sample observation is identical.

The proof for the following result appears in the Supplementary Material.

Lemma 3.

lim
n→∞

C2
n(X|Y ) = C2(X|Y ) almost surely.

This lemma indicates that our sample version is properly defined and con-

sistent.

Next, we develop asymptotic distributions for the empirical measure.

Theorem 5. (Weak convergence)

1. If X and Y are independent, and E(|X|) < ∞, then nC2
n(X|Y )

D−−−→
n→∞

C2(X|X)Q, where Q ∼ χ2
H−1.

2. If X and Y are independent, and E(|X|) < ∞, then nC2
n(X|Y )/C2

n(X|X)
D−−−→

n→∞
Q, where Q ∼ χ2

H−1.

3. If X and Y are dependent, then nC2
n(X|Y )/C2

n(X|X)
P−−−→

n→∞
∞.

The proof of Theorem 5 is provided in the Supplementary Material. We now

establish the limiting distribution. If Q ∼ χ2
H−1, then

P{Q ≥ χ2
H−1(1− α0)} ≤ α0, for all 0 < α0 ≤ 0.215,

where χ2
H−1(1− α0) is the (1− α0)-quantile of a chi-square variable with H − 1

degrees of freedom. This result follows from that of Székely and Bakirov (2003, p.
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189). Thus, a test that rejects independence if nC2
n(X|Y )/C2

n(X|X) ≥ χ2
H−1(1−

α0) has an asymptotic significance level of at most α0. However, the asymptotic

test criterion could be quite conservative for many distributions; see Székely,

Rizzo and Bakirov (2007), Székely and Rizzo (2009), and Rizzo and Székely

(2010) for further comments.

By using slicing, our measure is equivalent to DISCO, which employs condi-

tional moments directly in a manner similar to that of (3.1), but for categorical

Y only. Hence, in general, DISCO limits certain distributions, such as the condi-

tional Cauchy distribution in Section 3.1. Our theoretical justification also differs

from DISCO, but is similar to dCov. Both our measure and dCov are defined

using characteristic functions; thus the theoretical justifications for the two are

analogous. For continuous Y, we change Y to a class variable using slicing. In

such a case, our index provides an alternative way to specify dCov. However,

one does not have to use slicing, because other approaches may be used as well.

Thus, our index provides many possible approaches for measuring independence

between continuous random vectors, which may lead to new research directions.

One such approach is proposed in the next section.

4.2. Kernel estimator

For continuous Y, slicing is just one approach. In fact, even slicing can be

improved using techniques such as “moving slicing” (Li, Zha and Chiaromonte

(2005)) or the fused approach (Cook and Zhang (2014)). In this section, we

propose a kernel method to estimate (3.1) (in particular, the last term in (3.1)),

which differs from DISCO.

For simplicity, let m = E|XY −X′Y|. Thus, our main goal is to estimate m

via kernel methods. Write m = EYE|XY − X′Y| = EYm(Y). Then, m(Y) =

E(X,X′)(|X−X′||Y) = EX[m(X,Y)|Y], where m(X,Y) = EX′(|X−X′||Y).

For the kernel estimation, Kh(t) = h−qK(t/h), for h > 0, denotes a q-

dimensional kernel function. Let p0(y) be the density function of Y, which

has the kernel estimator p̂0(y) = n−1
∑n

k=1Kh(yk − y). Thus, an estimate of

m(X,Y) is

m̂(X,Y) =
n−1

∑n
j=1 |X−Xj |Kh(Y −Yj)

n−1
∑n

j=1Kh(Y −Yj)
.

Moreover, an estimate of m(Y) is

m̂(Y) =
n−1

∑n
i=1 m̂(Xi,Y)Kh(Y −Yi)

n−1
∑n

i=1Kh(Y −Yi)
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=
n−2

∑n
i=1,j=1 |Xi −Xj |Kh(Y −Yi)Kh(Y −Yj)

n−1
∑n

j=1Kh(Y −Yj)n−1
∑n

i=1Kh(Y −Yi)
.

Finally, an estimate of m is m̂ = (1/n)
∑n

l=1 m̂(Yl). Hence, the kernel estimator

of C2(X|Y) is C2
n,k(X|Y) = (1/n2)

∑
i,j |Xi −Xj | − m̂.

We now establish the consistency for the kernel estimator in Theorem 6. For

such a result, we need the following regularity conditions, taken from Chen, Cook

and Zou (2015):

Condition A1: The density functions p(x|y) and p(y) are continuous and

bounded away from zero. The support of y is bounded and compact in Rq.
Condition A2: The continuous kernel function K(t) is Lipschitz on [−1, 1],

and for some s > q/2,∫
K(t)dt = 1,

∫
tiK(t)dt = 0, (1 ≤ i ≤ s− 1), 0 6=

∫
tsK(t)dt <∞.

Condition A3: As n → ∞, the bandwidth h satisfies h → 0, nh2q → ∞,

and nh2s+q/2 log n→ 0.

Condition A4: We have that E|Xy|4 <∞.

Condition A5: Write p(x,y) = p(x|y)p(y), which is s-times differentiable

with respect to y, and its sth-order derivative is uniformly bounded by a constant

C0 that does not depend on y.

Conditions A1 and A5 require that the density functions be positive and

sufficiently smooth. Condition A5 facilitates control of the remainder terms in

the Taylor expansions. We can relax this condition by assuming local Lipschitz

properties for the density functions, which are widely imposed in the literature

(Li, Zhu and Zhu (2011)). Condition A2 implies that the kernel function is

bounded from above, which holds for many well-known kernel functions. Condi-

tion A3 gives conditions on the bandwidth h, and are relatively mild. Condition

A4 requires that certain moments are finite, which is quite typical. To introduce

Theorem 6, we establish the following lemma, which is a direct application of

Lemma S5 of Chen, Cook and Zou (2015).

Lemma 4. Suppose Conditions A1–A5 hold. Then,

sup
y∈Rq

|m̂(y)−m(y)| = O(hs + (nhq)−1/2 log n), almost surely.

Here, we use the conditions of Chen, Cook and Zou (2015) directly, for sim-

plicity. The requirement that the density functions be bounded away from zero in
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Condition A1 seems restrictive, although our simulations show otherwise. How-

ever, one can weaken Condition A1 by using different conditions, such as those of

Härdle and Stoker (1989), Samarov (1993), or Wang et al. (2015). Nevertheless,

we need to modify our estimator by incorporating a trim/weight function to deal

with the density near zero and to mitigate significant bias. Regardless, for a

finite sample, we can ignore this issue, because it is finite. As such, even if the

estimates for points near the boundary are small, they will never be zero.

We can now establish the following consistency result.

Theorem 6. Under Conditions A1–A5, we have that C2
n,k(X|Y)

P−−−→
n→∞

C2(X|Y).

Note that the first term in C2
n,k(X|Y) is a typical U-statistic, which is root-n

asymptotically normal. Using the technicals in Chen, Cook and Zou (2015), we

can establish the asymptotic normality for the second term in C2
n,k(X|Y), which

has rate nhq/2. Combining the two terms, we can still manipulate the asymptotic

normality at the same rate. However, one of the asymptotic variances in the

two terms vanishes at a faster rate. Hence, this is not practically useful when

the sample size is large. Furthermore, even if the terms have the same rate of

convergence (cf., Székely, Rizzo and Bakirov (2007), Székely and Rizzo (2009),

Rizzo and Székely (2010), Shao and Zhang (2014); and Wang et al. (2015)),

permutation or bootstrap tests are usually preferred to asymptotic distributions.

We describe the use of a permutation test in the next section. Note that Kh(t)

is a q-dimensional kernel function. Therefore, theoretically, the kernel method

can be used for Y with any dimensions. As a result of the high-dimension issue,

the kernel method certainly has its own practical restriction. Nevertheless, there

exist kernel estimation methods when using (conditional) dCov, as discussed by

Wang et al. (2015) and Chen, Cook and Zou (2015).

5. Testing Procedure

To obtain the p-value for our independence test, we implemented a permuta-

tion approach (Efron and Tibshirani (1998); Davison and Hinkley (1997)). Based

on the preceding discussion, we use Rc as the illustrative test statistic when cal-

culating the p-value. We use Rc in our simulation because it has a value between

zero and one and, thus, will not be affected by the unit change of the random

vectors. To illustrate the permutation test, we use the slicing method, denoted

by Rc(slice), as follows: Let πb represent one permutation of the sample, for

b = 1, . . . , B, where B is the total number of permutations. In our simulations,

we set B = 999, unless otherwise stated. Let Rc(slice)b be the test statistic cor-
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responding to the permuted sample πb, and let Rc(slice)0 be the observed test

statistic. Compute the p-value using the following formula (1(·) is the indicator

function):

p̂ =
1 +

∑B
b=1 1(Rc(slice)b ≥ Rc(slice)0)

B + 1
.

6. Simulation Studies

In this section we provide empirical evidence for our proposed measure using

three estimation methods: slicing [Rc(slice)], the Epanechnikov kernel [Rc(epa)],

and the Gaussian kernel [Rc(gau)]. We compare our results with those of dCov

and DISCO, as well as G2
m and G2

t of Wang, Jiang and Liu (2016), and the

maximal information coefficient (MIC) of Reshef et al. (2011) and the total in-

formation coefficient (TIC) of Reshef et al. (2016). The code for the R packages

for dCov and DISCO, G2
m and G2

t , and MIC and TIC are available in Rizzo and

Székely (2018), Wang and Jiang (2016), and Filosi et al. (2017), respectively.

Example 1. Six characteristics of aircraft designs from the 20th century were

recorded in the aircraft data of Saviotti (1996). The data are available in the R

package sm (Bowman and Azzalini (1997, 2007)). Two variables, wing span(m)

and speed (km/h), in period 3 (of three brand periods of the 20th century) with

n = 230 designs were considered. Here, we test the independence of log(Speed)

and log(Span).

We apply the slicing method by slicing log(Span) into H groups. The number

of observations in each slice is bn/Hc. Table 1 reports the corresponding test

statistic and p-value using various numbers of slices and the two kernel methods.

With regard to the different numbers of slices, we find that as long as the number

is not too small or too big, specifically, the number of data points in each slice is

greater than five but not close to n/2, then the test results are highly consistent

and comparable. In addition, the p-values indicate that all three methods give

the same test result as that of dCov of Székely and Rizzo (2009), which has a

p-value of 0.001.

Example 2. In this example, we study the type-I error rates for dCov, the kernel

methods, slicing on the continuous variable to apply DISCO, and our slicing

method. We simulate four models. In model (a), the marginal distributions of X

and that of Y are standard normal, where p = 5 and q = 1. The elements of X are

independent and are also independent of Y . In models (b)–(d), the dimensions

of X and Y are the same as in (a), except that each individual random variable
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Table 1. Test results using different methods

Rc(slice) Rc(epa) Rc(gau)

H = 2 H = 5 H = 10 H = 23 H = 46 H = 115

Test statistic 0.161 0.264 0.328 0.453 0.528 0.752 0.302 0.237

p-value 0.004 0.001 0.001 0.001 0.001 0.007 0.001 0.001

Table 2. Empirical type-I error rates for 10,000 tests at nominal significance level of 0.1,
using B replicates

(a) N(0, 1), p = 5, q = 1 (b) t1, p = 5, q = 1

n B dCov DISCO Rc(slice) Rc(epa) Rc(gau) dCov DISCO Rc(slice) Rc(epa) Rc(gau)

25 400 0.094 0.103 0.100 0.096 0.101 0.104 0.097 0.095 0.094 0.103

30 366 0.102 0.095 0.099 0.100 0.100 0.102 0.100 0.099 0.098 0.097

35 342 0.105 0.099 0.101 0.102 0.099 0.104 0.100 0.102 0.093 0.095

50 300 0.103 0.099 0.100 0.097 0.101 0.100 0.106 0.104 0.097 0.103

70 271 0.103 0.097 0.103 0.100 0.100 0.100 0.098 0.100 0.099 0.098

100 250 0.101 0.098 0.098 0.104 0.098 0.094 0.105 0.103 0.097 0.102

(c) χ2
1, p = 5, q = 1 (d) χ2

3, p = 5, q = 1

n B dCov DISCO Rc(slice) Rc(epa) Rc(gau) dCov DISCO Rc(slice) Rc(epa) Rc(gau)

25 400 0.096 0.099 0.099 0.099 0.098 0.097 0.099 0.098 0.100 0.098

30 366 0.102 0.094 0.095 0.098 0.098 0.094 0.100 0.100 0.096 0.102

35 342 0.096 0.102 0.104 0.101 0.098 0.101 0.103 0.104 0.102 0.103

50 300 0.102 0.097 0.098 0.103 0.099 0.099 0.102 0.102 0.103 0.100

70 271 0.103 0.099 0.098 0.101 0.100 0.104 0.100 0.102 0.102 0.100

100 250 0.098 0.101 0.098 0.098 0.102 0.099 0.101 0.102 0.100 0.100

is independently generated from t1, χ2
1, and χ2

3 distributions, respectively.

We fix the number of slices at H = 5 for DISCO and Rc(slice). The total

sample sizes are n = 25, 30, 35, 50, 70, 100, and we use the number of replicates B

= b200 + 5000/nc as suggested by Székely, Rizzo and Bakirov (2007) to obtain

the p-value for each test. We use 10, 000 tests to obtain the type-I error rate at

a nominal significance level of 0.1. The empirical type-I error rate for each case

is recorded in Table 2. It appears that all methods perform similarly, close to

the nominal level, and none consistently beat the others. Simulation results for

additional models and a nominal level of 0.05 are given in the Supplementary

Material. The conclusions remain qualitatively similar.

Example 3. Following Example 2 in Székely and Rizzo (2009), we use the model

(X,Y ) = (X,φ(X)), where X is a standard normal random variable, and φ(·)
is the standard normal density. Our goal is to conduct a power comparison.

The power is computed as the proportion of significant tests out of 10, 000 at

a significance level of 0.1. Again, we use the number of replicates B = b200 +
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Figure 1. Empirical power comparisons at the 0.1 significance level with different sample
sizes, n.

5000/nc in each permutation test.

Because Y is continuous, we slice it into several categories for both DISCO

and the slicing method. Based on Example 1, we use three, three, and four slices

with sample sizes n = 10, 15, and 20, respectively, and five slices for sample sizes

greater than 20. Figure 1 is a plot of the power for the different methods as

a function of the sample size n. We find that for n ≥ 35, all five methods are

equivalently powerful, with power near one. For n < 35, the Gaussian kernel

method performs best, followed by the dCov and Epanechnikov kernel methods.

As expected, the slicing and DISCO methods lose power for smaller sample sizes.

Székely and Rizzo (2009) showed that the power of dCov is much better than that

of the Pearson or Spearman correlations. In conjunction with their results, our

example demonstrates that characteristic function-based methods outperform

density-based methods.

Example 4. We next generate multivariate observations from a four-group bal-

anced design with common sample size n = 30. The marginal distributions

are independent. Group 1 is noncentral t4(δ), with noncentrality parameter δ.

Groups 2–4 are all central t4 distributions. The group indicator is Y . This setup

is the same as that of Example 3 in Rizzo and Székely (2010). We want to show
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that for categorical variables, changing values will not change the power of the

robust methods.

We first examine the empirical power by fixing the dimension at p = 10, but

allowing the noncentrality parameter δ to vary. We then consider the empirical

power when p varies and δ is fixed at 0.2. The results of the simulations are

summarized in Figures 2–3 at a significance level of 0.1. We use B = 199 in each

test and conduct 10, 000 tests.

When fixing the dimension p and varying δ, Figure 2 (a) shows that the

empirical power when testing the independence of X and Y is roughly the same

when comparing the five methods and the group indicator: 1, 2, 3, and 4. How-

ever, when we change the group indicator Y from 1–4 to 1, 8, 0.5, and 1.2,

Figure 2 (b) shows that the power of the DISCO and slicing methods remains

the same. The dCov and kernel methods have much smaller empirical power

than the other methods do. We also applied dCov with the dummy variables.

The dot-dashed line in Figure 2 (b) shows that, although dCov with the dummy

variables has greater power than when treating Y as one dimension, with values

(1, 0.8, 0.5, 1.2), it still has less power than Rc(slice) or the DISCO method. Fig-

ure 3 (a) shows that when the dimension p varies and noncentrality parameter

δ = 0.2, the empirical power when testing the independence of X and Y is again

roughly the same when comparing the five methods with the group indicator: 1,

2, 3, and 4. However, after changing the group indicator from 1–4 to 1, 8, 0.5,

and 1.2, Figure 3 (b) shows only DISCO and Rc(slice) are robust. Therefore, we

believe that, regardless of whether a dummy variable is used, the dCov method

has less power than, and is not as stable as DISCO or Rc(slice). Further com-

parisons with existing density-based methods can be found in Rizzo and Székely

(2010).

Example 5. The next model considered is Y = a(βTX)2ε, where β = (1, 1, 1, 1, 1,

0, . . . , 0)T , X ∼ N(0,Σx), Σx is a p× p diagonal matrix with the same diagonal

element σ2
x, a is a constant, and ε ∼ N(0, σ2) is independent of X.

We use the number of replicates B = b200+5000/nc in each permutation test,

and we use 10, 000 tests to obtain the power. We consider different combinations

of values of a, p, σ2
x, and σ2. Within each combination, we vary the sample size n

to determine how the power of the test of the independence of X and Y changes

under the different methods.

In addition to the methods compared previously, we now include the gener-

alized R2 method of Wang, Jiang and Liu (2016) (G2
m and G2

t ). Figure 4 shows
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Figure 2. Empirical power when testing the independence of X and Y using five methods,
n = 30 per group, dimension p = 10, and varying noncentrality parameter δ. The group
indicator is (a) 1, 2, 3, 4; (b) 1, 8, 0.5, 1.2, where except for the dot-dashed line, Y is
transformed to dummy variables.
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Figure 3. Empirical power when testing the independence of X and Y using five methods,
n = 30 per group, dimension p varies, and noncentrality parameter δ = 0.2. The group
indicator is (a) 1, 2, 3, 4; (b) 1, 8, 0.5, 1.2.

the power change under the four different cases. This figure clearly shows that

for such a model with a continuous response, the generalized R2 method (G2
m

and G2
t ), DISCO, and Rc(slice) do not perform well. However, the two kernel

methods outperform dCov. This is an example of X and Y having a nonlinear re-

lationship, and demonstrates the advantage of our method when the dependence
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(b) a = 0.3, p = 10, σ2
x = 1, and σ2 = 1.
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(c) a = 0.3, p = 10, σ2
x = 1, and σ2 = 4.
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x = 2, and σ2 = 1.

Figure 4. Empirical power with the change of sample size n.

is weak, that is, when relations appear in the conditional variance. Additional

simulations in the Supplementary Material show similar results.

Example 6. The model for this example is taken from Wang, Jiang and Liu

(2016). Let X ∼ U(0, 1), Y = f(X) + εσ, and ε ∼ N(0, 1), where var{f(X)} = 1.

The noise σ2 changes according to the value of G2
Y |X = (1 + σ2)−1. We conduct

simulations for f(X) = x and f(X) = sin(2πX). We use the number of replicates

B = b200 + 5000/nc in each permutation test, and report the results for n = 225

and 1, 000 tests, as in Wang, Jiang and Liu (2016).

We compare the performance of the MIC (Reshef et al. (2011)) and TIC

(Reshef et al. (2016)) with that of the other methods. Figure 5 shows these

methods do not perform well compared with the other methods. Here, dCov,
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Figure 5. Empirical power when (a) f(X) = x, and (b) f(X) = sin(2πX).

G2
m, and G2

t perform slightly better than our proposed slicing method and the

two kernel methods. This is not surprising, because the relation is strong (in

the conditional mean function) where the sample size is reasonable. Note that

we did not use the method of Reshef et al. (2011) in Example 5 because the

measure can only detect the relationship between two continuous variables. If

there is a categorical variable, or if we want to examine the relationship between

two groups of random vectors, their method does not work properly. Thus, it is

not applicable in Example 5.

To summarize, for categorical Y , we showed that Rc(slice) is stable and

better than dCov. The proposed kernel methods and the dCov method with

dummy variables do not have comparable power or stability. This suggests that

if Y is categorical, one should use Rc(Slice). For continuous Y , we showed that

the proposed kernel methods with Rc(gau) and Rc(epa) outperform dCov, G2
m,

and G2
t , and the discrete methods (DISCO and slicing) when the relationship

between X and Y is weak, or when the sample size is small. When the sample

size is relatively large, or when the relation is strong, all methods essentially have

similar power.

7. Conclusion

We introduced a new class of measures for testing independence that can be

used flexibly for continuous and categorical random vectors. We also examined

a measure with a particular weight function. Note that our new measure of di-



2150 YIN AND YUAN

vergence using characteristic functions differs from those using density functions,

each of which possess their own advantages and disadvantages.

We considered a class of density function-based divergence models that, un-

less they assume a parametric family, need to be estimated nonparametrically.

Although a density estimation is usually not difficult, especially when n > p and

n is reasonably large, it is perhaps troublesome or impossible when p > n or n

is small. The characteristic function-based divergence is not easy to calculate.

However, in our case, the index results in a simple Euclidean distance, which

provides an alternative choice to existing methods, especially when the accuracy

of the density estimation is questionable.

Huo and Székely (2016) discussed a fast computing algorithm for the dCov

measure, which reduces the computational complexity to O(n log n). We be-

lieve it is similarly possible to reduce the calculation complexity of the proposed

measure. We present a table of computing times for dCov and our current al-

gorithms in the Supplementary Material. Although both use conditional char-

acteristic functions, Wang et al. (2015) developed a conditional independence

measure of two random vectors, given a third vector, as a direct extension of

dCov, whereas our method determines the independence of two random vectors.

A logical direction for future research is to develop a new measure of the condi-

tional independence of two random vectors by introducing a third random vector.

This possible measure could serve as an alternative to that proposed by Wang

et al. (2015).

Although we focused on two random vectors in developing our method, we

can extend it to a multi-set of vectors. Ideas for such an extension may be taken

from existing methods. For example, the methods of Deheuvels (1981), Genest

and Rémillard (2004), Genest, Quessy and Rémillard (2007), and Kojadinovic

and Holmes (2009) could all provide a reasonable framework. In particular, the

methods developed by Jin and Matteson (2018), Yao, Zhang and Shao (2018),

Böttcher (2017), and Chakraborty and Zhang (2019) are related to dCov. These

methods may prove useful in extending the proposed work on testing mutual

independence.

Székely and Rizzo (2013) discussed the bias of the dCov statistic when the

dimensions of the random vectors are large. In their work, they constructed an

unbiased t-test of independence. Because our measure is defined similarly to

theirs, we believe that an analogous calculation will result in a similar unbiased

statistic when the dimensions tend to infinity. Dueck et al. (2014) proposed an

affinely invariant dCov, and studied its asymptotic properties under a normal
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distribution when the dimensions go to infinity. Their method could possibly be

adopted for our index when the dimensions tend to infinity.

Supplementary Material

The online Supplementary Material contains proofs of the theoretical results,

as well as additional numerical studies.
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