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Supplementary Material

This online Supplementary Material includes the following topics:

(1) a proof of the existence of a solution to the equation system in (21) to (24);

(2) the asymptotic properties of the solution;

(3) additional simulations for the case in which the missing region is wrongly specified;

(4) list of the history record of the Hakone volcano; and

(5) comments on the Wenchuan aftershock sequence.

S1 Convergency of the iterative algorithm

The existence of a solution to equations (21) to (24) is ensured by the
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Schauder fixed-point theorem: Every continuous mapping from a convex

compact subset K of a Banach space to K itself has a fixed point. First,

for the given observed point process Nobs in [0, T ]×M , consider the space

consisting of the following stepwise constant function pairs:

f(t) =


f̃0, t < t1;

f̃i, ti ≤ t < ti+1, i = 1, 2, · · · , n;

f̃n, tn ≤ t < T ;

(S1.1)

g(m) =


g̃0, m < m(1);

g̃i, m(i) ≤ m < m(i+1), i = 1, 2, · · · , n;

g̃n, m ≥ m(n);

, (S1.2)

where f̃0, · · · , f̃n, g̃0, · · · , g̃n are constants, and m(i) are the ith-order statis-

tics for {m1,m2, · · · ,mn}. When equipped with a metric

d[(f1, g1), (f2, g2)] = sup
x∈[0,T ]

|f1(x)− f2(x)|+ sup
x∈M
|g1(x)− g2(x)|,

such a function space is complete and equivalent to a finite dimensional

Euclidean space. The function pairs that satisfy

0 = f̃0 ≤ f̃1 ≤ f̃2 ≤ · · · ≤ f̃n = 1, 0 = g̃0 ≤ g̃1 ≤ g̃2 ≤ · · · ≤ g̃n = 1

form a convex compact subset X of this space, because X is complete and

totally bounded. When the missing area S is fixed, we have the following
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mapping:

Γ(f, g) ≡

(∑n
j=1w1(tj,mj, S)1 (tj < t)∑n

j=1w1(tj,mj, S)
,

∑n
j=1w2(tj,mj, S)1 (mj < m)∑n

j=1w2(tj,mj, S)

)
,

(S1.3)

where

w1(t,m, S) ≡ 1 ((t,m) 6∈ S)∫
M

1 ((t,m′) 6∈ S) dg(m′)
(S1.4)

w2(t,m, S) ≡ 1 ((t,m) 6∈ S)∫ T

0
1 ((t′,m) 6∈ S) df(t′)

(S1.5)

is a continuous mapping from X to X. By the Schauder fixed-point theo-

rem, the solution to equations (21) to (24) exists. Denote this by (F ∗(t), G∗(m)),

which is in fact a mapping from [0, T ]×M to [0, 1]× [0, 1].

S2 Asymptotic properties of the solution

Consider the expectation of F ∗ and G∗ with respect to all the possibilities

of the point process N ,

E [F ∗(t)] = E

[∑n
j=1w1(tj,mj, S)1 (tj < t)∑n

j=1w1(tj,mj, S)

]
, (S2.6)

E [G∗(m)] = E

[∑n
j=1w2(tj,mj, S)1 (mj < m)∑n

j=1w2(tj,mj, S)

]
, (S2.7)

and set

U(t) =
n∑

j=1

w1(tj,mj, S)1 (tj < t) (S2.8)
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and

V (m) =
n∑

j=1

w2(tj,mj, S)1 (mj < m). (S2.9)

By the delta method, asymptotically, F ∗(t)

G∗(m)

 D−−→ N


E[U(t)]

E[U(T )]

E[V (m)]

E[V (∞)]

, JT W J

 (S2.10)

where

J =



∂F ∗(t)

∂U(t)
0

∂F ∗(t)

∂U(T )
0

0
∂G∗(m)

∂V (m)

0
∂G∗(m)

∂V (∞)


=



1

U(T )
0

− U(t)

[U(T )]2
0

0
1

V (∞)

0 − V (m)

[V (∞)]2


(S2.11)

and

W =



Var[U(t)] Cov[U(t), U(T )] 0 0

Cov[U(t), U(T )] Var[U(T )] 0 0

0 0 Var[V (m)] Cov[V (m), V (∞)]

0 0 Cov[V (m), V (∞)] Var[V (∞)]


.

(S2.12)

Denote as µ(t,m) and µ2(t,m, t
′,m′) the first- and second-order mo-

ment intensities of the complete process, respectively. By the separability

of the mark distribution, the first- and second-order moment intensities

can be written as µ = µg(t)g(m) and µ2(t,m, t
′,m′) = µ2g(t, t

′)g(m)g(m′).
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We also denote A(t) ≡
∫ t

0
µg(t

′) dt′, c(t, t′) ≡ µ2g(t, t
′) − µg(t)µg(t

′), and

C(t, t′) ≡
∫ t′

0

∫ t

0
c(u, u′) dudu′ (the separability of the mark distribution in

the conditional intensity implies its separability in moment intensities). By

the Campbell theorem (e.g., Møller and Waagepetersen, 2003; Daley and

Vere-Jones, 2008),

E[U(t)] = E

[∫
[0,T ]×M

1 ((t′,m′) 6∈ S) 1 (t′ < t)∫
M

1 ((t′,m′′) 6∈ S) dG∗(m′′)
N(dt′ × dm′)

]
= E

[∫
[0,t)×M

1 ((t′,m′) 6∈ S) µg(t
′) g(m′)dt′dm′∫

M
1 ((t′,m′′) 6∈ S) dG∗(m′′)

]
= E

[∫ t

0

µg(t
′)

∫
M

1 ((t′,m′) 6∈ S) dG(m′)∫
M

1 ((t′,m′′) 6∈ S) dG∗(m′′)
dt′
]
. (S2.13)

Similarly,

E[V (m)] = E

[∫
[0,T ]×M

1 ((t′,m′) 6∈ S) 1 (m′ < m)N(dt′ × dm′)∫ T

0
1 ((t′′,m′) 6∈ S) dF ∗(t′′)

]

= E

[∫
[0,T ]×[0,m)

1 ((t′,m′) 6∈ S) µg(t
′) g(m′) dt′dm′∫

M
1 ((t′′,m′) 6∈ S) dF ∗(t′′)

]
= E

[∫ m

0

g(m′)

∫ T

0
1 ((t′,m′) 6∈ S) µg(t

′) dt′∫ T

0
1 ((t′′,m′) 6∈ S) dF ∗(t′′)

dm′

]
. (S2.14)

Substitute (S2.13) and (S2.14) into (S2.10). Then, we have

E [F ∗(t)] −→
E

[∫
t

0
µg(t

′)

∫
M

1 ((t′,m′) 6∈ S) dG(m′)∫
M

1 ((t′,m′′) 6∈ S) dG∗(m′′)
dt′
]

E

[∫
T

0
µg(t′)

∫
M

1 ((t′,m′) 6∈ S) dG(m′)∫
M

1 ((t′,m′′) 6∈ S) dG∗(m′′)
dt′
] ,(S2.15)

E [G∗(m)] −→
E

[∫
m

0
g(m′)

∫ T

0
1 ((t′,m′) 6∈ S) µg(t

′) dt′∫ T

0
1 ((t′′,m′) 6∈ S) dF ∗(t′′)

dm′

]

E

[∫
M
g(m′)

∫ T

0
1 ((t′,m′) 6∈ S) µg(t

′) dt′∫ T

0
1 ((t′′,m′) 6∈ S) dF ∗(t′′)

dm′

] ,(S2.16)
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where → represents “converging to in probability.” From these equations,

we have that

E [F ∗(t)] −→
∫ t

0
µg(t

′) dt′∫ T

0
µg(t′) dt′

=
A(t)

A(T )
, (S2.17)

E [G∗(m)] −→
∫ m

0

g(m′) dm′ = G(m), (S2.18)

which yield

E[U(t)] −→
∫ t

0

µg(t
′) dt′ = A(t) (S2.19)

E[V (m)] −→ E[U(T )]

∫ m

0

g(m′) dm′

= A(T )G(m). (S2.20)

Now, consider the variance. By the Campbell theorem for higher-order
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moment intensities, if t ≤ s, then

E [U(t)U(s)]

= E

[(∫
[0,T ]×M

1 ((t′,m′) 6∈ S) 1 (t′ < t)∫
M

1 ((t′,m′′′) 6∈ S) dG∗(m′′′)
N(dt′ × dm′)

)

×
(∫

[0,T ]×M

1 ((t′′,m′′) 6∈ S) 1 (t′′ < s)∫
M

1 ((t′′,m′′′) 6∈ S) dG∗(m′′′)
N(dt′′ × dm′′)

)]

= E

[∫
M

∫ T

0

(
1 ((t′,m′) 6∈ S) 1 (t′ < t)∫

M
1 ((t′,m′′′) 6∈ S) dG∗(m′′′)

)2

µg(t
′) g(m′) dt′dm′

]

+ E

[∫
M

∫ T

0

∫
M

∫ T

0

1 ((t′,m′) 6∈ S) 1 (t′ < t)∫
M

1 ((t′,m′′′) 6∈ S) dG∗(m′′′)

1 ((t′′,m′′) 6∈ S) 1 (t′′ < s)∫
M

1 ((t′′,m′′′) 6∈ S) dG∗(m′′′)

×µ2g(t
′, t′′) g(m) g(m′′)dt′dm′dt′′dm′′

]

= E

[∫ t

0

µg(t
′)

∫
M

1 ((t′,m′) 6∈ S) dG(m′)(∫
M

1 ((t′,m′′′) 6∈ S) dG∗(m′′′)
)2 dt′

]

+ E

[∫ t

0

∫ s

0

µ2g(t
′, t′′)

∫
M

1 ((t′,m′) 6∈ S) dG(m′)∫
M

1 ((t′,m′′′) 6∈ S) dG∗(m′′′)

∫
M

1 ((t′′,m′′) 6∈ S) dG(m′′)∫
M

1 ((t′′,m′′′) 6∈ S) dG∗(m′′′)
dt′ dt′′.

]
(S2.21)

Again, by applying the delta method to the expectation part only, we have

E [U(t)U(s)] −→
∫ t

0

µg(t
′) dt′∫

M
1 ((t′,m′′) 6∈ S) dG(m′′)

+

∫ t

0

∫ s

0

µ2g(t
′, t′′) dt′ dt′′.

(S2.22)

Set

Q(t) ≡
∫ t

0

µg(t
′) dt′∫

M
1 ((t′,m′′) 6∈ S) dG(m′′)

.
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Then, the above equation gives

Var [U(t)] = E [U(t)U(t)]− E [U(t)] E [U(t)]

−→
∫ t

0

µg(t
′) dt′∫

M
1 ((t′,m′′) 6∈ S) dG(m′′)

+

∫ t

0

∫ t

0

[µ2g(t
′, t′′)− µg(t

′)µg(t
′′)] dt′ dt′′,

=

∫ t

0

µg(t
′) dt′∫

M
1 ((t′,m′′) 6∈ S) dG(m′′)

+

∫ t

0

∫ t

0

c(t′, t′′) dt′ dt′′

= Q(t) + C(t, t), (S2.23)

and

Cov [U(t), U(T )] = Var [U(t)] + Cov [U(t), U(T )− U(t)]

−→
∫ t

0

∫ T

0

c(t′, t′′) dt′ dt′′ +

∫ t

0

µg(t
′) dt′∫

M
1 ((t′,m′′) 6∈ S) dG(m′′)

= Q(t) + C(t, T ). (S2.24)

Similarly, for high-order moments related to V (·), we can obtain the follow-

ing for m ≤ u:

Cov [V (m), V (u)] −→ G(m)G(u)

(∫ T

0

µg(t
′) dt′

)2 ∫ T

0

∫ T

0

c(t′, t′′) dt′ dt′′

+

(∫ T

0

µg(t
′) dt′

)2 ∫ m

0

g(m′) dm′∫ T

0
1 ((t′′,m′) 6∈ S) µg(t′′)dt′′

= A2(T )

[
G(m)G(u)C(T, T ) +

∫ m

0

g(m′) dm′∫ T

0
1 ((t′′,m′) 6∈ S) µg(t′′)dt′′

]
= A2(T )G(m)G(u)C(T, T ) + A(T )P (m), (S2.25)

where

P (m) ≡ A(T )

∫ m

0

g(m′) dm′∫ T

0
1 ((t′′,m′) 6∈ S) µg(t′′)dt′′

.
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Combining (S2.11), (S2.12), (S2.19), (S2.23), and (S2.24), we have

Σ =

 σ2
1 0

0 σ2
2

 , (S2.26)

where

σ2
1 =

C(t, t)

A2(T )
− 2

C(T, t)A(t)

A3(T )
+
A2(t)C(T, T )

A4(T )

+
A(T )− 2A(t)

A3(T )
Q(t) +

A2(t)Q(T )

A4(T )
(S2.27)

and

σ2
2 =

[1− 2G(m)]P (m) +G2(m)P (∞)

A(T )
. (S2.28)

From the above results, and adding the conditions that guarantee the ex-

istence of related integral and division operations, we obtain the following

asymptotic theorem for the estimates in (21) to (24).

Theorem 1. Consider a point process N with continuous marks that sat-

isfies the following conditions:

1. The mark distribution is separable (i.e., µ(t,m) = µg(t) g(m));

2. The ground intensity is bounded (i.e., there exist two positive numbers

K1 and K2, such that K1 ≤ λg(t) ≤ K2, for all t;

3. The covariance density c(t, t′) = µ2g(t, t
′)− µg(t)µg(t

′) satisfies∫ T

0

∫ T

0

|c(t, t′)| dt dt′ <∞,
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and ∫ ∞
0

|c(t, t′)| dt′ < K

for each t and some constant K;

4. The missing area S satisfies

∫
M

1 ((t,m) 6∈ S) dG(m) > 0

for all t ∈ [0, T ] and

∫ T

0

1 ((t,m) 6∈ S) µg(t) dt > 0

for all m ∈M .

Then, the solutions to equations (21) to (24), F ∗(t) and G∗(m), satisfy

√
A(T )

 F ∗(t)− A(t)
A(T )

G∗(m)−G(m)

 D−−→ N

0,

 σ2
f 0

0 σ2
g


 (S2.29)

for fixed (t,m) ∈ [0, T ]×M , where

σ2
f =

C(t, t)

A(T )
− 2

C(T, t)A(t)

A2(T )
+
A2(t)C(T, T )

A3(T )

+
A(T )− 2A(t)

A2(T )
Q(t) +

A2(t)

A3(T )
Q(T ) (S2.30)

and

σ2
g = [1− 2G(m)]P (m) +G2(m)P (∞). (S2.31)
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In other words, both processes of ξ1(t) =
√
A(T )[F ∗(t) − A(t)/A(T )] and

ξ2(m) =
√
A(T )[G∗(m)−G(m)] converge in distribution to some Brownian

bridges with covariance functions

Cov {ξ1(t), ξ1(s)}

=
A2(s)[Q(t) + C(t, t)] + 2A(s)A(t)[Q(t) + C(t, s)] + A2(t)[Q(s) + C(s, T )]

A3(T )

−4A(t)A2(s)[Q(t) + C(t, T )] + 4A2(t)A(s)[Q(s) + C(s, T )]

A4(T )

+
4A2(t)A2(s)[Q(T ) + C(T, T )]

A5(T )
,

(S2.32)

for t ≤ s, and

Cov {ξ2(m), ξ2(u)}

= G(m)G(u) {P (m) [3− 4G(u)] + P (u) [1− 4G(m)] + 4P (∞)G(u)G(m)} ,

(S2.33)

for m ≤ u.

Proof: Equalities (S2.29) to (S2.31) can be proved from the earlier discus-

sions. Here, we only prove (S2.32) and (S2.33).

Denoting Z(t, s) ≡ F ∗(t)F ∗(s), and observing

Z(t, s) =
U(t)U(s)

U2(T )
(S2.34)
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and using the delta method, for fixed t and s,

Z(t, s)
D−−→ N

(
A(t)A(s)

A2(T )
, KTΩK

)
, (S2.35)

where

K =



∂Z(t, s)

∂U(t)
∂Z(t, s)

∂U(s)
∂Z(t, s)

∂U(T )


=



U(s)

U2(T )
U(t)

U2(T )

−2U(t)U(s)

U3(T )


(S2.36)

and

Ω =


Var[U(t)] Cov[U(t), U(s)] Cov[U(t), U(T )]

Cov[U(t), U(s)] Var[U(s)] Cov[U(s), U(T )]

Cov[U(t), U(T )] Cov[U(s), U(T )] Var[U(T )]

 .

(S2.37)

Substituting (S2.23) and (S2.24) into the above equation and considering

the definitions of ξ1, we obtain (S2.32). Equality (S2.33) can be proved in

a similar way.

S3 How does the misspecification of the missing re-

gion S influence the replenishment results?

In this replenishment algorithm, the key point is the specification of the

region S that contains the missing events. To check whether S is appro-

priately specified we can inspect whether the output point process N∗obs in
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Figure S1: Outputs of S(1) and S∗ in examinations of the replenishment algorithm when

the missing data region is misspecified. (a) when S is too small. (b) when S is too

large. (c) and (d) when S is completely misspecified. (e) and (f) when S is partially

misspecified. In each pair of panels, the first one displays S(1) and the transformation

of Nobs under ΓNobs
, and the second displays S∗ and N∗

obs. The blue dots mark the

empirical time-mark locations of the simulated events. See text in Section 2.3 for detail

of notations.
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Figure S2: Same as Figure S2 but a small sample size.
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Figure S3: Same as Figure S2 but with a sample size even smaller than in Figure S2.
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Step 2 is homogenously distributed outside of S∗. We test four cases of the

misspecification of S: (a) too small, (b) too large, (c) completely misspeci-

fied, and (d) partially misspecified. Figures S1 to S3 give several examples

where S is misspecified. We can see that, when S is too small (Panel a in

Figures S1 to S3), does not contains the missing data (Panels c and d in

Figures S1 to S3), or only partially covers the missing data (Panels e and f

in Figures S1 to S3), N∗obs is not homogeneous outside of S. Such inhomo-

geneity can be detected by the R or D statistics defined in (6). When the

specified region S(1) is larger than necessary but does not break Condition

1 (Figure S1b), N∗obs is still homogeneous outside of S. In this case, the

replenishment algorithm can also give unbiased replenishment results but

with higher uncertainty. For the case in Figure S1c, the algorithm halts

at Step 5 because there are always more events in S∗ from N∗obs than from

N∗rep, i.e., not enough points to remove.

S4 Hakone Vocalno data

The estimated volcano eruption indices (VEI) and ages for historical erup-

tions of the Hakone Volcano are listed Table S1.
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S5 More on Wenchuan earthquake aftershock sequence

An epicenter map of the observed earthquakes in the catalog is shown in

Figure S4.

Figure S4: Epicenter map of earthquakes in the Wenchuan area.

We also fit the Omori formula to the original dataset, but only consider

earthquakes that occurred at least 54 days after the mainshock. In this

case,c ≈ 0, implies that the selected data, which starts from 54 days after

the mainshock, cannot be used to estimate the the temporal pattern of

seismicity at beginning stage of the aftershock sequence when the aftershock

occurrence rate decays away, whereas by (25), when t = 0, λ(t) = K/c−p ≈
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∞. Moreover the parameter p becomes lower than 1, which might be caused

by a secondary triggering effect by large aftershocks. However, this does

not change much when the magnitude threshold changes from 2.95 to 4.15

(Table S2).
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Table S1: Eruption records of the Hakone volcano . TUN: Tephra unit name

TUN Age (ka) EPI TUN Age (ka) VEI

Kamiyama 1 45 4 CC4 52.5 4.8

CC3 53 4 CC2 56 4

CC1 58 5.1 Hk-S 64 5.1

Hk-T, Hk-TP 65.98 6.1 Hk-MP 71 5

Hk-AP 76 5 Hk-OP 88 6

Da5 89 5.2 KmP12 96.4 4

KmP11 97 4 Kmp10 975 5

Hk-Da4 98.5 6 KmP9 98.5 4

KmP8 99 4 KmP7 101 5.4

KmP6 102 5 KmP5 107 4

KmP4 107 4 KmP3 108 5

KmP2 109 5 KmP1 111 5.5

KIP13 117 5.4 KIP11 124 5

KIP10 125 5 KIP-9(Hk-Da1) 126 6

KIP8 127 5.4 KIP7 128 5.8

KIP6 129 5 KIP5 131 5

KIP3 134 5 KIP2 137 4

KIP1 138 4 TAu-12 150 5.4

TAu2 160 5 TAm-7 165 5

TAm-6 170 5 TAm-5 178 6.1

TAm-4 181 6 TAm-1 185 5.9

TB13 190 6 TB-7 228 5

TB-1 240 5.7 TCu-1 255 5.8

TCl4 310 5



20 Jiancang Zhuang, Ting Wang AND Koji Kiyosugi

Magnitude
Replenished dataset Orig. dataset Orig. dataset

threshold
[tmain, T ] [tmain, T ] [tmain + 54 days, T ]

K̂ ĉ p̂ K̂ ĉ p̂ K̂ ĉ p̂

2.95 804.4 .1140 1.003 82.29 .0553 .6205 567.9 .0000 .9374

3.05 639.2 .1131 1.003 80.31 .0596 .6547 461.9 .0000 .9410

3.15 511.5 .1134 1.001 79.25 .0660 .6872 384.0 .0000 .9447

3.25 412.9 .1110 .9965 79.04 .0737 .7185 311.4 .6961 .9407

3.35 327.3 .1067 .9926 78.80 .0825 .7555 228.2 .0009 .9254

3.45 260.3 .1141 .9925 80.67 .0991 .7986 182.6 .0026 .9271

3.55 213.8 .1142 .9953 83.33 .1177 .8407 150.5 .0000 .9309

3.65 171.6 .1135 .9907 85.73 .1360 .8799 105.5 .0000 .9048

3.75 135.9 .1132 .9911 90.18 .1642 .9278 84.24 .0003 .9058

3.85 111.2 .1029 .9941 95.17 .1935 .9708 67.65 .0000 .9033

3.95 100.0 .1241 1.015 103.2 .2383 1.023 70.62 .0000 .9498

4.05 74.12 .1082 1.013 79.20 .1938 1.027 58.65 .0002 .9663

4.15 60.65 .1266 1.026 62.92 .1690 1.034 47.95 .0003 .9761

Table S2: Results from fitting the Omori-Utsu formula to the original and the replenished

datasets of earthquakes from Southwest China, with different magnitude thresholds and

different fitting time intervals. tmain: occurrence time of the mainshock; T : end of the

time interval.


