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Abstract: Despite extensive research on variable selection over the past two decades,

few studies exist on variable selection for classification, particularly when no as-

sumptions are made about the model. In this paper, we propose a general variable

selection framework for classification by examining the conditional probability. The

proposed framework is illustrated by means of support vector machine (SVM) with

derivative-induced sparsity, which makes no explicit model assumption, and takes

full advantage of the mathematical properties of the reproducing kernel Hilbert

space (RKHS). In contrast to many existing methods, our proposed method leads

to a convex optimization task, and fully exploits gradient information by using the

reproducing property of gradients in smooth RKHSs. The proposed method can

also be viewed as a generalization of the classical SVM, and achieves superior em-

pirical performance in sparse classification. Importantly, the estimation consistency

and subset selection properties of the proposed method are established. Lastly, the

effectiveness of the method is demonstrated using simulated and real-life examples.

Key words and phrases: Classification, gradient learning, reproducing kernel Hilbert

space (RKHS), sparsity, support vector machine (SVM).

1. Introduction

In a binary classification, a random pair Z = (x, y) is drawn from some un-

known distribution ρx,y on X×Y, where x = (x1, . . . , xp)T∈X ⊂ Rp and y ∈ Y =

{−1, 1}. The main purpose of the classification is to determine a classification

rule f that minimizes the misclassification error EI(y 6= f(x)), where I is the

indicator function. It is well known that the optimal classification rule that min-

imizes this error is the so-called Bayes rule, fBayes(x) = sign(P (y = 1|x)− 1/2).

In the literature, various convex surrogate functions have been proposed as al-

ternative to the indicator function to facilitate the estimation of fBayes(x) and

improve numerical performance. Yet, as pointed out in Fan and Fan (2008),

in high-dimensional classifications, the performance can be as poor as that of a

random guess if all the variables are used, accounting for the accumulation of
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noise. Hence, it is generally believed that, among all the collected variables, only

a small number are truly informative for classification, making it crucial that

they can be identified correctly.

In the literature, the support vector machine (SVM) is a popular classifica-

tion method, with numerous variable selection methods having been developed

under its framework. For a linear SVM, Zhou et al. (2004) impose the L1-penalty

to push the coefficient of noninformative variables to be exactly zero and thus

achieve variable selection. Zou (2007) proposes an adaptively weighted L1-norm

penalty to further exploit the sparsity. Zou and Yuan (2008) consider the F∞-

norm SVM to select groups of features. Zhang et al. (2016) propose a variable

selection method for a linear SVM in a diverging dimension setting. For a non-

linear SVM, Bi et al. (2003) propose first identifying a subset of informative

variables using a series of sparse linear SVMs, and then fitting a nonlinear model

based on the identified subset. Zhang (2006) proposes a variable selection method

for a nonlinear SVM and uses the smoothing spline ANOVA model. Zhao and Liu

(2012) consider a combination of a functional SVM and a sparse additive model

to achieve variable selection. Note that the performance of the aforementioned

methods largely relies on the validity of their prespecified model assumptions.

In this paper, we propose a general variable selection framework for classifi-

cation that aims to identify the informative variables that contribute to the Bayes

rule. Specifically, we illustrate the proposed framework using an SVM; however,

it can be extended to other classification problems. The proposed framework is

motivated by the fact that the Bayes rule depends on truly informative variables

only. Thus, the contribution of the noninformative variables to the Bayes rule,

measured by the corresponding derivative function, shall necessarily be zero, al-

most surely. The proposed framework is then expressed in regularization form,

with a derivative-induced penalty in a smooth reproducing kernel Hilbert space

(RKHS). This penalty fully utilizes the property that derivatives are bounded lin-

ear functionals in a RKHS with suitable representation. This property makes the

computation feasible and efficient, and also ensures the reliability and validity of

the estimation. An efficient algorithm is developed based on Nesterov’s method

(Nesterov (2005)) to solve the resultant optimization task. The asymptotic esti-

mation and subset selection results are established under mild conditions. The

theoretical results ensure that the proposed method is able to recover the truly

informative variables with probability tending to one.

There are several salient advantages of our proposed framework. First, a

general variable selection framework is established that aims to discover all truly
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informative variables contributing to the Bayes rule, and can be extended to var-

ious popular loss functions. Second, unlike most existing gradient-based methods

in the literature (Yang, Lv and Wang (2016)), we combine the L2-norm of the

corresponding partial derivatives with the standard RKHS-norm to avoid heavy

computation in local pairwise learning. The novel regularization term not only

ensures the existence and uniqueness of the minimizer in the regularization prob-

lem (Ekeland and Temam (1976)), but also ensures the explicit form of the min-

imizer, from the properties of the RKHS and the representer theorem (Rosasco

et al. (2013)). Third, the asymptotic estimation and subset selection results are

established without imposing explicit model assumptions, in contrast to most

existing theoretical results that make specific model assumptions.

The rest of the paper is organized as follows. Section 2 presents the general

framework of the variable selection for classification, and introduces the proposed

variable selection method by means of an SVM, as well as its computing algo-

rithm. Section 3 establishes the statistical properties of the proposed method.

Section 4 contains numerical results for both simulated and real-life examples.

Section 5 concludes the summary. The Appendix contains all the computational

details and technical proofs.

2. Proposed Methodology

2.1. Variable selection for classification

Let η(x) = P (y = 1|x). Then, the Bayes rule fBayes(x) = sign(P (y =

1|x)−1/2) = sign(η(x)−1/2). In a sense, the information related to classification

can be fully captured by the conditional probability η(x). A variable xl is deemed

noninformative if and only if it does not contribute to η(x), given all other

variables x−l, or more precisely,

η(x−l, xl) = η(x−l). (2.1)

This definition differs from that of many existing methods, which often rely

on various specific model assumptions (Zhang (2006); Zou (2007); Zhang et al.

(2016)), and was only recently considered by Barber and Candès (2015); Lee, Li

and Zhao (2016); Li and Liu (2018). In contrast to existing methods, we quantify

the contribution of xl in η(x) by examining its corresponding derivative function,

∂lη(x) =
∂η(x)

∂xl
, (2.2)
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and a noninformative variable can be implied by ∂lη(x) = 0 almost surely. Hence,

the true active set A∗ is defined as A∗ = {l : ‖∂lη(x)‖2ρx > 0}, where ‖∂lη(x)‖2ρx =∫
X
(
∂lη(x)

)2
dρx is the L2-norm induced by the marginal probability measure ρx

on X .

Let L(yf(x)) be a margin-based surrogate loss function, and f∗=argminf∈HK
EL(yf(x)), where HK is an RKHS associated with a specified kernel K and

endowed with the norm ‖ · ‖K . Note that f∗(x) is a function of η(x) for

many surrogate losses. For example, for the square error loss L(t) = (1 − t)2,

f∗S(x) = 2η(x) − 1; for the logistic loss L(t) = (1/ ln 2) ln(1 + e−t), f∗L(x) =

ln(η(x)/(1− η(x))); and for the hinge loss L(t) = (1− t)+,

f∗H(x) = argmin
f∈HK

E(1− yf(x))+

= argmin
f∈HK

(1− f(x))+η(x) + (1 + f(x))+(1− η(x)).

In such cases, it follows from the chain rule of derivatives that

g∗l (x) = ∂lf
∗(x) =

∂f∗(x)

∂η
∂lη(x). (2.3)

When f∗(x) is not a degenerate function of η(x), ∂f∗(x)/∂η is nonzero almost

surely. With this assumption, it suffices to estimate the corresponding derivative

functions g∗l instead of η(x) for the purpose of variable selection. For example, in

Li and Liu (2018), the logistic loss is used and ∂f∗(x)/∂η = (η(x)(1− η(x)))−1,

which is nonzero as long as η(x) is not exactly zero or one.

We illustrate the proposed framework of the derivative-induced sparsity

method using the popular hinge loss; however, the framework can be extended

readily to other loss functions. Furthermore, we propose a general variable selec-

tion framework for classification by examining the sparse structure of the condi-

tional probability, an area that is under-researched in the statistics literature, but

is gaining attention (Li and Liu (2018)). In contrast to Rosasco et al. (2013), who

examine the properties of the derivative-induced regularizer under a squared loss,

the proposed method uses the derivative-induced regularizer as a tool to identify

the variables that contribute to the Bayes rule.

2.2. Kernel SVM

Throughout this paper, suppose that a random sample Zn = {(xi, yi)}ni=1

is an independent copy of Z = (x, y), and that η(x) ∈ HK . A standard Kernel
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SVM problem is formulated as

min
f∈HK

1

n

n∑
i=1

(1− yif(xi))+ + λ‖f‖2K ,

where the first term is the sample version of E(f) = E(1− yf(x))+, denoted as

EZn(f), and ‖f‖2K is the RKHS-norm controlling the smoothness of f .

Any given symmetric and positive semi-definite kernel function K : X×X →
R induces an RKHS HK . For each x ∈ X , the function z→ K(z,x) is contained

in HK . In addition, HK is endowed with an inner product ‖ · ‖K , such that the

following reproducing property is satisfied:

f(x) = 〈f,K(x, ·)〉K , for any f ∈ HK .

More importantly, under suitable smoothness conditions on K, such as twice-

continuous differentiability, there holds ∂lKx = ∂lK(x, ·) = (∂K(s, ·)/∂sl)
∣∣
s=x
∈

HK , by Theorem 1 of Zhou (2007). The reproducing property of derivative

functions in HK is also satisfied:

gl(x) = ∂lf(x) = 〈f, ∂lK(x, ·)〉K , for f ∈ HK , (2.4)

where gl(x) is the partial derivative of f(x) with respect to xl. It can be shown

that both polynomial kernels and Gaussian kernels satisfy these conditions. In

particular, the Gaussian kernels are also universal on every compact subset of

the Euclidean space, implying that they can closely approximate any continuous

true function.

The reproducing property of derivative functions given in (2.4) is interesting,

and somewhat surprising. In general, estimating a derivative function is more

difficult than estimating the function itself, and the former exhibits a slower

convergence rate and is more sensitive to noise . However, in a smooth RKHS,

we can see from (2.4) that the difficulty of estimating a derivative function is

almost the same as that of estimating the function itself. Moreover, the repro-

ducing property in (2.4) ensures that any infinite-dimensional optimization with

derivative-induced regularization within a smooth RKHS can be reduced to a

finite-dimensional optimization problem. More importantly, as shown in Subsec-

tion 2.3, the number of parameters in our proposed kernel-induced optimization

is at most (n+ 1)p. In contrast, existing methods that capture higher-order non-

linear effects are often expressed in an enumerate way. The resulting function is
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often formulated as f(x) =
∑p

j=1 fj(x
j) +

∑
k<j fk,j(x

k, xj) + · · · by a group of

authors, including Bach (2009) and Lin and Zhang (2006). Clearly, the number

of parameters in these models is more than an exponential order of the data

dimension, which incurs a tremendous computational cost in high-dimensional

cases.

2.3. Proposed formulation

Our proposed method is formulated to solve the following optimization prob-

lem:

argmin
f∈HK

EZn(f) + λ0‖f‖2K + λ1Ω[p](f), (2.5)

where Ω[p](f) =
∑p

l=1 πl‖gl‖ρx is a lasso-type penalty to induce sparsity in f , and

λ0 and λ1 are both tuning parameters. Note that πl is often chosen adaptively to

assign different weights to the derivative functions in order to attain asymptotic

selection consistency; see Section 3. Note that our proposed penalty terms can be

viewed as a functional version of the elastic net (Zou and Trevor (2005)), which

deals efficiently with highly correlated data.

The true marginal measure ρx is unknown in practice. Thus, the sample

version of ‖gl‖2ρx is defined as

‖gl‖2n =
1

n

n∑
i=1

(
gl(xi)

)2
=

1

n

n∑
i=1

(
∂lf(xi)

)2
.

Hence, the objective function in (2.5) becomes

argmin
f∈HK

1

n

n∑
i=1

(
1− yif(xi)

)
+

+ λ0‖f‖2K + λ1

p∑
l=1

πl‖gl‖n, (2.6)

where the last term is an empirical version of Ω[p](f), denoted as Ω̂[p](f). Denote

the minimizer of (2.6) as f̂ and the selected informative variable set as Â =

{l : ‖ĝl‖n > 0}, with ĝl(x) = 〈f̂ , ∂lKx〉K . Note that by an extended version of

the representer theorem (Wahba (1998)), in an RKHS, the minimizer of (2.6)

must have the following form (Rosasco et al. (2013)):

f(x) =

n∑
i=1

αiK(x,xi) +

n∑
i=1

p∑
l=1

βli∂lKxi(x) = cTMn(x), (2.7)
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where c = (α,β)T , for α = (α1, . . . , αn) and β = (β1, . . . ,βp), with βl =

(βl1, . . . , β
l
n); and Mn(x) = (Kn(x)T , ∂1 Kn(x)T , . . . , ∂p Kn(x)T )T ∈ Rn(p+1),

with Kn(x) = (K(x1,x), . . . ,K(xn,x))T and ∂l Kn(x) = (∂lKx1
(x), . . . , ∂lKxn

(x))T . Moreover, ‖f‖2K = cT M̃ c with M̃ = 〈Mn(·),Mn(·)〉K and ‖gl‖n =

((1/n)
∑n

j=1(cT Ul
xj )

2)1/2 with Ul
xj = (∂lK

T
xj , ∂1l Kn(xj)

T , . . . , ∂pl Kn(xj)
T )T .

Additional computational details for Mn(x), M̃, and Ul
x are provided in Ap-

pendix A.1.

The optimization problem in (2.6) can be reformulated as

argmin
c

1

n

n∑
i=1

(1− yicTMn(xi))+ + λ0c
T
M̃ c +λ1

p∑
l=1

πl

 1

n

n∑
j=1

(cTU
l
xj )

2

1/2

,

(2.8)

where the last term can be regarded as a group lasso penalty (Yuan and Lin

(2006)), pushing all or no elements of {cTUl
xj}

n
j=1 to be exactly zero to achieve

sparsity in f .

Note that the proposed method requires that the true target function f∗ ∈
HK be induced by some predefined kernel function K, which can be set differently

based on the prior information obtained about f∗. For example, if f∗ is known

to be linear in advance, we can set K as the linear kernel, and then (2.7) reduces

to f(x) =
∑p

l=1 ϕ
lxl, with ϕl =

∑n
i=1(αix

l
i + βli). Direct calculation yields that

the derivative-induced regularizer ‖gl‖n = ((1/n)
∑n

j=1(
∑n

i=1(αix
l
i + βli))

2)1/2 =

|ϕl|, reducing to the standard lasso penalty. Further computational details of

the derivative-induced regularizer under other popular kernels are contained in

Appendix A.1. If prior information is unavailable, we can set K as the Gaussian

kernel. In this case, the resultant RKHS is fairly large, because the Gaussian

kernel is known to be universal in the sense that any continuous function can

be well approximated by some function in the induced RKHS under the infinity

norm (Steinwart (2005)).

2.4. Computing algorithm

In this subsection, we develop an efficient algorithm for (2.8) using Nesterov’s

method (Nesterov (2005)). Essentially, we replace nonsmooth terms with smooth

approximations, and then solve the approximated optimization problem using a

gradient descent algorithm.
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Clearly, the objective function in (2.8) has an equivalent form that

max
u∈P1

1

n

n∑
i=1

(1− yicTMn(xi))ui + λ0c
T
M̃ c +

1

n1/2
max
v∈P2

p∑
l=1

πl(v
l)T
(
U
l
)T

c,

(2.9)

where P1 = {u ∈ Rn : 0 ≤ ui ≤ 1}, P2 =
{
vl : ‖vl ‖2 ≤ 1,vl ∈ Rn

}
, and

Ul = (Ul
x1
, . . . ,Ul

xn)T . Note that the first and third terms of (2.9) can be

approximated by

E∗Zn,µ1
(c) ≡ max

u∈P1

{
1

n

n∑
i=1

(
1− yicTMn(xi)

)
ui − dµ1

1 (u)

}
, (2.10)

Ω̂∗[p],µ2
(c) ≡ max

v∈P2

{
1

n1/2

p∑
l=1

(
πl(v

l)T
(
U
l
)T

c−dµ2

2 (vl)
)}

, (2.11)

respectively, where dµ1

1 (u) = (µ1/2)‖u ‖22 and dµ2

2 (vl) = (µ2/2)‖vl‖22 are prox-

functions, and µ1 and µ2 are some positive constants. Note that E∗Zn,µ1
(c) is con-

vex and continuously differentiable, and can be regarded as a uniformly bounded

smooth approximation of EZn(c), with E∗Zn,µ1
(c) ≤ EZn(c) ≤ E∗Zn,µ1

(c) + µ1. A

similar result holds for Ω̂∗Zn,µ2
(c). More importantly, because dµ1

1 (u) and dµ2

2 (vl)

are strongly convex, the minimizers of (2.10) and (2.11) are unique and have

explicit forms:

u∗i = median

(
0,

1− yicTMn(xi)

nµ1
, 1

)
and

v∗l =
πl
(
Ul
)T

c

n1/2µ2 max
(
1, (πl‖(Ul)T c ‖2/µ2n1/2)

) .
Denote µ = (µ1, µ2)T . Then, the objective function in (2.8) is approxi-

mated by the smoothed functional Fµ(c) = E∗Zn,µ1
(c) + λ0R(c) + λ1Ω̂∗[p],µ2

(c),

the derivative of which can be directly obtained, as follows:

∇Fµ = ∇E∗Zn,µ1
(c) + λ0∇R(c) + λ1∇Ω̂∗[p],µ2

(c),

where∇E∗Zn,µ1
(c) = −(1/n)

∑n
i=1 yiMn(xi)u

∗
i ,∇R(c) = 2M̃ c, and∇Ω̂∗[p],µ2

(c) =

n−1/2
∑p

l=1 Ulv∗l . Moreover, an upper bound of the gradient Lipschitz constant



CLASSIFICATION WITH DERIVATIVE-INDUCED REGULARIZATION 2083

of ∇Fµ is given by

Cµ = CE∗Zn,µ1 + λ0CR + λ1CΩ̂∗µ2
,

where CE∗Zn,µ1 = max1≤i≤n(
∥∥Mn(xi)Mn(xi)

T
∥∥
F
/nµ1), CR = ‖M̃‖F , CΩ̂∗Zn,µ2

=

(1/nµ2)‖
∑p

l=1 π
2
l U

l(Ul)T ‖F , and ‖ · ‖F denotes the Frobenius norm. Note that

the gradient Lipschitz constant is the spectral norm of the matrix, which is

upper bounded by its Frobenius norm. In the computing algorithm, we adopt

the Frobenius norm to compute the step size of the proposed gradient descent

algorithm, for computational simplicity.

We are now ready to use the gradient descent algorithm to optimize Fµ(c).

In the kth iteration, we consider the following update sequence:

ak = ck −
∇Fµ(ck)

Cµ
, b

k = c0 −
k∑
t=1

t+ 1

2Cµ
∇Fµ(ct), ck+1 =

2bk + (k + 1)ak

k + 3
,

where ak and bk are the solutions to the following auxiliary optimization prob-

lems:

min
a∈Rn(p+1)

〈a−ck,∇Fµ(ck)〉+
Cµ
2
‖a−ck‖22,

min
b∈Rn(p+1)

Cµ
2
‖b−c0‖22 +

k∑
t=1

t+ 1

2

(
Fµ(ct) + (b−ct)T∇Fµ(ck)

)
.

The proposed algorithm is summarized as follows. As a computational re-

Algorithm 1: Computing algorithm.

given: parameters λ0, λ1, µ1, µ2 and πl; l = 1, 2, . . . , p.
initialize: c1 = 0, d1 = 0, k = 1.
for k ≥ 1, repeat

ak+1 = ck −
∇Fµ(ck)

Cµ
,

dk+1 = dk + (k + 1)∇Fµ(ck),

b
k+1 = c0 − dk+1

2Cµ
,

ck+1 =
2bk+1 + (k + 1)ak+1

k + 3
.

until ck converges.
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mark, at the kth iteration, the combination of ak and bk is used to adjust the

descent. Thus, the algorithm has a convergence rate O(1/k2), which can be

derived based on Theorem 2 in Nesterov (2005).

3. Statistical Properties

In this section, the asymptotic results of the estimation and subset selection

of our proposed method are established under some regularity assumptions. To

ensure the uniqueness of f∗, we further define f∗ = argminf∈B ‖f‖2K , with B =

{f ∈ HK : f = argminf∈HK E(f)}. Note that A∗ can be rewritten as A∗ =

{l, ‖g∗l ‖2ρx > 0}. Without loss of generality, we assume the first p0 variables of

x are truly informative, and thus the cardinality of A∗ is |A∗| = p0 < p. The

following technical assumption is made.

Assumption 1. There exist some positive constants κ1 and κ2, such that supx∈X
‖Kx‖K ≤ κ1 and supx∈X ‖∂lKx‖K ≤ κ2, for any l = 1, . . . , p.

Assumption 1 assumes the boundedness of the kernel functions, which is

commonly used in the machine learning literature ( Rosasco et al. (2013); Yang,

Lv and Wang (2016)). Such a condition can be verified for many kernel functions,

including the Gaussian kernel, if they satisfy certain smoothness conditions.

Denote the function space FM =
{
f ∈ HK : ‖f − f∗‖K ≤ M

}
, with some

M > 0. Now, we establish the estimation consistency of the proposed method.

Theorem 1. Suppose Assumption 1 is met and f̂ ∈ FM . For some δn ∈ (0, 1),

with probability at least 1− δn, we have

E(f̂)− E(f∗) ≤2
√

2
(
(M + ‖f∗‖K)

√
κ1 + κ1M

)√ log(1/δn)

n
+ 69κ1

M log(1/δn)

2n

+ 2λ0M‖f∗‖K + 2λ1κ2M
∑
l∈A∗

πl.

Theorem 1 illustrates how the excess risk of the proposed method explicitly

depends on the tuning parameters (λ0, λ1, πl) and the sample size n. The assump-

tion f̂ ∈ FM is fairly weak. Thus, we consider two special cases in the corollaries

below, where M is either a constant, or is obtained from the regularized approach

in (2.6).

Corollary 1. Suppose the assumptions of Theorem 1 and case (i) are satisfied.

Let λ0 = n−1/2 and λ1πl = n−1/2, for any δn > 0, with probability at least 1− δn;
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then, there holds

E(f̂)− E(f∗) ≤ C0n
−1/2

(√
log

1

δn
+ |A∗|

)
,

where C0 = 2
√

2κ1‖f∗‖K + 2M
(√

2κ1 + κ1

√
2 + 35/2κ1 + ‖f∗‖K + κ2

)
.

We omit the proof of Corollary 1 here because it can be obtained directly from

Theorem 1 under case (i). The boundedness assumption on hypothesis spaces

is standard in the statistical literature; see Tarigan and Van De Geer (2006)

for high-dimensional SVMs and Horowitz and Mammen (2007) for generalized

additive models. Compared with the variable selection approaches based on a

local derivative estimation (Yang, Lv and Wang (2016)), our convergence rate in

Corollary 1 does not depend on the dimension of the covariates p. This indicates

that our proposed method is more robust to the ambient dimension.

We now consider a relaxation of Corollary 1, with essentially weaker con-

ditions. When we do not specify M , we take M = λ0
−1/2 + ‖f∗‖K from our

proposed method in (2.6), by the fact that EZn(f̂) + λ0‖f̂‖2K + λ1Ω̂[p](f̂) ≤
EZn(0) + λ0‖0‖2K + λ1Ω̂[p](0) ≤ 1. In this case, the following corollary can be

obtained easily from Theorem 1.

Corollary 2. Suppose the assumptions of Theorem 1 and case (ii) are satisfied.

Let λ0 = n−1/2, λ1πl = n−1/2; then, for any δn > 0, with probability at least

1− δn, there holds

E(f̂)− E(f∗) = Op

(
n−1/4

((
log

1

δn

)1/2

+ |A∗|

))
.

Although the convergence rate in Corollary 2 is not as tight as some existing

results for the classical SVM, it is established under much weaker conditions than

those of most existing methods. For example, the method of Tarigan and Van

De Geer (2006) requires an extra margin condition to achieve a tighter rate. In

fact, a tighter convergence rate can be obtained in Corollary 1 by assuming M

is a constant.

Furthermore, note that Theorem 1 only provides a type of weak conver-

gence in estimating f∗ and, thus, is not sufficient to imply selection consis-

tency, which requires an error bound of ‖f̂ − f∗‖K . For this purpose, two

additional assumptions are made for our analysis. Let f̃ be the minimizer of

E(f) + λ0‖f‖2K + λ1Ω[p](f) over HK as an intermediate function.



2086 HE, LV AND WANG

Assumption 2. There exist some positive constants θ1, θ2, C1, C2, C3, and C4,

such that ‖f̃−f∗‖K = C1max{λ0, λ1}θ1, C2 ≤ maxl∈A∗ πl ≤ C3, and minl /∈A∗ πl =

C4n
θ2.

Assumption 3. There exist some positive constants C5 and ξ > 1/2, such that

minl∈A∗ ‖g∗l ‖ρx > C5 max{p1/2n−3/32+θ2/2, n−θ1/8}
(

log(6p/δn)
)ξ
.

Assumption 2 controls the approximation error of the proposed method,

which has been well studied in Cuker and Zhou (2007). Note that a similar

assumption on the approximation error is imposed in Rosasco et al. (2013). As-

sumption 2 also characterizes the property of the adaptive tuning weight πl,

which is designed to converge to some constant for informative variables, and

to diverge to infinity for noninformative variables. As suggested by Zou (2006),

an initial estimator g̃l can be obtained by setting λ0 = λ1 = 0 in (5). Then

we choose πl = ‖g̃l‖−γn , with γ as some positive constant satisfying Assumption

2. Assumption 2 can be verified in a similar manner to the proof of Lemma 1.

Assumption 3 requires that the true derivative function contain sufficient infor-

mation about the truly informative variables. Now, we establish the asymptotic

sparsistency of the proposed method.

Lemma 1. Suppose Assumptions 1–2 are met. There exists some constant C6,

such that, with probability at least 1− δn, there holds

max
l=1,...,p

∣∣‖ĝl‖2n − ‖g∗l ‖2ρx∣∣
≤ C6

(
M1/2

(
1

n1/2λ1
+

∑p
l=1 πl

n1/4

)1/2

+ max{λ0, λ1}θ1
)(

log
6p

δn

)1/2

.

Additionally, if case (ii) is satisfied by taking M = λ
−1/2
0 + ‖f∗‖K and letting

λ0 = n−1/8 and λ1 = n−1/4, then there exists some constant C7, such that, with

probability at least 1− δn, there holds

max
l=1,...,p

∣∣‖ĝl‖2n − ‖g∗l ‖2ρx∣∣ ≤ C7 max{p1/2n−3/32+θ2/2, n−θ1/8}
(

log
6p

δn

)1/2

.

Lemma 1 establishes the convergence relationship between ‖ĝl‖2n and ‖g∗l ‖2ρx ,

which is crucial to establishing the asymptotic subset selection in Theorem 2.

Theorem 2. Suppose the assumptions of Lemma 1 and Assumption 3 are met.

Then, we conclude that

P
(
A∗ ⊂ Â

)
→ 1.
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Theorem 2 shows that the selected variables contain all of the truly infor-

mative variables asymptotically, which can be regarded as a safe filter. The

guarantee in Theorem 2 is the same as the SURE screening property, which

has been studied extensively in the literature (Fan and Song (2010); Li, Zhong

and Zhu (2012); Wang et al. (2015)). However, it remains open to the bound

P
(
A∗ ⊃ Â

)
in order to guarantee variable selection consistency. Recall that a

standard technique for proving variable selection consistency is the so-called con-

struction approach. This approach first constructs a local estimator θ̂A∗ based on

the proposed estimation restricted to A∗, and then shows that (θ̂A∗ ,0) is a fea-

sible solution to the proposed estimation. However, in our infinite-dimensional

case, θ̂A∗ may not be within the specific RKHS, unlike any finite-dimensional

vectors. In other words, our proposed method can be viewed as an approxima-

tion strategy for variable selection beyond those offered by additive models. Note

that (θ̂A∗ ,0) is not well defined, which may cause difficulty. In addition, existing

penalty terms associated with sparsity, such as the group lasso and multiple ker-

nel learning (Bach (2008)), are based on the fact that the penalties are induced

by orthogonal projection operators. Unfortunately, our regularizer is not associ-

ated with such operators. Addressing these challenge is beyond the scope of this

study and, thus, is left to future research.

4. Numerical Examples

In this section, we compare the numerical performance of the proposed

method against that of several existing methods, including the sparse additive

machine (Zhao and Liu (2012)), the SURE independence screening (Fan and Song

(2010)), and conditional distance correlation (Wang et al. (2015)), denoted as

MF, SAM, SIS, and CDC, respectively. The corresponding R packages ”SAM”,

”SIS” and ”cdcsis” are used for the three existing methods. For MF, we set

µ1 = µ2 = 0.2, and for CDC, we set 0.05 as the threshold value to identify

the informative variables. Note that Zhao and Liu (2012) conduct a numerical

comparison, showing that SAM outperforms several existing methods, including

the Cosso-SVM (Zhang (2006)). In all the simulated examples presented here,

no prior knowledge about the true target function is assumed; thus the Gaus-

sian kernel K(s, t) = e−‖ s− t ‖2/(2σ2
n) is used to induce the RKHS, where σn is

set as the median of all pairwise distances within the training sample (Jaakkola,

Diekhans and Haussler (1999)). Because the choice of tuning parameters highly

affects the performance of the methods, they are selected using the variable selec-
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tion stability criterion (Sun, Wang and Fang (2013)). This criterion measures the

stability of variable selection by randomly splitting the training sample into two

parts, and then comparing the disagreement between the two selected variable

sets. The maximization of the stability criterion is conducted via a grid search,

where the grid is set as {10−2+0.1s : s = 0, . . . , 40}.

4.1. Simulated examples

Three simulated examples are examined. We first generate xi = (xi1, . . . ,

xip)
T , with xij = (Wij+ηUi)/(1+η), where Wij and Ui are drawn independently

from U(0, 1). The following cases are considered:

• Example 1: f∗(x) = 2/ cos(2πx1x2)− 1;

• Example 2: f∗(x) = 6x1 − cos(πx1) + 2x2 + 8x2
2 + 6 sin(π(x3 − x4))− 8;

• Example 3: f∗(x) = 20x1x2x3 + 4x2
4 + 4x5 − 5.

Then, we generate y ∼ Bernoulli(1/(1+e−f
∗(x))). Clearly, the first two variables

are truly informative in the first example, with an interaction effect. In the second

example, an additive model structure with an interaction term is examined, and

the first four variables are truly informative. In the third example, a three-way

interaction term is considered, and the first five variables are truly informative.

For each example, we consider scenarios with (n, p) = (200, 10), (200, 20),

and (300, 40). In each scenario, η = 0 and η = 0.1. When η = 0, the data are

generated to be completely independent, whereas when η = 0.1, a correlation

structure is added between the variables. Each scenario is replicated 50 times,

and the averaged performance measures are summarized in Tables 1–3. Specifi-

cally, Size represents the averaged number of selected informative variables, TP

represents the number of truly informative variables selected, FP represents the

number of truly noninformative variables selected, and C, U, and O are the num-

bers of times correct-fitting, under-fitting, and over-fitting occurred, respectively.

The AUCs of all methods are also reported for comparison. For each replication,

we refit a standard SVM with the selected variables identified by each method,

and then compute the AUC of the fitted model using a testing set with 10, 000

records, which are generated independently and identically as the training set.

Clearly, MF outperforms the other methods in most scenarios. In Example

1, MF is able to identify the two truly informative variables in almost every

replication, which have an interaction effect in the denominator of f∗(x). In

Example 2, where f∗(x) is additive with one interaction term involved, MF is
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Table 1. The averaged performance measures of various variable selection methods in
Example 1.

(n, p, η) Method Size TP FP C U O AUC
(200,10,0) MF 1.92 1.90 0.02 44 5 1 0.8416

SAM 3.02 2.00 1.02 25 0 25 0.8353
SIS 2.18 1.98 0.30 41 1 8 0.8510

CDC 2.04 1.98 0.06 46 0 4 0.8543
(200,20,0) MF 2.10 1.94 0.16 42 3 5 0.8447

SAM 3.72 2.00 1.72 13 0 37 0.8272
SIS 2.28 1.98 0.30 36 1 13 0.8477

CDC 4.42 2.00 2.22 2 0 48 0.8080
(300,40,0) MF 2.24 2.00 0.24 42 0 8 0.8619

SAM 4.20 2.00 2.20 8 0 42 0.8227
SIS 2.36 2.00 0.36 38 0 12 0.8596

CDC 20.82 2.00 18.82 0 0 50 0.7531
(200,10,0.1) MF 2.02 2.00 0.02 49 0 1 0.8807

SAM 3.00 2.00 1.00 16 0 34 0.8590
SIS 2.16 2.00 0.16 43 0 7 0.8764

CDC 2.06 2.00 0.06 47 0 3 0.8784
(200,20,0.1) MF 2.06 1.96 0.10 44 2 4 0.8702

SAM 3.60 2.00 1.60 14 0 36 0.8495
SIS 2.24 2.00 0.24 43 0 7 0.8757

CDC 4.44 2.00 2.44 3 0 47 0.8387
(300,40,0.1) MF 2.04 2.00 0.04 48 0 2 0.8842

SAM 4.06 2.00 2.06 6 0 44 0.8469
SIS 2.16 2.00 0.16 42 0 8 0.8826

CDC 22.28 2.00 20.28 0 0 50 0.7862

able to identify all truly informative variables with high accuracy. In Example 3,

MF correctly identifies the truly informative variables in a three-way interaction

effect, and identifies square effect and linear effect variables included in most

replications. However, SAM tends to overfit, and thus wrongly includes some

noninformative variables in most scenarios. SIS selects fewer redundant vari-

ables than SAM does, but still tends to include some noninformative variables.

CDC performs well when (n, p) is small, but the performance worsens as (n, p) in-

creases. These conclusions are supported by the AUC comparison. Furthermore,

when the correlation structure with η = 0.1 is considered, identifying the truly

informative variables becomes more difficult; nevertheless, MF still outperforms

its competitors in most scenarios.

As computational remarks, to obtain the adaptive weight πl, we estimate g̃l
by setting λ0 = λ1 = 0 in Algorithm 1, and take γ = 1 for computational sim-
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Table 2. The averaged performance measures of various variable selection methods in
Example 2.

(n, p, η) Method Size TP FP C U O AUC
(200,10,0) MF 4.02 4.00 0.02 49 0 1 0.9604

SAM 5.06 4.00 1.06 19 0 31 0.9527
SIS 4.22 4.00 0.22 42 0 8 0.9583

CDC 3.96 3.92 0.04 44 4 2 0.9558
(200,20,0) MF 4.00 3.96 0.04 46 2 2 0.9578

SAM 5.92 4.00 1.92 10 0 40 0.9468
SIS 4.66 4.00 0.66 37 0 13 0.9556

CDC 5.84 3.98 1.86 6 0 44 0.9474
(300,40,0) MF 4.02 4.00 0.02 49 0 1 0.9667

SAM 6.72 4.00 2.72 7 0 43 0.9484
SIS 4.54 4.00 0.54 40 0 10 0.9628

CDC 21.54 4.00 17.54 0 0 50 0.9220
(200,10,0.1) MF 3.90 3.90 0.00 47 3 0 0.9561

SAM 5.04 4.00 1.04 20 0 30 0.9568
SIS 4.20 4.00 0.20 42 0 8 0.9612

CDC 3.88 3.84 0.04 40 8 2 0.9540
(200,20,0.1) MF 3.98 3.94 0.04 46 3 1 0.9612

SAM 5.56 3.98 1.58 11 1 38 0.9535
SIS 4.22 4.00 0.22 44 0 6 0.9625

CDC 6.36 3.98 2.38 3 0 47 0.9519
(300,40,0.1) MF 4.00 3.96 0.04 46 2 2 0.9674

SAM 5.78 4.00 1.78 11 0 39 0.9587
SIS 4.82 4.00 0.82 36 0 14 0.9652

CDC 23.52 4.00 19.52 0 0 50 0.9302

plicity in all numerical examples. Furthermore, owing to Nesterovs’s smoothing

approximation on the regularizer term, the estimated ‖ĝl‖n for those noninfor-

mative variables is not exactly zero. Therefore, we truncate the estimated ‖ĝl‖n
as (‖ĝl‖n − λ1)+ in all simulations.

4.2. Real–data analysis

The proposed method is applied to three real-data examples: the BUPA

Liver Disorder (BUPA) data set , the Indian Liver Patient (ILP) data set and

the Wisconsin breast cancer (WBC) data set. The BUPA data set contains 345

observations, with 145 liver-disorder and 200 liver-normal. The ILP data set col-

lects 416 liver patient records and 167 non-liver patient records with 10 features.

The WBC data set consists of 569 cases with two diagnoses, 212 malignant and

357 benign. The variables in each data set are standardized and scaled to [0, 1].
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Table 3. The averaged performance measures of various variable selection methods in
Example 3.

(n, p, η) Method Size TP FP C U O AUC
(200,10,0) MF 5.06 5.00 0.06 47 0 3 0.9327

SAM 6.58 4.96 1.62 8 1 41 0.9175
SIS 5.34 5.00 0.34 41 0 9 0.9302

CDC 4.66 4.62 0.04 32 17 1 0.9085
(200,20,0) MF 5.16 4.94 0.22 37 3 10 0.9264

SAM 8.12 4.96 3.16 6 1 43 0.9054
SIS 5.44 5.00 0.44 36 0 14 0.9287

CDC 6.94 4.96 1.98 8 2 40 0.9143
(300,40,0) MF 5.14 4.94 0.20 39 3 8 0.9347

SAM 8.96 5.00 3.96 6 0 44 0.9152
SIS 5.20 5.00 0.20 43 0 7 0.9385

CDC 22.54 5.00 17.00 0 0 50 0.8794
(200,10,0.1) MF 5.16 4.94 0.22 37 3 10 0.9237

SAM 6.62 5.00 1.62 8 0 42 0.9176
SIS 5.18 4.98 0.20 41 0 9 0.9258

CDC 4.62 4.58 0.04 30 20 0 0.9030
(200,20,0.1) MF 5.04 4.84 0.20 36 5 9 0.9161

SAM 8.32 5.00 3.32 5 0 45 0.9039
SIS 5.46 4.98 0.48 34 1 15 0.9216

CDC 7.44 4.94 2.50 4 3 43 0.9058
(300,40,0.1) MF 5.06 4.94 0.12 41 3 6 0.9329

SAM 9.18 5.00 4.18 2 0 48 0.9096
SIS 5.32 5.00 0.32 45 0 5 0.9349

CDC 24.20 5.00 19.20 0 0 50 0.8754

Then, we apply the MF, SAM, and SIS methods to select the informative vari-

ables. Note that owing to the computational burden of CDC, we do not report

its performance for these data sets. In addition, we add a standard kernel SVM,

denoted as KSVM, to report the prediction performance if all variables are in-

cluded. When the informative variables have been selected, we randomly split

each data set, with 200 observations for testing and the remainder for training,

and refit a standard kernel SVM. The splitting is replicated 1,000 times. The

averaged prediction results are summarized in Table 4.

As Table 4 shows, MF identifies three informative variables in the ILP data

set, three informative variables in the BUPA data set, and 16 informative vari-

ables in the WBC data set. The number of informative variables selected by

SAM and SIS for the data sets are 8, 6, 7 and 6, 6, 10, respectively. However, the

averaged testing errors based on the selected sets of MF are smaller than those of
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Table 4. The selected variables as well as the corresponding averaged prediction errors
by various selection methods in the dataset.

Dataset Method Number selected Testing error (Std)
BUPA MF 3 0.3196 (0.0001)

SAM 6 0.3391 (0.0001)
SIS 6 0.3391 (0.0001)

KSVM 6 0.3391 (0.0001)
ILP MF 3 0.2840 (0.0008)

SAM 8 0.2863 (0.0008)
SIS 6 0.2891 (0.0008)

KSVM 9 0.2875 (0.0008)
WBC MF 16 0.0257 (0.0003)

SAM 7 0.0307 (0.0003)
SIS 10 0.0287 (0.0003)

KSVM 30 0.0278 (0.0003)

SAM, SIS, and KSVM in all three examples, suggesting that SAM and SIS may

wrongly identify some variables, and that KSVM may include some noninforma-

tive variables, both of which are detrimental to their prediction performance.

5. Conclusion

In this study, we focus on the variable selection problem for nonparametric

classification beyond additive models, based on a general criterion that defines

the truly informative variables for classification using the optimal Bayes rule.

Furthermore, we propose an infinite-dimensional regularized framework within a

smooth RKHS, where the sparsity is naturally induced by our derivative-based

penalty. In contrast to many existing variable selection methods for nonparamet-

ric classification, our proposed method is a global estimation within an RKHS,

and can be solved using a finite-dimensional convex optimization. Thus, it is

much more robust to the ambient dimension. More importantly, the proposed

estimation enjoys nice statistical properties, such as estimation consistency and

the subset selection property, without imposing an explicit model assumption.

As a result, the proposed method takes full advantage of the mathematical prop-

erties of the RKHS, at the cost of increased computational complexity. In future

research, we will improve the computational efficiency of the proposed method.
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A. Appendix

A.1. Computational details

The RKHS HK associated with the kernel K is defined to be the completion

of the linear span of the set of functions {Kx : K(x, ·) : x ∈ X} with the inner

product 〈Kx,Ku〉K = K(x,u). Then the reproducing property takes the form

〈f,Kx〉K = f(x), for any x ∈ X and f ∈ HK . From Theorem 1 of Zhou (2007),

the partial derivative reproducing property holds true that

gl(x) =
∂f(x)

∂xl
= 〈f, ∂lKx〉K ,

where ∂lKx(·) = (∂K(s, ·)/∂sl)|s=x. It implies that

〈∂lKx, ∂l′Kx′〉K = ∂l (∂l′Kx′) (x) =
∂K(s, t)

∂sl∂tl′

∣∣∣
s=x,t=x′

,

〈∂lKs,Kx〉K =
∂K(t,x)

∂tl

∣∣∣
t=s

= ∂lKs(x).

Following these properties, directly calculation yields that

‖f‖2K = cT 〈Mn(·),Mn(·)〉K c = cT

[
Kn×n DKn×np

DKT
np×n D2Knp×np

]
c = cTM̃ c,

‖gl‖n =

 1

n

n∑
j=1

(
cTU

l
xj

)2

1/2

,

where K is the kernel matrix, DK = (∂1K, . . . , ∂pK), Ul
xj = (∂lKxj , ∂1l Kn(xj),

. . . , ∂pl Kn(xj)) and D2K= (∂ll′ K)pl,l′=1 with ∂lK = ((∂K(s,xj)/∂s
l)|s=xi)

n
i,j=1,

∂ll′K = ((∂K(s, t)/∂sl∂tl
′
)|s=xi,t=xj )

n
i,j=1 and ∂lKxj = (∂lKxj (x1), . . . , ∂lKxj

(xn))T .
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If the kernel is set to be the linear kernel, K(xi,xj) = xTi xj , then we have

∂lKxi(xj) = xlj ,

∂K(s, t)

∂sl∂tk

∣∣∣
s=xi,t=xj

=

{
0, if l 6= k;

1, if l = k.

If the kernel is set to be the polynomial kernel with degree d, K(xi,xj) =

(1 + xTi xj)
d, then we have

∂lKxi(xj) = d(1 + xTi xj)
d−1xlj ,

∂K(s, t)

∂sl∂tk

∣∣∣
s=xi,t=xj

=

{
d(d− 1)(1 + xTi xj)

d−2xki x
l
j , if l 6= k;

d(1 + xTi xj)
d−2
(

(d− 1)xki x
l
j + 1 + xTi xj

)
, if l = k.

If the kernel is set to be the Gaussian kernel, K(xi,xj) = e−‖xi−xj‖
2/(2σ2

n),

then we have

∂lKxi(xj) = −e−‖xi−xj‖2/(2σ2
n)

(
xli − xlj
σ2
n

)
,

∂K(s, t)

∂sl∂tk

∣∣∣
s=xi,t=xj

=


−e−‖xi−xj‖2/(2σ2

n)
(
xli−xlj
σ2
n

)(
xki−xkj
σ2
n

)
, if l 6= k;

−e−‖xi−xj‖2/(2σ2
n)

((
xli−xlj
σ2
n

)2
− 1

σ2
n

)
, if l = k.

A.2. Technical proofs

Proof of Theorem 1. Using the short-hand notation , λ1Ω̂S(f) = λ1
∑

l∈S
πl ‖gl‖n for any S ⊆ [p], we denote our proposed scheme (2.6) by EZn(f) +

λ0‖f‖2K + λ1Ω̂[p](f), whose minimizer exists uniquely based on the strict convex

optimization and is denoted by f̂ . The definition of minimization problem (2.6)

directly implies that

EZn(f̂) + λ0‖f̂‖2K + λ1Ω̂[p](f̂) ≤ EZn(f∗) + λ0‖f∗‖2K + λ1Ω̂[p](f
∗),

which is equivalent to the following one by sparse assumption on ∂lf
∗ that

EZn(f̂) + λ0‖f̂ − f∗‖2K + λ1Ω̂[p](f̂) ≤ EZn(f∗)− 2λ0〈f̂ − f∗, f∗〉K + λ1Ω̂A∗(f
∗).

Adding E(f̂)− E(f∗) to both sides of the last inequality, we obtain

E(f̂)− E(f∗) + λ0‖f̂ − f∗‖2K + λ1Ω̂[p](f̂) ≤
[
E(f̂)− E(f∗)− (EZn(f̂)− EZn(f∗))

]
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− 2λ0〈f̂ − f∗, f∗〉K + λ1Ω̂A∗(f
∗).

(A.1)

On the other hand, we have λ1Ω̂(A∗)c(f̂) = λ1Ω̂(A∗)c(f̂ − f∗) by the fact that

g∗l (x) = 0, for any l ∈ (A∗)c. By the triangle inequality, we obtain from (A.1)

that

E(f̂)− E(f∗) + λ0‖f̂ − f∗‖2K + λ1Ω̂[p](f̂ − f∗) (A.2)

≤
[
E(f̂)− E(f∗)− (EZn(f̂)− EZn(f∗))

]
− 2λ0〈f̂ − f∗, f∗〉K + 2λ1Ω̂A∗(f̂ − f∗).

To bound the first term in (A.2), we need to use empirical process theory and

particularly concentration inequalities, since f̂ is a random function within HK
without an explicit expression. The proof of the following proposition is delegated

to Appendix A.3.

Proposition 1. Suppose Assumption 1 is satisfied, and the minimizer f̂ of (2.6)

is computed over the bounded ball FM . Then with probability at least 1− δn, we

have ∣∣E(f̂)− E(f∗)− (EZn(f̂)− EZn(f∗))
∣∣

≤ 2(M + ‖f∗‖K)

√
2κ1

n
+ κ1M

√
8 log(1/δn)

n
+ 69κ1

M log(1/δn)

2n
.

Note that, the result of Proposition 1 does not rely on the smoothness of

RKHS, which appears to be a rough quantity but it suffices to analyze our excess

risk for classification problems.

Now we plug the result of Proposition 1 into (A.2), and with probability at

least 1− δn, there holds

E(f̂)− E(f∗) + λ0‖f̂ − f∗‖2K + λ1Ω̂[p](f̂ − f∗) (A.3)

≤ 2(M + ‖f∗‖K)

√
2κ1

n
+ κ1M

√
8 log(1/δn)

n
+ 69κ1

M log(1/δn)

2n

− 2λ0〈f̂ − f∗, f∗〉K + 2λ1Ω̂A∗(f̂ − f∗).

Additionally, note that Ω̂A∗(f̂ − f∗) =
∑

l∈A∗ πl‖ĝl − g∗l ‖n. An application of



2096 HE, LV AND WANG

reproducing property of partial derivative functions from RKHS implies that

‖ĝl − g∗l ‖n ≤ ‖ĝl − g∗l ‖∞ ≤ sup
x
‖∂lKx‖K‖f̂ − f∗‖K ≤ κ2‖f̂ − f∗‖K ,

by ‖∂lKx‖K ≤ κ2 in Assumption 1. This immediately implies that

λ1Ω̂A∗(f̂ − f∗) ≤ λ1κ2‖f̂ − f∗‖K ≤ λ1κ2M
∑
l∈A∗

πl. (A.4)

Finally, plugging (A.4) into (A.3) yields that

E(f̂)− E(f∗) ≤ 2(M + ‖f∗‖K)

√
2κ1

n
+ κ1M

√
8 log(1/δn)

n
+

69κ1
M log(1/δn)

2n
+ 2λ0M‖f∗‖K + 2λ1κ2M

∑
l∈A∗

πl,

with probability at least 1− δn. Thus the proof of Theorem 1 ends.

To establish the asymptotic selection results, the following operators are

introduced. Define the sample operator for derivatives, D̂l : HK → Rn and its

adjoint operator D̂∗ : Rn → HK as

(D̂lf)i =
〈
f, ∂lKxi〉K and D̂∗l c =

1

n

n∑
i=1

∂lKxici,

respectively. Accordingly, the integral operators for derivatives, Dl : HK →
L2(ρx,X ), where L2(ρx,X ) = {f :

∫
X f(x)2dρx <∞} and D∗l : L2(ρx,X )→ HK

are defined as

Dlf = 〈f, ∂lKx〉K and D∗l f =

∫
∂lKxf(x)dρx.

Note that Dl and D̂l are the Hilbert-Schimdt operators by Propositions 12 and

13 of Rosasco et al. (2013) and we have

D∗lDlf =

∫
∂lKxgl(x)dρx and D̂∗l D̂lf =

1

n

n∑
i=1

∂lKxigl(xi).

By Assumption 1 and the direct calculation as in Theorem 7 of Rosasco,

Belkin and De vito (2010), there holds∥∥D̂∗l D̂l

∥∥2

HS
= ‖∂lK‖4K ≤ κ4

2. (A.5)
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Moreover, by the concentration inequalities in the Hilbert-Schmidt space HS(K)

on HK , where HS(K) is a Hilbert space with all the Hilbert-Schmidt operators

on HK , endowed with norm ‖ · ‖HS (Rosasco, Belkin and De vito (2010)), for

any εn ∈ (0, 1), we have

P
(∥∥D̂∗l D̂l −D∗lDl

∥∥
HS
≥ εn

)
≤ 2 exp

(
−nε

2
n

8κ4
2

)
. (A.6)

Note that the following property holds: ‖T‖K ≤ ‖T‖HS for any T ∈ HS(K).

Lemma 2. Suppose Assumption 1 is satisfied. For some δn ∈ (0, 1), with prob-

ability at least 1− δn, there holds

sup
f∈FM

|Ω̂[p](f)− Ω[p](f)| ≤
p∑
l=1

πl(M + ‖f∗‖K)
2κ2

n1/4

(
log

2p

δn

)1/4

. (A.7)

Proof of Lemma 2: A direct calculation yields that

sup
f∈FM

|Ω̂[p](f)− Ω[p](f)|

≤
p∑
l=1

πl
(
|‖gl‖2n − ‖gl‖2ρx |

)1/2
=

p∑
l=1

πl

(∣∣∣∣ 1n
n∑
i=1

gl(xi)〈f, ∂lKxi〉K −
∫
gl(x)〈f, ∂lKx〉Kdρx

∣∣∣∣
)1/2

=

p∑
l=1

πl

(∣∣∣∣〈f, 1

n

n∑
i=1

gl(xi)∂lKxi −
∫
gl(x)∂lKxdρx

〉
K

∣∣∣∣
)1/2

=

p∑
l=1

πl

(∣∣〈f, (D̂∗l D̂l −D∗lDl)f〉K
∣∣)1/2

≤
p∑
l=1

πl‖f‖K‖D̂∗l D̂l −D∗lDl‖
1/2
K ,

where the inequalities are trivial. Note that f ∈ FM implies that ‖f‖K ≤
M + ‖f∗‖K by the triangle inequality and by (A.6), for some δn ∈ (0, 1), with

probability at least 1− δn, there holds

max
l=1,...,p

∥∥D̂∗l D̂l −D∗lDl

∥∥
HS
≤
(

8κ4
2

n
log

2p

δn

)1/2

. (A.8)

The desired result follows immediately.

Lemma 3. Suppose that Assumptions 1 and 2 are satisfied. For some δn ∈ (0, 1),
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with probability at least 1− δn, there holds

‖f̂ − f∗‖K ≤ C8

(
M1/2

(
1

n1/2λ1
+

∑p
l=1 πl

n1/4

)1/2(
log

4p

δn

)1/2

+max{λ0, λ1}θ1
)
,

where C8 = max{C1, 4
(

max{1, 2
√

2κ2
2}max{

√
2κ1, 69κ1/4, 2κ

2}
)1/2}.

Proof of Lemma 3: By the triangle inequality, We have ‖f̂−f∗‖K ≤ ‖f̂−f̃‖K+

‖f̃ −f∗‖K . By Assumption 2, we have ‖f̃ −f∗‖K = C1 max{λ0, λ1}θ1 . To bound

‖f̂ − f̃‖K , we first denote Eλ1(f) = E(f) + λ0‖f‖2K + λ1Ω[p](f) and Eλ1

Zn(f) =

E(f) +λ0‖f‖2K +λ1Ω̂[p](f) for simplicity. Directly followed by Proposition 2 and

Theorems 2.6 and 2.7 in Villa et al. (2012), there holds

Ψ�λ1

(
‖f̂ − f̃‖K

)
≤ 4 sup

f∈FM

∣∣∣tEλ1Eλ1(f)− tEλ1Eλ1

Zn(f)
∣∣∣

≤ 4 sup
f∈FM

|E(f)− Ê(f)|+ 4λ1 sup
f∈FM

|Ω̂[p](f)− Ω[p](f)|, (A.9)

where Ψ�λ1
(t) = inf{(λ/2)s2 + |t− s| : s ∈ [0,∞)} and tEλ1 is the translation map

defined as tEλ1G(f) = G(f + f̃)− Eλn(f) for all G : HK → R.

Now we bound (A.9) separately. For the first part, note that by the proof of

Proposition 1, with probability at least 1− δn/2, we have

sup
f∈FM

|E(f)−Ê(f)| ≤ (M+‖f∗‖K)

(√
2κ1

n1/2
+

√
2κ1

n1/2

(
log

2

δn

)1/2

+
69κ1

4n
log

2

δn

)
.

For the second part, by Lemma 2, we have with probability at least 1−δn/2 that

sup
f∈FM

|Ω̂[p](f)− Ω[p](f)| ≤
p∑
l=1

πl(M + ‖f∗‖K)
2κ2

n1/4

(
log

4p

δn

)1/4

. (A.10)

Moreover, since Ψ�λ1
is invertible and increasing, we can write its inverse

explicitly as
(
Ψ�λ1

)−1
as

(
Ψ�λ1

)−1
(t) =


√

2t
λ1
, if t < 1

2λ1
;

t+ 1
2λ1

, otherwise.

And thus, when the upper bound of (A.9) is sufficiently small, with probability
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at least 1− δn, there holds

‖f̂ − f̃‖K

≤ 2
√

2λ
−1/2
1

(
sup
f∈FM

|E(f)− Ê(f)|+ λ1 sup
f∈FM

|Ω̂[p](f)− Ω[p](f)|

)1/2

≤ 2
√

2(M+‖f∗‖K)1/2

λ
1/2
1

(√
2κ1

n1/2
+

√
2κ1

n1/2
+

69κ1

4n
+λ1

p∑
l=1

πl
2κ2

n1/4

)1/2(
log

4p

δn

)1/2

.

≤ C9M
1/2

(
1

n1/2λ1
+

∑p
l=1 πl

n1/4

)1/2(
log

4p

δn

)1/2

.

where C9 = 4
(

max{1, 2
√

2κ2
2}max{

√
2κ1, 69κ1/4, 2κ

2}
)1/2

. This completes the

proof.

Proof of Lemma 1: By representer theorem of derivative functions in RKHS

in (4), a direct calculation yields that

max
l=1,...,p

∣∣‖ĝl‖2n − ‖g∗l ‖2ρx∣∣
= max

l=1,...,p

∣∣∣∣〈f̂ , 1

n

n∑
i=1

ĝl(xi)∂lKxi

〉
K

−
〈
f∗,

∫
g∗l (x)∂lKxdρx

〉
K

∣∣∣∣
= max

l=1,...,p

∣∣∣〈f̂ − f∗, D̂∗l D̂l(f̂ − f∗)
〉
K

+ 2
〈
f∗, D̂∗l D̂l(f̂ − f∗)

〉
K

+〈
f∗, (D̂∗l D̂l −D∗l Il)f∗

〉
K

∣∣∣
≤ κ2

2‖f̂ − f∗‖2K + 2κ2‖f∗‖K‖f̂ − f∗‖K + ‖f∗‖2K max
l=1,...,p

‖D̂∗l D̂l −D∗lDl‖HS ,

where the inequality follows from Cauthy-Schwartz inequality. By (A.5) and

(A.8), when ‖f̂ − f∗‖K is sufficient small, with probability at least 1− δn/3, we

have

max
l=1,...,p

∣∣‖ĝl‖2n−‖g∗l ‖22∣∣ ≤ 2
√

2κ2
2‖f∗‖2K
n1/2

(
log

6p

δn

)1/2

+κ2(2‖f∗‖K +κ2)‖f̂ − f∗‖K .

Hence, associated with Lemma 3 and under case (ii), for some positive constant

C6, with probability at least 1− δn, there holds

∣∣‖ĝl‖2n−‖g∗l ‖22∣∣≤C6

(
M1/2

(
1

n1/2λ1
+

∑p
l=1 πl

n1/4

)1/2

+max{λ0, λ1}θ1
)(

log
6p

δn

)1/2

,

(A.11)
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for any l = 1, . . . , p.

Specially, under case (ii) by taking M = λ
−1/2
0 + ‖f∗‖K , by Assumption 2

and let λ0 = n−1/8 and λ1 = n−1/4, the desired result follows immediately.

Proof of Theorem 2: Now we show that A∗ ⊂ Â in probability. If not,

suppose that there exists some l′ ∈ A∗ but l′ /∈ Â, which implies ‖ĝl′‖2n = 0. By

Assumption 3, we have with probability at least 1− δn that

∣∣‖ĝl′‖2n − ‖g∗l′‖22∣∣ = ‖g∗l′‖22 > C5 max{p1/2n−3/32+θ2/2, n−θ1/8}
(

log
6p

δn

)ξ
,

which contradicts with Lemma 1 . This implies that A∗ ⊂ A with probability at

least 1− δn, A∗ ⊂ Â. This completes the proof.

A.3. Concentration inequalities

Our main tool is a result about concentration inequality from Bousquet

(2002), involving the expectation of the supremum of the empirical process.

Lemma 4. Let Z1, . . . , Zn be independent and identically distributed copies of a

random variable Z ∈ Z. Let Γ be a class of real-valued functions on Z satisfying

supz |γ(z)| ≤ D for all γ ∈ Γ. Define

Z := sup
γ∈Γ

∣∣∣∣ 1n
n∑
i=1

{
γ(Zi)− E[γ(Zi)]

}∣∣∣∣
and

τ2 := sup
γ∈Γ

var(γ(Z)).

Then, for any positive t,

P

(
Z ≥ 2E[Z] + τ

√
8t

n
+

69Dt

2n

)
≤ exp(−t).

The key step using Lemma 4 is to deal with the expectation, which appeals to

be complicated. However, one may derive bounds for it based on symmetrization

technique and the Lipschitz property of Rademacher complexity.

Proof of proposition 1. In order to apply Lemma 4, we take

Γ =
{
γf : f ∈ HK with ‖f−f∗‖K ≤M

}
, where γf (x, y) = φ(yf(x))−φ(yf∗(x))

and where φ(z) = (1− z)+ is the hinge loss function. Since φ is Lipschitz and
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‖g‖∞ ≤ κ1‖g‖K for any g ∈ HK by reproducing property of RKHS, we have

supz |γf (z)| ≤ κ1M for all f ∈ HK , which means that D = κ1M in Lemma 4.

This also implies that τ = κ1M can be set. Then, the conclusion of Lemma 4

tells us that, with probability at least 1− δn

Z ≤ 2E[Z] + κ1M

√
8 log(1/δn)

n
+ 69κ1

M log(1/δn)

2n
, (A.12)

where we take t = log(1/δn). To complete the proof, it remains to give an upper

bound of E[Z]. By symmetrization theorem in Van de Geer (2000), we have

E[Z] ≤ 2E

[
sup
γ∈Γ

∣∣∣ 1
n

n∑
i=1

σiγ(Zi)
∣∣∣] ≤ 2E

[
sup
f∈FM

∣∣∣ 1
n

n∑
i=1

σif(xi)
∣∣∣] ,

where the second inequality follows from the Lipschitz property of Rademacher

complexity. Recall the following result was proved in Bartlett and Mendelson

(2002). Suppose that the kernel K is bounded uniformly by κ1, then there holds

E

[
sup

f :‖f‖K≤1

∣∣∣ 1
n

n∑
i=1

σif(xi)
∣∣∣] ≤√2κ1

n
.

Then, we obtain the desired result immediately in Proposition 1 by plugging the

upper bound of Rademacher complexity into (A.12).
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