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Abstract: Social network data include social ties, node characteristics, and behaviors

over time. Furthermore, studies have known that people who are close on a social

network are more likely to behave in a similar way, owing, in part, to the influence

of peers and the social contagion that acts along network ties. A primary interest

of social network data analyses is to identify contagion-based social correlations.

Therefore, in this work, we model and estimate contagion-based social network de-

pendence based on time-to-event data. A generalized linear transformation model

is proposed for the conditional survival probability at each observed event time.

This model uses a time-varying covariate to incorporate the network structure and

to quantify contagion-based social correlations. We develop a nonparametric maxi-

mum likelihood estimation for the proposed model. The consistency and asymptotic

normality of the resulting estimators for the regression parameters are established.

Simulations are conducted to evaluate the empirical performance of the proposed

estimators. Then, we apply the proposed method to analyze time-to-event data

from a popular mobile game provided by one of the largest online social network

platforms. The results show significant contagion-based social correlations between

when people choose to play the game.

Key words and phrases: Contagion-based social correlation, generalized linear trans-

formation model, nonparametric maximum likelihood estimation, social network,

time-to-event data.

1. Introduction

Many studies have focused on network research in areas such as psychology,

geography, economics, health care, online networking, treatment recommenda-

tion, and so on. As such, the study of social networks is an expanding multi-

disciplinary area that is garnering increased attention. The quantitative study

of social networks was first discussed by Moreno (1934), who developed a new

technique called “sociometry” to study the structure of groups and the positions

of individuals within groups. Since then, the study of social networks has become

increasingly popular in the sociological and behavioral sciences.

https://doi.org/10.5705/ss.202018.0222
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An important research topic in social network analyses is the study of social

correlations between individual nodes using node covariates. In general, a social

correlation might involve three factors: homophily, social contagion, and external

influence (Shalizi and Thomas (2011)). Homophily is evident in increased rates

of interactions between individuals who share similar characteristics; see (Lee

(2004); Lee, Liu and Lin (2010); Zhou et al. (2015); Li, Levina and Zhu (2016)).

In particular, spatial autoregressive models (e.g.,Lee (2004); Zhou et al. (2015))

have been widely used to study contextual effects (one popular type of homophily)

in social network dependence.

Social contagion, or social influence, occurs when people’s emotions, opin-

ions, or behaviors are triggered by their friends’ recent actions(Burt (1987); Aral

and Walker (2011); Iyengar, Van den Bulte and Valente (2011); Pacheco (2012)).

Lastly, external influences refer to external factors that impact individuals’ be-

haviors or other measurable responses. However, confounding effects between

these three sources make it difficult to identify an individual source (Shalizi and

Thomas (2011)). In general, identifying contagion (from confounding effects

such as homophily) is not feasible if we have only one snapshot of the network

or measurements at a single time point. However, when multiple snapshots or

measurements over time are available, contagion becomes identifiable.

Researchers have asserted that it is important to identify situations in which

the social influence is the source of correlation. In the literature, Snijders, Van

der Bunt and Steglich (2010) introduce stochastic actor-based models for analyz-

ing the dynamics of networks and behavior, which can be used to test hypotheses

about various tendencies, including reciprocity, homophily, the social influence

on the dynamics of behavior, and estimates of the parameters. Their model as-

sumes that the number of observation moments is usually between 2 and 10. This

ensures a large total number of changes between consecutive observations and,

therefore, that sufficient data are available to estimate the parameters. However,

this assumption is often violated in practice, particularly in the case of contin-

uous observations of time-to-event data, which generate far data than discrete

observation time points do.

For continuously observed longitudinal data, Anagnostopoulos, Kumar and

Mahdian (2008) propose a model for contagion-based social correlations, and

develop statistical tests for the existence of such correlations. Specifically, they

model a specified action by users in a social network using a logistic regression,

with the number of “active” friends included as a covariate. Here, an active

friend of a user is a friend who has chosen a certain action in the past. The
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regression coefficient associated with this covariate measures the magnitude of

the social influence. In their method, time is discretized, and a logistic regression

is built on each discrete time point in an ad hoc fashion.

In this work, we model and estimate contagion-based social network depen-

dence using time-to-event data. Our work is motivated by a study of the initial

playing times of a popular mobile game on one of the largest online social network

platforms (the platform that provided us with data has requested anonymity).

This study involves 966 users, who can send messages to friends asking them to

join the game. The endpoint of interest is length of the period between when

the game was launched and when a user begins to play the game. Other char-

acteristics that are recorded include each user’s age, gender, location, activity

level, and friend network. Here, we test whether an individual begins playing the

game because his/her friends are doing so, and estimate the strength of this in-

fluence. To do so, we use a generalized linear transformation model (Dabrowska

and Doksum (1988); Cheng, Wei and Ying (1995)) for the conditional survival

probability at each observed event time. In addition, we use a time-varying co-

variate for the number of active friends in order to model contagion-based social

network dependence. We develop an efficient estimation procedure for the model

parameters based on the nonparametric maximum likelihood.

The rest of this paper is organized as follows. In Section 2, we introduce

the proposed generalized linear transformation model for network-based time-

to-event data and its associated data-generation procedure, and describe our

methodology for the parameter estimation. The asymptotic properties of the

proposed estimators are studied in Section 3. In Section 4, the numerical perfor-

mance of the estimators is assessed using simulations. In Section 5, we further

illustrate our method by applying it to a data set that records the first time each

user played a particular mobile game. Section 6 concludes the paper. All proofs

are contained in the Appendix.

2. Methodology

Consider a social network with n individuals and an adjacency matrix W ,

where Wi,j = 1 means individuals i and j are friends, and Wi,j = 0 otherwise.

By convention, all the diagonal entries of W are assumed to be zero. To model

contagion-based social network dependence for time-to-event data, we consider

a new data-generating mechanism. Specifically, let T(k) denote the time to the

kth event in the network. In our motivating example, this represents the kth
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smallest time between when a user started to play the mobile game and when

the game was launched. During a fixed period, we observe Mn event times; that

is, 0 < T(1) < · · · < T(Mn) ≤ τ , where τ is the total study duration. Let ik
denote the user who experienced the event at time T(k), for k = 1, . . . ,Mn. Here,

the adjacency matrix W is assumed to be static over the study period. Future

research should consider a dynamic social network, in which the adjacency matrix

is a time-dependent covariate.

In order to incorporate the network structure and quantify the contagion-

based social correlation, we introduce a time-varying covariate aj,k, for j =

1, . . . , n and k = 1, . . . ,Mn. The covariate is defined as the number of active

friends of individual j up to time T(k), which refers to those friends of individual

j who have experienced the event prior to T(k). Let Zj denote the p-dimensional

baseline covariates of individual j. For simplicity, we define the covariates of

individual j up to time T(k) as Xj,k = (ZTj , g(aj,k))
T , where g(·) is a known non-

decreasing function, with g(0) = 0. For example, we can take g(a) = log(a+ 1).

Let Nk denote those individuals who are at risk up to time T(k). Note that

ik ∈ Nk. Then, the observed data can be summarized as

{ik, T(k), (Xj,k, j ∈ Nk); k = 1, . . . ,Mn}.

In contrast to classical survival data, the above data representation is not recorded

based on individuals, but according to sequential event times. Such a representa-

tion facilitates the modeling of contagion-based social correlations. In addition,

we assume that censoring can only occur at the end of the study, which is gen-

erally true for social network studies, such as this one.

2.1. Proposed model

In the classical survival model, individual failure times can be generated in-

dependently. However, in a social network study, the event time of individual i

may depend on the status of his or her friends. Hence, we generate T(1), . . . , T(Mn)

sequentially, based on the following conditional survival model. Specifically, sup-

pose we have generated the first (k − 1) event times: T(1), . . . , T(k−1), for k ≥ 1.

Then, we know (i1, . . . , ik−1) and the covariates (Xjk, j ∈ Nk) on the interval

(T(k−1), T(k)] for those individuals who are at risk for the kth event. Note that

T(0) = 0 and N1 = (1, . . . , n). At the baseline, there are no active nodes in the

network; that is, aj,1 ≡ 0, for all j. Therefore, Xj,1 = (ZTj , 0)T . To generate

T(k), we introduce the latent event time Tj,k, at which individual j first plays
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the game after T(k−1). Specifically, no Tj,k, for j ∈ Nk, are observed; they are

used only as latent event times to characterize the kth observed event time, T(k).

Here, Tj,k is generated from the following conditional survival model:

P (Tj,k > t|Tj,k > T(k−1), Xj,k)

= exp
(
−
[
G
{

Λ(t)eθ
TXj,k

}
−G

{
Λ(T(k−1))e

θTXj,k

}])
, (2.1)

for t > Tk−1, where θ = (βT , βa)
T represents the (p+ 1)-dimensional parameters

of interest, and Λ(t) is an unspecified monotone increasing function, with Λ(0) =

0. In addition, G(·) is a specified monotone increasing transformation function,

for example, a class of logarithmic transformations

G(x) =

{
1
s log(1 + sx), s > 0,

x, s = 0,
(2.2)

where s is a prespecified parameter. Here, s = 0 corresponds to the proportional

hazards model, and s = 1 refers to the proportional odds model. The above model

is a generalization of the linear transformation model of Zeng and Lin (2006) for

the conditional survival probability. Note that the parameter βa measures the

magnitude of the contagion-based social correlation. In model 2.2, estimating s

and the model parameters simultaneously can be challenging if the information

about s is weak. In practice, researchers often select s using an information

criterion, as we do in our real-data application presented in Section 5.

Then, we define

T(k) = min
j∈Nk

Tj,k, ik = arg min
j∈Nk

Tj,k.

In addition, the numbers of active friends are updated by aj,k+1 = aj,k+Wj,ik , for

j ∈ Nk+1 = Nk\{ik}, which remain the same on the interval (T(k), T(k+1)]. We

repeat the above step until all event times are generated. Based on the proposed

data-generating mechanism, the observed log-likelihood is given by

`n(θ,Λ) =

Mn∑
k=1

(
log λ(T(k)) + θTXik,k + log Ġ

{
Λ(T(k)−)eθ

TXik,k

}
−
∑
j∈Nk

[
G
{

Λ(T(k))e
θTXj,k

}
−G

{
Λ(T(k−1))e

θTXj,k

}])
, (2.3)

where λ(t) = dΛ(t)/dt and Ġ(u) = dG(u)/du.



2056 YU, LU AND HUANG

2.2. Nonparametric maximum likelihood estimation

Here, we derive the nonparametric maximum likelihood estimation based on

the likelihood function given in (2.3). The maximum of (2.3) does not exist

if Λ(·) is restricted to be absolutely continuous. As is widely adopted in the

literature on nonparametric maximum likelihood estimations, we assume that

Λ(·) is a nondecreasing step function, with jumps only at observed event times

T(1), . . . , T(Mn). Let Λ{T(k)} be the jump size at time T(k). Then, we have

λ(T(k)) = Λ{T(k)}, for k = 1, . . . ,Mn.

To simplify the estimation, we consider a reparameterization. Define γk =

log Λ{T(k)}. We have Λ(T(k)) =
∑k

`=1 e
γ` = eγk + Λ(T(k−1)), for k = 1, . . . ,Mn.

Thus, the log-likelihood function can be rewritten as

`n(θ, γ) =

Mn∑
k=1

(
γk + θTXik,k + log Ġ

{(
k−1∑
`=1

eγ`

)
eθ

TXik,k

}

−
∑
j∈Nk

[
G

{(
k∑
`=1

eγ`

)
eθ

TXj,k

}
−G

{(
k−1∑
`=1

eγ`

)
eθ

TXj,k

}])
. (2.4)

In the following, we consider the logarithmic transformation function in (2.2),

and present estimations of the parameters (θ, γ) for two cases: s = 0 and s >

0. However, the proposed estimation method can be extended easily to other

specified transformation functions.

First, consider the case s = 0, with G(x) = x and Ġ(x) ≡ 1. Then, the

observed log-likelihood is reduced to

`n(θ, γ) =

Mn∑
k=1

γk + θTXik,k − eγk
∑
j∈Nk

eθ
TXj,k

 . (2.5)

Taking the derivative of (2.5) with respect to γk, and setting them equal to

zero, we obtain an explicit solution for γk as γ̂k(θ) = − log
(∑

j∈Nk
eθ

TXj,k

)
, for

k = 1, . . . ,Mn. Then, substituting γ̂k(θ) back into model (2.5), we obtain the

profile log-likelihood for θ

p`n(θ) =

Mn∑
k=1

θTXik,k − log

∑
j∈Nk

eθ
TXj,k

 , (2.6)

which is similar to the log partial likelihood function for the proportional hazards
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model. Let θ̂n denote the resulting maximizer of θ. The asymptotic variance-

covariance matrix of θ̂n can be estimated by I−1(θ̂n), where I(θ̂n) is the negative

of the second derivative of p`n(θ) with respect to θ.

Next, we consider the case s > 0. The log-likelihood function in (2.4) reduces

to

`n(θ, γ) =

Mn∑
k=1

(
γk + θTXik,k − log

{
1 + s

(
k−1∑
`=1

eγ`

)
eθ

TXik,k

}

− 1

s

∑
j∈Nk

[
log

{
1 + s

(
k∑
`=1

eγ`

)
eθ

TXj,k

}
− log

{
1 + s

(
k−1∑
`=1

eγ`

)
eθ

TXj,k

}])
.

(2.7)

Then, the estimates of θ and γk can be obtained using the following proce-

dure.

Step 1. Choose the initial estimator θ(0), for example, θ(0) = 0.

Step 2. Given θ(0), solve γ
(1)
k sequentially by maximizing `n(θ(0), γ1, . . . , γMn

)

using a coordinate descent algorithm.

Step 3. Given {γ(1)
k , k = 1, . . . ,Mn}, update θ(1) by maximizing `n(θ, γ(1), . . . ,

γ
(1)
Mn

).

Step 4. Iterate Step 2 and Step 3 until a convergence criterion is met.

It can be shown that the objective function `n is not convex with respect

to θ and γk, for k = 1, . . . ,Mn. However, empirically, we found that our algo-

rithm usually converges within 20 iterations and works well, provided that the

starting values are not far from the truth. Let θ̂n and Λ̂n denote the resulting

estimators of θ and Λ, respectively, at convergence. The asymptotic variance-

covariance matrix of θ̂n can be obtained using the following numerical differen-

tiation method. For a small value δ > 0, let γ̂+
n,j and γ̂−n,j denote the solutions

for γ obtained by maximizing `n(θ, γ), with θ fixed at θ̂n + δej and θ̂n − δej ,
respectively, where ej is a (p + 1)-vector with the jth component equal to one,

and all others zero, for j = 1, . . . , p+ 1. Let `n,k(θ, γ) denote the kth summand

in `n(θ, γ). Define Sk,j(θ̂n) = {`n,k(θ̂n + δej , γ̂
+
n,j)− `n,k(θ̂n− δej , γ̂

−
n,j)}/(2δ) and

Sk(θ̂n) = {Sk,1(θ̂n), . . . , Sk,p+1(θ̂n)}T . Then, the observed information matrix is

I(θ̂n) =
∑Mn

k=1 Sk(θ̂n)Sk(θ̂n)T , and the asymptotic variance-covariance matrix of

θ̂n can be estimated using {I(θ̂n)}−1.
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3. Asymptotic Properties

Denote the true values of θ and Λ by θ0 and Λ0, respectively. To establish

the asymptotic properties of the proposed estimators, we assume the following

conditions.

Condition 1. The function Λ0(t) is strictly increasing and continuously differ-

entiable, with Λ0(τ) <∞, and the parameters θ0 lie in the interior of a compact

set C.

Condition 2. The covariate vectors Xj,k are bounded, in the sense that P (|Xj,k|
< m) = 1 for some positive constant m, for any j, k, as n goes to ∞. In

addition, if there exists a vector γ and a deterministic function A(t), such that

A(t) + γTXj,k = 0 with probability one, then γ = 0 and A(t) = 0.

Condition 3. The information matrix I(θ0), defined in the Appendix, is finite

and positive definite.

Note that Conditions 1–3 are commonly assumed in the literature in or-

der to establish the asymptotic properties of nonparametric maximum likelihood

estimators in survival models (e.g., Zeng and Lin (2006)). In particular, the

boundedness of the covariates assumed in Condition 2 is satisfied when the fol-

lowing two conditions hold: (i) the baseline covariates Z are bounded; and (ii)

the number of friends of each node is bounded by a constant as the number of

nodes n goes to infinity; that is, the social network is very sparse. This ensures

that the number of active friends does not diverge to infinity, because the study

period is finite. This assumption facilitates the derivation of the asymptotic re-

sults. In network-based causal inference problems, the boundedness assumption

on the degree of a node is almost necessary. As studied in van der Laan (2014);

Ogburn et al. (2017), a denser network introduces stronger correlation. Thus,

valid statistical inferences are only possible for very sparse networks.

Theorem 1 (Consistency). Assume Conditions 1–2 hold. Then, as n goes to

∞, we have

sup
t∈[0,τ ]

|Λ̂n(t)− Λ0(t)| → 0 a.s. and ||θ̂n − θ0||2 → 0 a.s..

Theorem 2 (Asymptotic Normality). Assume Conditions 1–3 hold. Then,

n1/2(θ̂n−θ0) converges in distribution to a multivariate normal distribution, with

mean zero and variance {I(θ0)}−1, as n goes to ∞.
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4. Simulation Studies

In this section, we illustrate the performance of the proposed estimators

under several settings. Here, we consider a social network with different network

structures for the adjacency matrix W :

1. Random graph (RG): P (Wi,j = 1) = 0.1, for i 6= j, and n = 1,000.

2. Stochastic block model (SBM): consider three blocks with sample sizes

(200, 300, 500) within each block, and P (Wi,j = 1|within block) = 0.1 and

P (Wi,j = 1|between block) = 0.005, for i 6= j.

3. The network from the mobile game data application, with n = 966.

4. Degree-2 networks, with n = 900:

• a ring network, in which all nodes have exactly degree 2;

• a network of isolated triangles, such that each node has degree 2;

• a random regular-2 network.

The event times T(k)’s are generated sequentially following the descriptions given

in Section 2.1. Here, we consider a single baseline covariate Z, generated from a

standard normal distribution, and a logarithm transformation of the time-varying

covariate, g(a) = log(a + 1). We choose the regression parameters as β = 0.5

and βa = 0, 0.01, 0.05, or 0.1. Here, βa measures the magnitude of the social

influence. In addition, we set Λ(t) = λt, with λ = 0.01. We consider the link

function G(x) = (1/s) log(1 + sx), with s = (0, 0.5, 1). The study duration τ is

chosen to yield the total number of events Mn = α×n, where the censoring rate

is chosen as α = 60% or 80%.

We conduct 1,000 replicates for each setting. The results for the RG model,

SBM, the mobile game data application, and the degree-2 networks are shown

in Table 1, Table 2, Table 3, and Table 4, respectively. We observe that in all

settings, the proposed estimators are nearly unbiased, the standard error esti-

mators are close to the standard deviations of the estimators, and the empirical

coverage probabilities of the 95% Wald-type confidence intervals are close to

the nominal level. In particular, the proposed estimators have very comparable

variances under all three degree-2 networks. Because the analytic form of the

asymptotic variance of the proposed estimators is very complicated, it is difficult

to determine how it depends on the network structure. However, based on the

simulation results, the node-degree distribution may play an important effect
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Table 1. Simulation results for RG. SE, mean of estimated standard errors; SD, stan-
dard deviations of the estimates; CP, empirical coverage probability of 95% Wald-type
confidence intervals.

Mn = 600 Mn = 800
s = 0 Trues Estimates SE SD CP Estimates SE SD CP
β 0.5 0.500 0.043 0.044 0.950 0.500 0.038 0.039 0.943
βa 0 0.002 0.179 0.185 0.946 0.002 0.172 0.178 0.942
β 0.5 0.500 0.043 0.044 0.947 0.500 0.038 0.039 0.946
βa 0.01 0.012 0.180 0.185 0.945 0.012 0.173 0.178 0.943
β 0.5 0.500 0.043 0.044 0.949 0.500 0.038 0.039 0.941
βa 0.05 0.051 0.180 0.186 0.945 0.050 0.173 0.178 0.946
β 0.5 0.500 0.043 0.044 0.946 0.500 0.038 0.039 0.946
βa 0.1 0.101 0.181 0.187 0.944 0.100 0.174 0.179 0.945

s = 0.5 Trues Estimates SE SD CP Estimates SE SD CP
β 0.5 0.502 0.053 0.053 0.954 0.502 0.050 0.050 0.958
βa 0 0.005 0.196 0.151 0.970 0.008 0.191 0.148 0.965
β 0.5 0.502 0.054 0.053 0.957 0.502 0.051 0.050 0.958
βa 0.01 0.016 0.197 0.153 0.970 0.019 0.191 0.149 0.962
β 0.5 0.502 0.054 0.054 0.956 0.502 0.051 0.051 0.959
βa 0.05 0.058 0.198 0.154 0.968 0.060 0.193 0.151 0.965
β 0.5 0.503 0.055 0.056 0.954 0.503 0.052 0.052 0.956
βa 0.1 0.110 0.200 0.160 0.964 0.111 0.194 0.156 0.961
s = 1 Trues Estimates SE SD CP Estimates SE SD CP
β 0.5 0.506 0.063 0.067 0.948 0.505 0.062 0.064 0.954
βa 0 0.017 0.207 0.207 0.935 0.015 0.203 0.197 0.942
β 0.5 0.506 0.064 0.067 0.949 0.505 0.062 0.064 0.955
βa 0.01 0.027 0.208 0.208 0.936 0.026 0.204 0.199 0.939
β 0.5 0.506 0.064 0.068 0.948 0.506 0.063 0.065 0.955
βa 0.05 0.068 0.209 0.211 0.936 0.068 0.205 0.201 0.936
β 0.5 0.507 0.066 0.070 0.951 0.506 0.064 0.067 0.955
βa 0.1 0.120 0.212 0.214 0.927 0.119 0.207 0.204 0.936

here; that is, the proposed estimators tend to have comparable variances when

the node degrees of the networks are comparable.

5. Analysis of Mobile Game Data

We apply our method to analyze time-to-event data about a popular mobile

game, provided by one of the largest online social network platforms (the plat-

form that provided us with data has requested anonymity). The study involves

966 individuals over a period of 77 days. The friendship connections between

individuals are known, and can be represented as the adjacency matrix W . The

time at which each individual began to play the mobile game after it was launched

is recorded. Figure 1a shows the number of active friends at the time of adop-
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Table 2. Simulation results for SBM. SE, mean of estimated standard errors; SD, stan-
dard deviations of the estimates; CP, empirical coverage probability of 95% Wald-type
confidence intervals.

Mn = 600 Mn = 800
s = 0 Trues Estimates SE SD CP Estimates SE SD CP
β 0.5 0.500 0.043 0.044 0.953 0.500 0.038 0.039 0.945
βa 0 -0.001 0.008 0.008 0.945 0.000 0.005 0.005 0.951
β 0.5 0.501 0.043 0.044 0.957 0.500 0.038 0.039 0.950
βa 0.01 0.009 0.007 0.008 0.948 0.010 0.005 0.005 0.952
β 0.5 0.498 0.043 0.043 0.956 0.498 0.038 0.038 0.947
βa 0.05 0.050 0.006 0.006 0.948 0.050 0.004 0.004 0.954
β 0.5 0.500 0.043 0.043 0.958 0.500 0.038 0.038 0.952
βa 0.1 0.100 0.006 0.006 0.955 0.100 0.004 0.004 0.955

s = 0.5 Trues Estimates SE SD CP Estimates SE SD CP
β 0.5 0.500 0.052 0.052 0.960 0.500 0.049 0.048 0.960
βa 0 -0.001 0.113 0.101 0.955 -0.002 0.107 0.093 0.963
β 0.5 0.500 0.052 0.052 0.964 0.500 0.049 0.048 0.960
βa 0.01 0.010 0.113 0.102 0.957 0.008 0.107 0.093 0.963
β 0.5 0.500 0.053 0.052 0.963 0.499 0.049 0.049 0.961
βa 0.05 0.052 0.113 0.101 0.960 0.049 0.107 0.094 0.962
β 0.5 0.500 0.053 0.052 0.959 0.499 0.049 0.049 0.956
βa 0.1 0.100 0.113 0.100 0.955 0.099 0.107 0.094 0.967
s = 1 Trues Estimates SE SD CP Estimates SE SD CP
β 0.5 0.502 0.060 0.061 0.948 0.501 0.058 0.059 0.947
βa 0 0.006 0.127 0.0124 0.945 0.006 0.124 0.121 0.945
β 0.5 0.502 0.061 0.061 0.948 0.501 0.058 0.059 0.948
βa 0.01 0.016 0.127 0.125 0.940 0.016 0.124 0.122 0.943
β 0.5 0.501 0.061 0.062 0.950 0.501 0.059 0.060 0.952
βa 0.05 0.056 0.128 0.127 0.942 0.056 0.125 0.124 0.939
β 0.5 0.501 0.062 0.062 0.952 0.501 0.059 0.060 0.956
βa 0.1 0.106 0.129 0.129 0.940 0.108 0.126 0.126 0.937

tion. As expected, at the adoption times of later events, players tend to have

more active friends. In addition, baseline data, such as age, gender, location, and

activity level are recorded. In total, there are 241 isolated nodes in the network.

We divide individuals into five groups, based on the number of active friends

at the end of the study; these are shown in different colors in Figure 1b. The

majority of individuals belong to the second group, with the number of active

friends greater than zero and less than or equal to 10. Note that one individual

has more than 100 active friends, denoted by the yellow dot in Figure 1b.

We fit the proposed models using the scaled age and gender included as

baseline covariates. As in the simulations, we consider the logarithm transfor-

mation of the time-varying covariate g(ai) = log(ai + 1) and the link function
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Table 3. Simulation results for the observed network in the mobile game data application.
SE, mean of estimated standard errors; SD, standard deviations of the estimates; CP,
empirical coverage probability of 95% Wald-type confidence intervals.

Mn/n = 60% Mn/n = 80%
s = 0 Trues Estimates SE SD CP Estimates SE SD CP
β 0.5 0.502 0.044 0.045 0.942 0.501 0.039 0.040 0.943
βa 0 -0.001 0.011 0.011 0.946 0.000 0.007 0.007 0.948
β 0.5 0.503 0.044 0.045 0.948 0.501 0.039 0.041 0.946
βa 0.01 0.009 0.010 0.010 0.944 0.010 0.007 0.007 0.937
β 0.5 0.503 0.044 0.045 0.946 0.502 0.039 0.041 0.936
βa 0.05 0.051 0.009 0.009 0.950 0.051 0.007 0.007 0.955
β 0.5 0.502 0.044 0.044 0.955 0.501 0.039 0.040 0.949
βa 0.1 0.101 0.009 0.009 0.946 0.101 0.008 0.008 0.951

s = 0.5 Trues Estimates SE SD CP Estimates SE SD CP
β 0.5 0.503 0.053 0.053 0.953 0.501 0.049 0.049 0.949
βa 0 -0.003 0.072 0.073 0.950 -0.002 0.063 0.064 0.947
β 0.5 0.503 0.053 0.053 0.953 0.501 0.049 0.049 0.946
βa 0.01 0.006 0.072 0.073 0.948 0.007 0.063 0.064 0.949
β 0.5 0.503 0.053 0.053 0.953 0.501 0.049 0.050 0.951
βa 0.05 0.047 0.072 0.074 0.951 0.048 0.063 0.065 0.945
β 0.5 0.503 0.053 0.053 0.953 0.501 0.049 0.050 0.953
βa 0.1 0.097 0.072 0.073 0.952 0.097 0.064 0.066 0.939
s = 1 Trues Estimates SE SD CP Estimates SE SD CP
β 0.5 0.502 0.060 0.060 0.953 0.501 0.058 0.057 0.949
βa 0 -0.003 0.088 0.091 0.941 -0.002 0.082 0.84 0.942
β 0.5 0.502 0.060 0.060 0.953 0.501 0.058 0.057 0.950
βa 0.01 0.007 0.088 0.092 0.944 0.007 0.082 0.085 0.943
β 0.5 0.503 0.061 0.060 0.952 0.501 0.058 0.058 0.949
βa 0.05 0.048 0.089 0.093 0.943 0.048 0.083 0.087 0.941
β 0.5 0.503 0.061 0.061 0.949 0.502 0.058 0.059 0.947
βa 0.1 0.098 0.090 0.092 0.943 0.098 0.084 0.087 0.936

G(x) = (1/s) log(1 + sx), with s = (0, 0.5, 0.75, 1). In addition, we include

a scale-free model that uses the logarithm transformation of the proportion of

active friends, h∗(ai) = log(ai/
∑

jWi,j + 1), for comparison purposes. The esti-

mation results of the fitted models are given in Table 5. We also report the log

likelihood values of the fitted models. The results show that the corresponding

estimated coefficients for the contagion-based network dependence parameter βa
are all positive. This indicates that as the number/proportion of active friends

increases, an individual is more likely to start playing the game soon. However,

the results based on the number of active friends are more significant than those

based on the proportion of active friends. In addition, the models based on the

number of active friends with s = 0.5, 0.75 or 1 have the best fit in terms of the



MODELING CONTAGION-BASED SOCIAL NETWORK DEPENDENCE 2063

Table 4. Simulation results for degree-2 networks, withMn = 800 and n = 900. SE, mean
of estimated standard errors; SD, standard deviations of the estimates; CP, empirical
coverage probability of 95% Wald-type confidence intervals.

ring net all isolated triangles random regular-2
s = 0 Trues Est SE CP Est SE CP Est SE CP
β 0.5 0.500 0.038 0.946 0.500 0.038 9.948 0.503 0.039 0.950
βa 0 0.001 0.059 0.947 -0.002 0.059 0.954 -0.001 0.059 0.966
β 0.5 0.500 0.038 0.952 0.500 0.038 0.953 0.503 0.039 0.954
βa 0.01 0.011 0.059 0.944 0.008 0.059 0.956 0.009 0.059 0.965
β 0.5 0.500 0.038 0.953 0.500 0.038 0.951 0.504 0.039 0.960
βa 0.05 0.050 0.059 0.943 0.048 0.058 0.949 0.049 0.059 0.962
β 0.5 0.500 0.038 0.951 0.501 0.038 0.954 0.503 0.039 0.957
βa 0.1 0.100 0.058 0.953 0.099 0.057 0.949 0.099 0.058 0.960

s = 0.5 Trues Est SE CP Est SE CP Est SE CP
β 0.5 0.501 0.050 0.946 0.501 0.050 0.944 0.504 0.050 0.954
βa 0 0.000 0.140 0.952 -0.006 0.140 0.956 -0.001 0.140 0.962
β 0.5 0.501 0.050 0.943 0.501 0.050 0.947 0.504 0.050 0.951
βa 0.01 0.010 0.140 0.954 0.003 0.140 0.955 0.010 0.140 0.963
β 0.5 0.501 0.050 0.949 0.501 0.050 0.945 0.504 0.050 0.954
βa 0.05 0.049 0.140 0.958 0.043 0.140 0.956 0.052 0.140 0.968
β 0.5 0.501 0.050 0.948 0.501 0.050 0.940 0.504 0.050 0.957
βa 0.1 0.099 0.140 0.960 0.093 0.140 0.950 0.100 0.140 0.965

s = 1 Trues Est SE CP Est SE CP Est SE CP
β 0.5 0.502 0.060 0.941 0.501 0.060 0.946 0.504 0.060 0.954
βa 0 -0.001 0.174 0.957 -0.009 0.174 0.950 0.000 0.174 0.952
β 0.5 0.502 0.060 0.945 0.501 0.060 0.946 0.504 0.060 0.951
βa 0.01 0.009 0.174 0.956 0.002 0.174 0.954 0.010 0.174 0.952
β 0.5 0.502 0.060 0.944 0.501 0.060 0.945 0.505 0.060 0.946
βa 0.05 0.047 0.174 0.953 0.040 0.174 0.952 0.051 0.174 0.950
β 0.5 0.501 0.060 0.950 0.502 0.060 0.950 0.506 0.060 0.946
βa 0.1 0.098 0.175 0.950 0.090 0.174 0.954 0.099 0.175 0.955

likelihood values (they are almost the same), which are larger than those of the

models based on the proportion of active friends.

Next, we evaluate and compare the prediction performance of our proposed

network structure-based method and the standard Cox proportional hazards

model, without incorporating the network information. Specifically, we consider

the estimated model based on the number of active friends, with s = 1, in which

the estimated coefficients are −0.017, 0.059, and 0.343 for scaled age, gender,

and g(a), respectively. To evaluate the prediction performance of a fitted model,

we perform the following three steps. (1) Simulate Tj,k for all j ∈ Nk up to

time T(k), based on the fit of the estimated model using our method and the

standard Cox proportional hazards model fit, that is, T proj,k and T coxj,k . (2) Sort
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(a) Plot of time by the number of active friends at the time of adoption.

(b) Number of active friends at the end of the study, with blue dot= 0; pink dot ∈ (0, 10]; green
dot ∈ (10, 50]; orange dot ∈ (50, 100]; yellow dot #> 100.

Figure 1. Network visualization for mobile game data
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Table 5. Analysis of mobile game data. log-LH, log likelihood value of the fit-
ted model; g(ai) = log(ai + 1), where ai is the number of active friends for user i;
h∗(ai) = log(ai/

∑
j Wi,j + 1).

Original scale age gender g(a) log-LH

s = 0
Estimation 0.018 0.024 0.108

-6639.250SE 0.036 0.032 0.039
Z statistics 0.501 0.731 2.803

s = 0.5
Estimation -0.017 0.059 0.342

-6631.869SE 0.052 0.057 0.086
Z statistics -0.331 1.041 3.976

s = 0.75
Estimation -0.017 0.059 0.343

-6631.869SE 0.052 0.057 0.086
Z statistics -0.331 1.045 3.980

s = 1
Estimation -0.017 0.059 0.343

-6631.868SE 0.052 0.057 0.086
Z statistics -0.334 1.040 3.978

Scale-free age gender h∗(a) log-LH

s = 0
Estimation 0.036 0.023 0.101

-6642.786SE 0.034 0.032 0.131
Z statistics 1.038 0.697 0.770

s = 0.5
Estimation 0.020 0.056 0.536

-6637.526SE 0.052 0.056 0.304
Z statistics 0.381 0.992 1.764

s = 0.75
Estimation 0.019 0.056 0.542

-6637.527SE 0.052 0.056 0.304
Z statistics 0.364 0.990 1.781

s = 1
Estimation 0.019 0.056 0.540

-6637.527SE 0.052 0.056 0.304
Z statistics 0.365 0.998 1.776

all event times Tj,k of subjects in the at-risk set Nk, and find the rank of T bik,k
among the ordered event times T bj,k, where b = pro or cox, and ik is the user

who actually adopted the action at time T(k) in the data. Let Rprok and Rcoxk de-

note the corresponding ranks. (3) Compute the proportion of rank comparison:

M−1
n

∑Mn

k=1 I(Rprok < Rcoxk ).

We expect that a model with a better fit to have smaller ranks at observed

event times T(k), for k = 1, . . . ,Mn. This is because if the rank Rbk is small, the

user who actually adopted the action at time T(k) is more likely to be predicted

to do so again at time T(k), based on the fitted model b. Therefore, if the

proposed model has a better fit than the standard Cox model, the proportion

computed in Step 3 should be much larger than 0.5. We conduct 1,000 Monte

Carlo replications of the above three-step procedure, and find that the average
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Figure 2. Box plot of the proportions for the rank comparison over 1,000 replications.

proportion is 0.874, with standard deviation 0.010. Figure 2 shows a box plot

of the proportions over 1,000 replications. In conclusion, the proposed model

by that incorporates a network structure exhibits better prediction performance

than that of the standard Cox model, ignoring the network structure.

In addition, we compare the performance of our proposed method with that

of the stochastic actor-based model (Snijders, Van der Bunt and Steglich (2010)).

To apply this model, certain assumptions need to be satisfied. One of the impor-

tant assumptions is that the total number of changes between consecutive ob-

servations should be sufficiently large to provide strong information with which

to estimate the parameters; here, the number of observation points is usually

between 2 and 10. The mobile game data set contains 966 observation points,

which means there is only one change between each consecutive pair of observa-

tions. Owing to the expensive computation and limited memory storage, we split

the mobile game data set into three, four, five, and eight observation points, and

fit the stochastic actor-based models for the resulting data set using the RSiena

package (Ripley et al. (2011)). Specifically, we consider the age and gender effects

for the behavior dynamic process and the total exposure effect (Greenan (2015))

to study contagion-based network dependence. Here, total exposure refers to

the total number of active friends linked to each node, and its effect measures

the magnitude of the contagion-based network dependence. The results based

on different numbers of observation points are shown in Table 6. The overall
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Table 6. Analysis of mobile game data with stochastic actor-based models. n obs,
the number of observation points; total exp, the total exposure; mc t-ratio, the overall
maximum convergence t-ratio; time, the total runtime of the algorithm.

age gender total exp mc t-ratio time

n obs = 3
Estimation -0.008 0.013 0.012

1.195 3 hoursSE 0.008 0.104 0.015
Z statistics -0.904 0.124 0.801

n obs = 4
Estimation 0.004 0.048 0.001

1.054 3.3 hoursSE 0.007 0.105 0.010
Z statistics 0.486 0.463 0.096

n obs = 5
Estimation -0.002 0.043 -0.002

0.918 4 hoursSE 0.008 0.088 0.009
Z statistics -0.244 0.488 -0.213

n obs = 8
Estimation 0.006 0.064 0.003

0.667 5 hoursSE 0.007 0.082 0.008
Z statistics 0.821 0.779 0.329

maximum convergence t-ratios are also reported to assess the convergence of the

algorithm. The results imply that the convergence is better in the model with

eight observation points. In contrast to our findings, the total exposure effects

are not statistically significant in all settings. One possible reason is that split-

ting the data into several observation time points might result in the loss of some

information, thus leading to less efficient estimators. Another possible reason is

that it does not make effective use of the survival model information when fitting

the time-to-event data.

6. Conclusion

In this work, we propose a new way of modeling and estimating contagion-

based social dependence using time-to-event data. The proposed model can be

extended to accommodate multiple events, such as network-based recurrent event

data, by incorporating both self-exciting and contagion-based social exciting pro-

cesses. This warrants a thorough study in future research. Another interesting

direction for future research would be to extend our method to dynamic social

networks with evolving friendship connections. For example, individuals could

become friends with others during the study period, which would change the

value of the adjacency matrix. However, as long as the time-dependent adja-

cency matrices are specified correctly, the proposed estimation method can be

modified easily to incorporate them.

In the current work, we assume that censuring occurs only at the end of the
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study, which is a reasonable assumption in the considered application. However,

if a subject can be censored during the study, it is generally not known whether

the potential event of this subject choosing an action in the future will have an

effect on his or her friends. If we assume that the effect of a subject on connected

nodes disappears after he or she is censored, the proposed conditional survival

model and its associated estimation method may still be valid. If not, it becomes

much more complicated, and may encounter an identifiability issue. One possible

solution is to model the censoring distribution, and then to develop an inverse

probability for the censoring weighted estimation method. This is an interesting

topic, and is left to future investigation.
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A. Appendix

Our proofs follow similar steps as Murphy (1995); Scharfstein, Tsiatis and

Gilbert (1998); Lu (2008). However, the difference lies on the fact that the event

times of individuals are no longer independent and identically distributed as in

classical survival data. We need to represent the data sequentially based on the

ordered event times as in the data generation process and define the associated

martingale processes. Specifically, define the martingale process as

Mj,k(t) = Nj,k(t)−
∫ t

0
Yj,k(u)Ġ

{
Λ(u)eθ

TXj,k

}
eθ

TXj,kdΛ(u),

where Nj,k(t) = I (T(k−1) < Tj,k ≤ t) and Yj,k(t) = I (Tj,k ≥ t > T(k−1)) for

individual j ∈ Nk. For simplicity, we only consider the link function G(x) =

(1/s) log(1 + sx) in our proofs.

We can rewrite the log-likelihood as

`n(θ,Λ) =

Mn∑
k=1

∑
j∈Nk

`j,k(θ,Λ)

=

Mn∑
k=1

∑
j∈Nk

(∫ T(k)

0
log
[
λ(t)eθ

TXj,kĠ
{

Λ(t)eθ
TXj,k

}]
dNj,k(t)
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−
∫ T(k)

0
Yj,k(t)e

θTXj,kĠ
{

Λ(t)eθ
TXj,k

}
dΛ(t)

)
. (A.1)

Next, consider one-dimensional submodel Λd(t) =
∫ t

0{1+dh1(u)}dΛ̂n(u) and

θd = dh2 + θ̂n, where h1 is a function and h2 is a (p+ 1)-dimensional vector. Let

Sn(Λ̂n, θ̂n)(h1, h2) denote the first derivative of `n(θd,Λd) with respect to d and

evaluated at d = 0. Then, we have Sn(Λ̂n, θ̂n)(h1, h2) = 0 for all (h1, h2), since

(Λ̂n, θ̂n) maximizes `n(θ,Λ). In addition, Sn can be written as Sn = Sn1
+ Sn2

,

where

Sn1
(Λ̂n, θ̂n)(h1)

=

Mn∑
k=1

∑
j∈Nk

∫ T(k)

0

h1(t) +
G̈
{

Λ̂n(t)eθ̂
T
nXj,k

}
Ġ
{

Λ̂n(t)eθ̂TnXj,k

}eθ̂TnXj,k

∫ t

0
h1(v)dΛ̂n(v)


×
[
dNj,k(t)− Yj,k(t)eθ̂

T
nXj,kĠ

{
Λ̂n(t)eθ̂

T
nXj,k

}
dΛ̂n(t)

]
, (A.2)

Sn2
(Λ̂n, θ̂n)(h2)

=

Mn∑
k=1

∑
j∈Nk

∫ T(k)

0

hT2 Xj,k +
G̈
{

Λ̂n(t)eθ̂
T
nXj,k

}
Ġ
{

Λ̂n(t)eθ̂TnXj,k

} Λ̂n(t)eθ̂
T
nXj,khT2 Xj,k


×
[
dNj,k(t)− Yj,k(t)eθ̂

T
nXj,kĠ

{
Λ̂n(t)eθ̂

T
nXj,k

}
dΛ̂n(t)

]
, (A.3)

where G̈(u) = dĠ(u)/du.

After some calculations, we can show that the efficient score for θ is given

by

Seff =

Mn∑
k=1

∑
j∈Nk

∫ T(k)

0

{
Xj,k

1 + sΛ0(t)eθ
T
0 Xj,k

− weff(t)

+
s
∫ t

0 λ0(v)eθ
T
0 Xj,kw(v)dv

1 + sΛ0(t)eθ
T
0 Xj,k

}
dMj,k(t)

≡
Mn∑
k=1

Seff,k,

where weff(t) is a solution to the following integral equation

w(t)−
∫ τ

0
Q(t, v)w(v)dΛ0(v) = f(t), t ∈ [0, τ ],
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and

Q(t, v) =

E


Mn∑
k=1

∑
j∈Nk

I(t ≤ T(k))Yj,k(t)
eθ0Xj,k

1 + sΛ0(t)eθ0Xj,k


−1

×

E
Mn∑
k=1

∑
j∈Nk

sI(v ∨ t ≤ T(k))Yj,k(t)e
2θT0 Xj,k

(1 + sΛ0(t)eθ
T
0 Xj,k)2


−E

Mn∑
k=1

∑
j∈Nk

∫ T(k)

v∨t

s2Yj,k(u)e3θT0 Xj,k

(1 + sΛ0(u)eθ
T
0 Xj,k)3

dΛ0(u)

 ,

f(t) =

E


Mn∑
k=1

∑
j∈Nk

I(t ≤ T(k))Yj,k(t)
eθ0Xj,k

1 + sΛ0(t)eθ0Xj,k


−1

×

E
Mn∑
k=1

∑
j∈Nk

Xj,kI(t ≤ T(k))Yj,k(t)e
θT0 Xj,k

(1 + sΛ0(t)eθ
T
0 Xj,k)2


−E

Mn∑
k=1

∑
j∈Nk

∫ T(k)

t

sXj,kYj,k(u)e2θT0 Xj,k

(1 + sΛ0(u)eθ
T
0 Xj,k)3

dΛ0(u)

 .

Here, v ∨ t = max(v, t). Note that the terms Seff,k and STeff,k are uncorrelated

for any k 6= k′. Then, the information matrix for θ0 can be defined by I(θ0) =

limn→∞ n
−1
∑Mn

k=1E(Seff,k, S
T
eff,k).

S2: Proof of Theorem 1 The proof of consistency consists of three steps:

first we show that the nonparametric maximum likelihood estimators Λ̂n and θ̂n
exist or that the jump sizes of Λ̂n are finite; next we show that Λ̂n is bounded

almost surely so that, along a subsequence, Λ̂nm
(t)→ Λ∗(t) for all t ∈ [0, τ ] and

θ̂nm
→ θ∗; finally we show that Λ∗ = Λ0 and β∗ = β0.

Step 1. By Condition 1, θ̂n is finite, and we have supθ∈C |θTXj,k| ≤ M0 for

some constant M0 > 0 for all j and k. Therefore, the log-likelihood (2.3) is

bounded above by

`n(θ,Λ) <

Mn∑
k=1

(
log Λ{T(k)}+M0 − log

{
1 + s

k−1∑
`=1

Λ{T(`)}e−M0

}
− |Nk|[

G

{
k∑
`=1

Λ(T(`))e
−M0

}
−G

{
k−1∑
`=1

Λ(T(`))e
−M0

}])
, (A.4)
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where |Nk| is the number of elements in Nk. The right-hand side in (A.4)

diverges to −∞ if Λ{T(k)} goes to infinity for some k, which contradicts to

the property of log-likelihood.

Step 2. By the property n−1{`(Λ̂n, θ̂n) − `(Λ̄n, θ̂n)} ≥ 0 with Λ̄n = Λ̂n/Λ̂n(τ),

and following the similar steps as Zeng and Lin (2006), we can show that

supn Λ̂n(τ) <∞.

Step 3. Define the following quantity

Λ̃n(t) =

∫ t

0

n∑
k=1

I (T(k) ≤ u)
∑

j∈Nk
dNj,k(u)∑n

j=1 I (T(k) ≥ u)Yj,k(u)eθ
T
0 Xj,k/{1 + sΛ0(u−)eθ

T
0 Xj,k}

,

(A.5)

which is a step function with jumps at T(k)’s and converges uniformly to Λ0

by uniform weak law of large numbers.

By Helly’s theorem, we know that there exists convergent subsequences

{θ̂nm
} and {Λ̂nm

} such that θ̂nm
→ θ∗ and Λ̂nm

(t) → Λ∗(t) for all t ∈ [0, τ ].

Furthermore, we have n−1{`(Λ̂nm
, θ̂nm

) − `(Λ̃nm
, θ0)} ≥ 0. By taking limits on

both sides we obtain E{`(Λ∗, θ∗)} = E{`(Λ0, θ0)}, since the Kullback-Leibler

information is negative.

Recall in term (A.1), we have

`j,k(Λ, θ) =

∫ T(k)

T(k−1)

log

{
λ(t)eθXj,k

1 + sΛ(t−)eθXj,k

}
dNj,k(t)

−
∫ T(k)

T(k−1)

Yj,k(t)
eθXj,k

1 + sΛ(t)eθXj,k
dΛ(t).

Then, the above equality holds if and only if E{`j,k(Λ∗, θ∗)} = E{`j,k(Λ0, θ0)}
for all j and k. Next, for k = 1, . . . ,Mn consider two cases: (1) Nj,k(T(k)) = 0,

Yj,k(T(k)) = 1 for some j ∈ Nk, and (2) Nj,k(T(k)) = 1, Nj,k(t−) = 0, and

Yj,k(T(k)) = 1 for some j ∈ Nk and t is between time T(k−1) and T(k). By

taking difference between the equalities from two cases above, for all t ∈ [0, τ ] we

conclude that

λ∗(t)eθ
∗TXj,k

1 + sΛ∗(t)eθ∗TXj,k
=

λ0(t)eθ
T
0 Xj,k

1 + sΛ0(t)eθ
T
0 Xj,k

.

Then, integrating from 0 to t on both sides of above equality and by some simple
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algebra, we have

Λ∗(t)

Λ0(t)
= e(θ0−θ∗)TXj,k , for all t ∈ [T(k−1), T(k)] and k = 1, . . . ,Mn.

By Condition 2, we have that E{`(Λ∗, θ∗)} = E{`(Λ0, θ0)} if and only if Λ∗ = Λ0

and θ∗ = θ0. Therefore, we show that the subsequences (Λ̂nm
, θ̂nm

) → (Λ0, θ0).

By Helly’s theorem, we know that (Λ̂n, θ̂n) must also converge to (Λ0, θ0) al-

most surely. Since Λ̂0 and Λ0 are bounded monotone function, the pointwise

convergence can be strengthened to uniform convergence on [0, τ ].

S3: Proof of Theorem 2 Here, we give an outline of the proof. Define ψ0 =

(Λ0, θ0), ψ = (Λ, θ) and h = (h1, h2). Assume that the class of h belongs to

the space H = B ⊗ Rp+1, where B is the space of bounded variation functions

defined on [0, τ ]. Define the norm ||h||H = ||h1||v + |h2|1 , where ||h1||v is the

total variation norm on [0, τ ] and |h2|1 is the L1-norm. In addition, define Hm =

{h ∈ H : ||h||H ≤ m}. Assume ψ ⊂ `∞(Hm), where `∞(Hm) is the space

of bounded real-valued functions on Hm under the supremum norm ||A(h)|| =

suph∈Hm
|A(h)|. First, by the martingale central limit theorem, we can show

that n−1/2Sn(ψ0)(h) converges weakly to a tight Gaussian process G on `∞(Hm).

Define S(ψ)(h) = limn→∞ n
−1Sn(ψ)(h). We have S(ψ0)(h) = 0. Then, following

similar arguments in Scharfstein, Tsiatis and Gilbert (1998) and Lu (2008), we

can show that S(ψ)(h) is Fréchet differentiable, and its derivative Ṡ(ψ)(h) is

a continuous linear operator and continuously invertible on its range. Finally,

by the maximal inequality for martingales (Nishiyama (1999, Theorem 2.3)), we

have

||n−1/2{(Sn − S)(ψn)− (Sn − S)(ψ0)}|| = op∗(1).

for any ||ψn − ψ0|| = Op(n
−1/2). Therefore, n−1/2(ψ̂n − ψ0)(h) converges weakly

to the Gaussian process −{Ṡ(ψ)}−1G. Then, following similar arguments in Lu

(2008), we can show that n1/2(θ̂n−θ0) converges in distribution to a multivariate

normal with mean 0 and variance {I(θ0)}−1.
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