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theoretical properties of MDCT along with the proofs.

2. Posterior computation for MDCT with Gaussian model

We proceed to do parametric inference with data (y(si),x(si))
n
i=1 at locations S = {s1, ..., sn}.

Stacking responses and predictors across locations we obtain, y = (y(s1), ..., y(sn))′, X =

[x(s1) : · · · : x(sn)]′. Let K be an n × (J(1) + · · · + J(R)) matrix whose ith row is

given by (K(si, s
1
1, φ1), ..., K(si, s

J(R)
R , φR))′. Further assume βr = (βr1 , ..., β

r
J(r))

′ and β =

(β1, ...,βR)′, yi,r,j = yi −
∑

(k1,k2)6=(j,r)K(si, s
k2
k1
, φk2)β

k2
k1

, yr,j = (y1,r,j, ...yn,r,j)
′, Kr,j =

(K(s1, s
r
j , φr), ..., K(sn, s

r
j , φr))

′. The full conditional distributions of γ, σ2, βrj and δj,r are

readily available in closed form and are given by

• γ|− ∼ N((X ′X)−1X ′(y −Kβ), σ2(X ′X)−1)

• σ2|− ∼ IG
(
n
2

+ c, d+ 1
2
||y −Xγ −Kβ||2

)
• βrj |− ∼ N

 K′r,jyr,j
σ2

1
αr
j
+

K′
r,j

Kr,j

σ2

, 1

1
αr
j
+

K′
r,j

Kr,j

σ2

. Parallelized block updating of β is described in
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the Section 4.1.

• Recall the definition of father node in Section 3.2. Additionally define father2(srj)

as the father node of the father node of srj . Similarly, father3, ..., fatherR node are

defined. Let αj,r,−1 =
R∏
l=r

δfatherr+1−l(slj),l−1 and αj,1,−1 = 1. Then

δ1|− ∼ Gamma
(

1 + J(1)+···+J(R)
2

, 1 + 1
2

∑R
r=1

∑J(r)
j=1

[
(βrj )

2/αj,r,−1
])

• Let αk,l,−r,−j = δ1
r+2∏
h=l

δfatherl+1−h(shk),h−1

2∏
h=r

δfatherr+1−h(shj ),h−1, αj,r,−r,−j = 1. Then

δrj |− ∼ Gamma

(
c+

#βSubtreej,r

2
, 1 + 1

2

∑
l≥r,srk∈Subtree(s

r
j )

(βlk)
2/αk,l,−r,−j

)
for r > 1.

• Finally at each iteration, joint posterior distribution is maximized over a discrete grid

of η values fixing all other parameters at the current iterate, η ∈ {1, ..., hη}, hη is an

integer. In all simulation studies and in the real data analysis, we never found the

maximization of the posterior over η to occur for η values more than 5. Thus, we

fix hη = 5 for all empirical investigations. We must mention that the posterior is

maximized at η = 1, 2 in most of the iterations.

3. Posterior computation for MDCT with non Gaussian data

With scale mixture of Gaussian representation for the t-distribution, equation (5.10) in the

main article can be written as

yi ∼ N(x(si)
′γ +

R∑
r=1

J(r)∑
j=1

K(s, srj , φr)β
r
j ,
σ2

λi
), λi ∼ Gamma(ν/2, ν/2). i = 1, .., n.

The priors on other parameters are kept the same as in the section with Gaussian data. Let

D = diag(1/λ1, ..., 1/λn). Full conditional posterior distributions of the parameters come in

closed form given as following.
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• γ|− ∼ N((X ′D−1X)−1X ′D−1(y −Kβ), σ2(X ′D−1X)−1)

• σ2|− ∼ IG
(
n
2

+ c, d+ 1
2
(y −Xγ −Kβ)′D−1(y −Xγ −Kβ)

)
• λi|− ∼ Gamma(ν+1

2
, ν
2

+ (yi − x(si)
′γ −

∑R
r=1

∑J(r)
j=1 K(s, srj , φr)β

r
j )

2/2)

• βrj |− ∼ N

 K′r,jD
−1yr,j

σ2

1
αr
j
+

K′
r,j

D−1Kr,j

σ2

, 1

1
αr
j
+

K′
r,j

D−1Kr,j

σ2

. Parallelized block updating of β is per-

formed as described in Section 4.1.

• Recall the definition of father node in Section 3.2. Additionally define father2(srj)

as the father node of the father node of srj . Similarly, father3, ..., fatherR node are

defined. Let αj,r,−1 =
R∏
l=r

δfatherr+1−l(slj),l−1 and αj,1,−1 = 1. Then

δ1|− ∼ Gamma
(

1 + J(1)+···+J(R)
2

, 1 + 1
2

∑R
r=1

∑J(r)
j=1

[
(βrj )

2/αj,r,−1
])

• Let αk,l,−r,−j = δ1
r+2∏
h=l

δfatherl+1−h(shk),h−1

2∏
h=r

δfatherr+1−h(shj ),h−1, αj,r,−r,−j = 1. Then

δrj |− ∼ Gamma

(
c+

#βSubtreej,r

2
, 1 + 1

2

∑
l≥r,srk∈Subtree(s

r
j )

(βlk)
2/αk,l,−r,−j

)
for r > 1.

• Finally at each iteration, joint posterior distribution is maximized over a discrete grid

of η values fixing all other parameters at the current iterate, η ∈ {1, ..., hη}, hη is an

integer. In all simulation studies and in the real data analysis, we never found the

maximization of the posterior over η to occur for η values more than 5. Thus, we

fix hη = 5 for all empirical investigations. We must mention that the posterior is

maximized at η = 1, 2 in most of the iterations.

4. Two dimensional illustration of MDCT with binary spatial data

To demonstrate the flexibility offered by MDCT as opposed to predictive methods (such

as LaGP), performance of MDCT is investigated under non-Gaussian binary spatial data.
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For this purpose 10, 500 observations within [0, 1] × [0, 1] domain are generated from the

probit spatial regression model. More precisely, with x(si) as the predictor vector at si, the

response yi is simulated using

yi
ind∼ Ber(pi)

Φ−1(pi) = x(si)
′γ + w0(si).

The model includes an intercept γ0 and a predictor x(s) drawn i.i.d from from N(0, 1) with

the corresponding coefficient γ1, γ = (γ0, γ1). w0 = (w0(s1), ..., w0(sn))′ is an n dimensional

vector that follows a multivariate normal distribution with mean 0n and the covariance

matrix of the order n×n specified through the Matérn (see equation (5.9) in the main draft)

class of correlation functions. A random subset of 10000 observations are selected for model

fitting and the rest is used to judge performance of MDCT as a binary classifier.

To implement MDCT for binary spatial data, we employ

yi
ind∼ Ber(pi),Φ

−1(pi) = x(si)
′γ +

R∑
r=1

J(r)∑
j=1

K(s, srj , φr)β
r
j .

The posterior computation of all model parameters proceeds with the standard data aug-

mentation procedure (see Albert and Chib (1993)). Due to space constraint, we omit all the

details and plan to elaborate it in a future article. For the sake of our exposition, MDCT is

implemented with 3 resolutions having a total of 2100 basis functions.

Note that the binary regression precludes the possibility of employing LaGP as a competi-

tor. On the other hand, LatticeKrig package implements LatticeKrig only for continuous

response. Thus as a competitor, binary spatial regression with modified predictive process

is implemented in R package spBayes.

Figure 1 shows the true surface and estimated surfaces from MDCT and MPP. Since
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(a) True surface (b) Estimated surface:

MDCT

(c) Estimated surface:

MPP

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate (1−Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
si

tiv
ity

)

(d) ROC out of sample

Figure 1: (a) True surface generating the data. Figures (b) and (c) present the posterior

predictive mean of estimated spatial surfaces from MDCT and MPP. (d) shows out of sample

ROC curves for MPP and MDCT. Dotted line presents ROC for MDCT, while solied line

presents ROC for MPP.

the surface estimation from binary spatial regression is a notoriously challenging problem, it

comes with no surprise that the performance of all competitors deteriorate when compared

with continuous response case discussed in Section 5.2. However, among the two competitors

MDCT outperforms MPP considerably. It becomes clear from Figure 1 that MPP undergoes

massive oversmoothing and loses most of the local features in the spatial surface. MDCT also

experiences smoothing, though to a much lesser degree than MPP. Referring to Figure 1(d),
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MDCT appears to be marginally better than MPP in terms of out of sample classification

(Area under the ROC curve for MDCT is 0.72, while the same for MPP is 0.69). The binary

spatial regression analysis further corroborates the flexibility and accuracy of MDCT.

5. Theoretical properties

We establish convergence results for multiscale DCT regression model under the simplifying

assumption that the predictor coefficient γ = (0, . . . , 0).

Define two metrics in the function space given by

||w||∞ = sup
s∈D
|w(s)|,

||w||ζ = max
k≤bζc

sup
s∈D
|Dkw(s)|+ max

k̃≤bζc
sup
s,s′∈D

|Dkw(s)−Dkw(s′)

||s− s′||ζ−bζc
,

where Dk = ∂k1+k2

∂s
k1
1 ∂s

k2
2

, for k1, k2 ∈ N and s = (s1, s2)
′. Further define the sets

Θζ =

w(s) : w(s) =
R∑
r=1

J(r)∑
j=1

K(s, srj , φr)β
r
j , R ∈ N, srj ∈ R2, βrj ∈ R, ||w||ζ <∞,


Θn
ζ = {w ∈ Θζ : ||w||ζ < nα, α ∈ (1/2, 1]}

Θζ,c = Closure under || · ||∞ of Θζ

Bε,n =

{
w ∈ Θn

ζ :
1

n

n∑
i=1

|w(si)− w0(si)| < ε,

∣∣∣∣ σσ0 − 1

∣∣∣∣ < ε

}
.

Theorem 1. Let Pw0,σ2
0
denotes the true data generating joint distribution of {yi}. Assume

(a) D is compact.

(b) K(·, ·, φr) is continuous.

Simplifying assumption is merely to ease notation and calculations; all results generalize in a straight-

forward manner.
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(c) w0 ∈ Θζ,c, ||w0||ζ <∞, for some ζ.

Then for any (w0, σ
2
0) ∈ Θζ,c ×R+ and for any ε > 0,

lim
n→∞

Π((w, σ2) ∈ Bε,n|y1, ..., yn) = 0

almost surely under Pw0,σ2
0
.

Theorem 1 establishes consistency of estimating the data generating surface w0 and the

true error variance σ2
0. The proof proceeds along the same line of arguments outlined in Choi

and Schervish (2007), Pillai (2008) and is provided in the Appendix.

Proof of Theorem 1:

We begin by stating and proving a lemma that will be useful in the proof of the theorem.

Lemma 1. Consider a ball of radius δ around (w0, σ
2
0) given by

Bδ(w0, σ
2
0) =

{
(w, σ2) : ||w − w0||∞ < δ,

∣∣∣∣σ2

σ2
0

− 1

∣∣∣∣ < δ

}
.

Then π(Bδ(w0, σ
2
0)) > 0, for all δ > 0.

Proof. Since w0 ∈ Θc, ∃w∗(s) =
∑R∗

r=1

∑J(r)
j=1 K(s, sr∗j , φr)β

r∗
j , s.t. ||w∗ − w0||∞ < δ/2.

Note that K(·, ·, φr) is a continuous function on a compact set D, implying K(·, ·, φr) to be

a uniformly continuous function. Thus, ∃ M , s.t. M = sup
s∈D

max
r=1,..,R∗;j=1:J(r)

|K(s, sr∗j , φr)|.

Assume further that η =
∑R∗

r=1

∑J(r)
j=1 |βr∗j |. Since K is uniformly continuous, one can choose

srj ’s such that sup
s∈D
|K(s, srj , φr)−K(s, sr∗j , φr)| < δ

4η
∑R∗
r=1 J(r)

. Define the set

I =

{
{βrj} : |βrj − βr∗j | <

δ

4M
∑R∗

r=1 J(r)

}
.

Clearly, for the set of all w(s) =
∑R∗

r=1

∑J(r)
j=1 K(s, srj , φr)β

r
j , with srj is chosen as above and
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βrj chosen from I, we have

|w0(s)− w(s)| ≤ |w0(s)− w∗(s)|+ |w∗(s)− w(s)|

≤ δ

2
+

R∗∑
r=1

J(r)∑
j=1

|K(s, srj , φr)||βrj − βr∗j |+
R∗∑
r=1

J(r)∑
j=1

|βr∗j ||K(s, srj , φr)−K(s, sr∗j , φr)|

≤ δ

2
+
δM

∑R∗

r=1 J(r)

4M
∑R∗

r=1 J(r)
+
δη
∑R∗

r=1 J(r)

4η
∑R∗

r=1 J(r)
= δ.

Thus I ×
{
σ2 :

∣∣∣σ2

σ2
0
− 1
∣∣∣ < δ

}
⊆ Bδ(w0, σ

2
0). Since, the prior on all βrj are continuous on

the entire real line and the prior on σ2 is also continuous on R+, it trivially holds that

π(Bδ(w0, σ
2
0)) ≥ π

(
I ×

{
σ2 :

∣∣∣σ2

σ2
0
− 1
∣∣∣ < δ

})
> 0. This concludes the proof of the lemma.

We will now proceed with the proof of Theorem 1. Our aim is to check that all condi-

tions of Theorem in Choi and Schervish (2007) are satisfied. Let Hi =
N(yi|w0(si),σ

2
0)

N(yi|w(si),σ2)
, and

Ki(w,w0) = E(Hi) and Vi(w,w0) = Var(Hi). It is easy to check that (Choi and Schervish

(2007))

Ki(w,w0) =
1

2
log

σ2

σ2
0

− 1

2

(
1− σ2

0

σ2

)
+

1

2

(w(s)− w0(s))2

σ2

Vi(w,w0) =
1

2

(
σ2
0

σ2
− 1

)2

+
σ4
0

σ4
(w(s)− w0(s))2.

Thus for every ε > 0, there exists a δ > 0 such that (w(·), σ2) ∈ Bδ(w0, σ
2
0) implies

Ki(w,w0) < ε, ∀ i and
∑∞

i=1
Vi(w,w0)

i2
<∞. Thus condition (i) is satisfied. Condition (ii), i.e.

the prior positivity has already been proved to be satisfied by Lemma 1.

Finally, the condition of having an exponentially consistent sequence of tests follows along

the same line as the proof of Theorem 2 in Choi and Schervish (2007). This concludes the

theorem.
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