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S1 Screening Performances in Example 1

In the two-stage LOFTS procedure, the first-stage screening performance

is crucial for the follow-up test according to Theorem 1. Thus, we first ex-

amine whether all the truly important covariates will be selected in S using

the MDC-based screening based on the first half of the observations D1. It

is obvious that the first four covariates (X1, X2, X3, X4) are truly important

for Models (I) and (II) under both the null and alternative hypothesises.

To evaluate the performance of the screening approach, we adopt the mini-
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mum model size that includes all active predictors as a criterion and report

its 5%, 25%, 50%, 75%, and 95% quantiles of 1,000 replications in Table

1. We can clearly see that the MDC-based screening performs very well for

two models since almost all the 95% quantiles of the minimum model sizes

are equal to the true model size 4. In addition, we calculate the proportion

of all truly active predictors included in the selected model, denoted by Pa,

when |S| = 8 and |S| = 16. All proportions are close to 1 under both the

null and alternative hypothesises for two models. Thus, the MDC-based

screening method is very effective to include the truly important covariates

into the selected models. More numerical justifications of the MDC-based

screening are referred to Shao and Zhang (2014).

S2 Proof of Theorem 1

It is obvious that on one hand, if there exists some βA ∈ R|A|×d0 such that

E(y | x) = E(y | βT

AxA), for an arbitrary index set S such that A ⊆ S, by

choosing βS =
(
βT

A,0d0×(|S|−|A|)
)

T

, we have

E(y | xS) = E {E(y | x) | xS} = E {E(y | βT

AxA) | xS} = E(y | βT

SxS).

On the other hand, when E(y | xS) = E(y | βT

SxS) holds for some

βS ∈ R|S|×d0 , with the sparsity assumption E(y | x) = E(y | xA), it is quite
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Table 1: The empirical performance of MDC-based screening.

Minimum Model Size Pa

Model c 5% 25% 50% 75% 95% |S| = 8 |S| = 16

(I)

0 4 4 4 4 4 1.000 1.000

0.2 4 4 4 4 4 1.000 1.000

0.4 4 4 4 4 4 1.000 1.000

0.6 4 4 4 4 4 1.000 1.000

0.8 4 4 4 4 4 0.999 0.999

1 4 4 4 4 4 0.998 0.988

(II)

0 4 4 4 4 4 1.000 1.000

0.2 4 4 4 4 4 1.000 1.000

0.4 4 4 4 4 4 1.000 1.000

0.6 4 4 4 4 4 0.999 1.000

0.8 4 4 4 4 4 1.000 1.000

1 4 4 4 4 4 0.991 0.997
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straightforward that E(y | xS) = E {E(y | x) | xS} = E(y | xA), which

implies E(y | x) = E(y | βT

SxS), indicating span(βT

S ,0d0×(p−|S|))
T is a mean

dimension-reduction subspace immediately. In addition, note that E(y |

x) = E(y | xA), span(I|A|,0|A|×(p−|A|))
T is also a mean dimension-reduction

subspace. When both SE(y|x) and SE(y|xS) exist and are uniquely defined,

all coefficients of xS∩Ac must be equal to zero because span(βT

S ,0d0×(p−|S|))
T

⋂
span(I|A|,0|A|×(p−|A|))

T ⊂ span(I|A|,0|A|×(p−|A|))
T, indicating that βS =

(βT

A,0d0×(|S|−|A|))
T and βT

SxS = βT

AxA. Consequently, E(y | xS) = E(y |

βT

SxS) yields E(y | x) = E(y | βT

AxA).

S3 Proof of Theorem 2

Define the empirical process

ζn2(s)
def

= n
1/2
2 ξn2(s)

def

= n
−1/2
2

n1+n2∑
j=n1+1

ε̂j exp(isTxj,S)
def

=
3∑

k=1

Ik(s),

where I1(s), I2(s) and I3(s) are the relative three summations with ε̂j split

into m(β̂
T

Sxj,S)− m̂(β̂
T

Sxj,S) + m(βT

Sxj,S)−m(β̂
T

Sxj,S) + εj. In the sequel,

we will study the asymptotic behaviors of each Ik(s).

We start with the first quantity I1, which is defined as follows,

I1(s)
def

= n
−1/2
2

n1+n2∑
j=n1+1

{
m(β̂

T

Sxj,S)− m̂(β̂
T

Sxj,S)
}

exp(isTxj,S).

Since m̂′(βT

Sxj,S)−m′(βT

Sxj,S) = op(1), β̂S − βS = Op(1/
√
n2), with Tay-
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lor’s expansion, we have

I1(s) = n
−1/2
2

n1+n2∑
j=n1+1

{m(βT

Sxj,S)− m̂(βT

Sxj,S)} exp(isTxj,S) + op(1).

Similar to the proof for Lemma A2 of Ma and Zhu (2013), by invoking the

U -process theory (Nolan and Pollard , 1987) and Zhu and Ng (2003), as

nh2d →∞ and nh2t → 0 as n grows into infinity, we obtain that

I1(s) = −n−1/22

n1+n2∑
j=n1+1

εjE {exp(isTxj,S) | βT

Sxj,S}+ op(1).

From the definition of I3(s), we can easily combine I1(s) and I3(s) to

obtain that

I1(s) + I3(s)

= n
−1/2
2

n1+n2∑
j=n1+1

εj [exp(isTxj,S)− E {exp(isTxj,S) | βT

Sxj,S}] + op (1)

def

= I(s) + op (1) .

According to Zhu and Zhong (2015), vecl(β̂S−βS) can be represented

as

n−12

n1+n2∑
j=n1+1

α(xj,S ;βS)εj,

where α(xS ;βS) =

(
E [{m′(βT

SxS)}T ⊗ x̃−d,S ]
{
m′(βT

SxS)⊗ x̃T

−d,S
})−1

· [{m′(βT

Sxj,S)}T ⊗ x̃−d,S ], x̃−d,S = x−d,S − E(x−d,S | βT

SxS) and x−d,S =

(Xd+1, . . . , XS)T. With Taylor’s expansion and we can show without much
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difficulty that

I2(s) = n
−1/2
2

n1+n2∑
j=n1+1

{
∂m(βT

Sxj,S)

∂vecl(βS)

}
T

exp(isTxj,S)vecl(βS − β̂S) + op (1)

= −n−1/22

n1+n2∑
j=n1+1

E

[{
∂m(βT

SxS)

∂vecl(βS)

}
T

exp(isTxS)

]
α(xj,S ;βS)εj + op (1) .

Recall that ζn2(s) =
∑3

k=1 Ik(s), when the null hypothesis holds, we can

easily obtain E {ζn2(s)} = o(1) as n2 goes to infinity. Also, it is apparent

that

ζn2(s)ζT

n2
(s0) = I(s)IT(s0) + I2(s)IT

2 (s0) + I(s)IT

2 (s0) + I2(s)IT(s0) + op(1).

The first term of the above display can be easily calculated as

E{I(s)IT(s0)} = E

(
ε1ε

T

1

[
exp(isTx1,S)− E {exp(isTx1,S) | βT

Sx1,S}
]

[
exp(−isT

0x1,S)− E {exp(−isT

0x1,S) | βT

Sx1,S}
])

.

Note that β̂ is asymptotically normal, namely, n
1/2
2 vecl(β̂−β) converges

in distribution to normal distribution with mean zero and covariance matrix

Σ. It follows that

E{I2(s)IT

2 (s0)} = E

[{
∂m(βT

Sx1,S)

∂vecl(βS)

}
T

Σ

{
∂m(βT

Sx2,S)

∂vecl(βS)

}

exp{i(sTx1,S − sT

0x2,S)}

]
+ o(1).

By invoking the representation of vecl(β̂S−βS) again in Zhu and Zhong
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(2015), we can obtain that

E{I(s)IT

2 (s0)} = E

(
ε2

{
∂m(βT

Sx1,S)

∂vecl(βS)

}
T

α(x2,S ;βS)

[
− exp(isTx2,S − isT

0x1,S)

+E{exp(isTx2,S − isT

0x1,S) | βT

Sx2,S}

])
+ o(1),

E{I2(s)IT(s0)} = E

(
ε2

{
∂m(βT

Sx1,S)

∂vecl(βS)

}
T

α(x2,S ;βS)

[
− exp(isTx1,S − isT

0x2,S)

+E{exp(isTx1,S − isT

0x2,S) | βT

Sx2,S}

])
+ o(1).

Let ζ(s) denote a complex-valued Gaussian random process with mean

zero and covariance matrix function cov{ζ(s), ζT(s0)} being of the form

E

[{
∂m(βT

Sx1,S)

∂vecl(βS)

}
T

Σ

{
∂m(βT

Sx2,S)

∂vecl(βS)

}
exp{i(sTx1,S − sT

0x2,S)}
]

+ E

(
ε1ε

T

1

[
exp(isTx1,S)− E {exp(isTx1,S) | βT

Sx1,S}
]

[
exp(−isT

0x1,S)− E {exp(−isT

0x1,S) | βT

Sx1,S}
])

+ E

(
ε2

{
∂m(βT

Sx1,S)

∂vecl(βS)

}
T

α(x2,S ;βS)

[
− exp(isTx2,S − isT

0x1,S)

+E{exp(isTx2,S − isT

0x1,S) | βT

Sx2,S}

])

+ E

(
ε2

{
∂m(βT

Sx1,S)

∂vecl(βS)

}
T

α(x2,S ;βS)

[
− exp(isTx1,S − isT

0x2,S)

+E{exp(isTx1,S − isT

0x2,S) | βT

Sx2,S}

])
, (S3.1)
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Particularly with s = s0, we have

E
{
‖ζn2(s)‖2ω

}
=

∫
s

cov{ζ(s), ζT(s)}
c0‖s‖1+|S|

ds + o(1).

According to Székely, Rizzo and Bakirov (2007) and Shao and Zhang

(2014), if we can construct a sequence of random variables Qn2(ν), which

satisfy

(i) Qn2(ν)
D→ Q(ν) for each ν > 0;

(ii) lim sup
n2→∞

E
∣∣∣Qn2(ν)− ‖ζn2‖2ω

∣∣∣→ 0 as ν → 0;

(iii) E
∣∣∣Q(ν)− ‖ζ‖2ω

∣∣∣→ 0 as ν → 0,

then for any bounded, uniformly continuous function η, we have

lim
ν→0

∣∣∣E{η(Q(ν))} − E{η(‖ζ‖2ω)}
∣∣∣ ≤ lim

ν→0
E
{∣∣∣η(Q(ν))− η(‖ζ‖2ω)

∣∣∣}
= lim

ν→0
E
{∣∣∣η(Q(ν))− η(‖ζ‖2ω)

∣∣∣I(
∣∣Q(ν)− ‖ζ‖2ω

∣∣ ≤ ε0)
}

+ lim
ν→0

E
{∣∣∣η(Q(ν))− η(‖ζ‖2ω)

∣∣∣I(
∣∣Q(ν)− ‖ζ‖2ω

∣∣ > ε0)
}

≤ c1ε0 + c2 lim
ν→0

pr(
∣∣Q(ν)− ‖ζ‖2ω

∣∣ > ε0)→ 0,

as ε0 → 0, where c1 and c2 are some positive constants. Following similar

arguments, we can show that lim sup
n2→∞

∣∣∣E{η(Qn2(ν))}−E{η(‖ζn2‖2ω)}
∣∣∣→ 0 as

ν → 0. Theorem 8.4.1 of Resnick (1999) ensures that lim sup
n2→∞

∣∣∣E{η(Qn2(ν))}−

E{η(Q(ν))}
∣∣∣ → 0 as ν → 0. Combining the above results and using the

triangle inequality, we obtain lim sup
n2→∞

∣∣∣E{η(‖ζn2‖2ω)} − E{η(‖ζ‖2ω)}
∣∣∣ → 0,
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indicating the weak convergence of ‖ζn2‖2ω to ‖ζ‖2ω and therefore, we have

n2Tn2 = ‖ζn2(s)‖2ω + op(1)
d−→ ‖ζ(s)‖2ω, as n2 →∞.

In the sequel, we construct a sequence of random variables and jus-

tify how it satisfies the above three requirements (i)-(iii). Following the

construction in Shao and Zhang (2014), we define

Qn2(ν) =

∫
D(ν)

‖ζn2(s)‖2

c0‖s‖1+|S|
ds and Q(ν) =

∫
D(ν)

‖ζ(s)‖2

c0‖s‖1+|S|
ds,

where D(ν) is the region that D(ν) = {s : ν ≤ ‖s‖ ≤ 1/ν}. Given ε =

1/M,M ∈ N, choose a partition {Dk}Nk=1 ofD(ν) intoN = N(ε) measurable

sets with diameter at most ε. Then it is clear that

Qn2(ν) =
N∑
k=1

∫
Dk

‖ζn2(s)‖2

c0‖s‖1+|S|
ds and Q(ν) =

N∑
k=1

∫
Dk

‖ζ(s)‖2

c0‖s‖1+|S|
ds.

We define

QM
n2

(ν) =
N∑
k=1

∫
Dk

‖ζn2(s0(k))‖2

c0‖s‖1+|S|
ds and QM(ν) =

N∑
k=1

∫
Dk

‖ζ(s0(k))‖2

c0‖s‖1+|S|
ds,

where {s0(k)}Nk=1 are a set of distinct points such that s0(k) ∈ Dk. Follow-

ing similar arguments for proving Theorem 4 in Shao and Zhang (2014),

we can show that QM
n2

(ν)
d−→ QM(ν), lim sup

M→∞
E
∣∣∣QM(ν) − Q(ν)

∣∣∣ = 0 and

lim sup
M→∞

lim sup
n2→∞

E
∣∣∣QM

n2
(ν)−Qn2(ν)

∣∣∣ = 0, which implies (i) immediately.
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On the other hand,

E

∣∣∣∣∫
D(ν)

‖ζn2(s)‖2

c0‖s‖1+|S|
ds−

∫
s

‖ζn2(s)‖2

c0‖s‖1+|S|
ds

∣∣∣∣
=

∫
‖s‖<ν

E

{
‖ζn2(s)‖2

c0‖s‖1+|S|
ds

}
+

∫
‖s‖>1/ν

E

{
‖ζn2(s)‖2

c0‖s‖1+|S|
ds

}
. (S3.2)

According to Lemma 1 of Székely, Rizzo and Bakirov (2007), we have∫
R|S|

1− cos(sTxS)

‖s‖1+|S|
ds = c0‖xS‖,

for a |S|-dimensional vector z = (z1, z2, . . . , z|S|). Define the function

G(y) =

∫
‖z‖<y

1− cos z1
‖z‖1+|S|

dz.

Clearly G(y) is bounded by c0 and lim
y→0

G(y) = 0. Applying the Cauchy-

Schwarz inequality, we can obtain that

‖ζn2(s)‖2 ≤ 4n−12

n1+n2∑
j=n1+1

∥∥∥ exp(isTxj,S)− E exp(isTxS)
∥∥∥2 n1+n2∑

j=n1+1

ε̂2j .

For a given xS , we define an orthonormal matrix Q with the first row being

xT

S/‖xS‖. It is easy to check that with the variable changing u = ‖xS‖Q s.

We have∫
‖s‖<ν

1− cos(sTxS)

‖s‖1+|S|
ds =

∫
‖u‖<‖xS‖ν

‖xS‖{1− cos(u1)}
‖u‖1+|S|

du = ‖xS‖G(‖xS‖ν).

Therefore, we have∫
‖s‖<ν

‖ exp(isTxj,S)− E{exp(isTxS)}‖2

‖s‖1+|S|
ds ≤ 2E {‖xj,S − xS‖G(‖xj,S − xS‖ν) | xj,S} ,
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Consequently, the first summand in (S3.2) satisfies∫
‖s‖<ν

E

{
‖ζn2(s)‖2

c0‖s‖1+|S|

}
ds

≤ 8c−10 n−12 E

[
n1+n2∑
j=n1+1

E {‖xj,S − xS‖G(‖xj,S − xS‖ν) | xj,S}
n1+n2∑
j=n1+1

ε̂2j

]
.

Without much difficulty, we can show that

n1+n2∑
j=n1+1

ε̂2j =

n1+n2∑
j=n1+1

ε2j + op(n2).

Accordingly, lim
ν→0

lim
n2→∞

∫
‖s‖<ν E

‖ζn2 (s)‖
2

c0‖s‖1+|S|ds→ 0 for sufficiently small ν.

Now we consider the second summand in (S3.2), with the triangle in-

equity, we have ‖ exp(isTxj,S)− E exp(isTxS)‖2 ≤ 4, hence∫
‖s‖>1/ν

E

{
‖ζn2(s)‖2

c0‖s‖1+|S|

}
ds ≤ 16

∫
‖s‖>1/ν

1

c0‖s‖1+|S|
dsE

{
n1+n2∑
j=n1+1

ε̂2j

}

≤ 16O(1)

∫
‖s‖>1/ν

1

c0‖s‖2
d(‖s‖)E

{
n1+n2∑
j=n1+1

ε̂2j

}
.

The second inequality holds due to the Jacobian of the |S|-dimensional

spherical transformation is ‖s‖|S|−1 sin|S|−2(θ1) · · · sin(θp−2). Then, for suf-

ficiently small ν,

lim
ν→0

lim
n2→∞

∫
‖s‖>1/ν

E

{
‖ζn2(s)‖2

c0‖s‖1+|S|

}
ds→ 0, for any y.

Thus, we complete the proof for (ii). A similar argument also applies to

Q(ν), so (iii) holds. Therefore, ‖ζn2(s)‖2ω
d−→ ‖ζ(s)‖2ω as n2 → ∞. Conse-

quently, we have completed the proof.
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S4 Proof of Theorem 3

In the new model ỹ = m̂(β̂
T

SxS)+ ε̃, we can easily have E(ε̃ | xS) = 0 since

δ is independent of xS and the null hypothesis is automatically satisfied.

Similar to the proof of Theorem 2, we define the process ζ̃n2(s) =

√
n2ξ̃n2(s). We also decompose ζ̃n2(s) into Ĩ1(s)+ Ĩ2(s)+ Ĩ3(s), and from the

results in the proof of Theorem 2, we have Ĩ1(s)+Ĩ3(s) = n
1/2
2

∑n
j=1 ε̃j [exp(isTxj,S)−

E
{

exp(isTxj,S) | β̂
T

Sxj,S

}]
+ op(1/

√
n2). By denoting the dominant term

of Ĩ1(s) + Ĩ3(s) as Ĩ(s), we can write ζ̃n2(s)ζ̃T

n2
(s0) as

ζ̃n2(s)ζ̃T

n2
(s0) = Ĩ(s)ĨT(s0) + Ĩ2(s)ĨT

2 (s0) + Ĩ(s)ĨT

2 (s0) + Ĩ2(s)ĨT(s0) + op(1).

As the weights δis are drawn identically and independently from {1,−1}

at random, i = n1 + 1, . . . , n and δ is independent of xS and ε. Also, since

β̂S−βS is of order Op(1/
√
n2), ε̂−ε = m(βT

SxS)−m(β̂
T

SxS)+m(β̂
T

SxS)−

m̂(β̂
T

SxS), and by similar arguments in Lemma A1 of Ma and Zhu (2013),

we have

n
−1/2
2

n1+n2∑
j=n1+1

{m(βT

Sxj,S)− m̂(βT

Sxj,S)} δj
[

exp(isTxj)

−E {exp(isTxj) | βT

Sxj,S}
]

= op(1),

thus we can easily obtain that

Ĩ(s) = n
−1/2
2

n1+n2∑
j=n1+1

εjδj [exp(isTxj)− E {exp(isTxj) | βT

Sxj,S}] + op(1),
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which will yield

E{Ĩ(s)ĨT(s0)} = E{I(s)IT(s0)}+ o(1).

Similar to the proof of Theorem 2, we have

Ĩ2(s) = n
−1/2
2

n1+n2∑
j=n1+1

{
∂m(β̂

T

Sxj,S)

∂vecl(β̂S)

}
T

exp(isTxj,S)vecl(β̃S − β̂S) + op (1)

= −n−1/22

n1+n2∑
j=n1+1

E

{
∂m(βT

Sxj,S)

∂vecl(βS)

}
T

exp(isTxS)α(xj,S ;βS)εjδj + op (1) ,

then it is clear that

E{Ĩ2(s)ĨT

2 (s0)} = E{I2(s)IT

2 (s0)}+ o(1).

With similar arguments, it can be shown that E{Ĩ(s)ĨT

2 (s0)} = E{I(s)IT

2 (s0)}+

o(1) and E{Ĩ2(s)ĨT(s0)} = E{I2(s)IT(s0)}+ o(1) and accordingly we have,

E
{
ζ̃n2(s)ζ̃T

n2
(s0)

}
= E

{
ζn2(s)ζT

n2
(s0)

}
+ o(1).

Using almost the same arguments in the proof of Theorem 2, we have

n2T̃n2 = ‖ζ̃n2‖2ω + op(1)
d−→ ‖ζ(s)‖2ω, which completed the proof.

S5 Proof of Theorem 4

Under global alternative, in the case of E(y | xS) 6= E(y | βT

SxS) for any

βS with rank d0, β̂S converges to some βS such that y = m(βT

SxS) + ε,
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where m(βT

SxS) = E(y | βT

SxS). It is straightforward that E(ε | xS) 6= 0

and E(ε | βT

SxS) = 0. In this case, by decomposing the empirical process

in a similar way, we still have

I1(s) = −n−1/22

n1+n2∑
j=n1+1

εjE {exp(isTxj,S) | βT

Sxj,S}+ op(1),

I2(s) = −E
[{

∂m(βT

SxS)

∂vecl(βS)

}
T

exp(isTxS)

]
n
−1/2
2

n1+n2∑
j=n1+1

α(xj,S ;βS)εj + op(1).

However, under the alternative hypothesis, E(ε | xS) 6= 0. Consequently,

I3(s) = n
−1/2
2

n1+n2∑
j=n1+1

εj exp(isTxj,S) = Op(n
1/2
2 ).

Then it is clear that ζn2(s)− n1/2
2 E{ε exp(isTxS)} is of order Op (1) and

‖ζn2(s)‖2 = n2‖Eε exp(isTxS)‖2

+ n
1/2
2

{
ζn2(s)− n1/2

2 Eε exp(isTxS)
}
E{ε exp(−isTxS)}

+ n
1/2
2

{
ζn2(−s)− n1/2

2 Eε exp(−isTxS)
}
Eε exp(isTxS) + op (1) .

Substituting ζn2(s) = I1(s)+I2(s)+I3(s) into the above equation and simple

algebra yields that

∫
s

‖n1/2
2 I1(s)Eε exp(−isTxS)‖2

c0‖s‖1+|S|
ds =

n1+n2∑
j=n1+1

Z1,j + op

(
n
1/2
2

)
,

where Z1,j, j = n1 + 1, . . . , n1 + n2 are n2 independent copies of

Z1 = E {ε1ε2E(‖x1,S − x2,S‖ | βT

Sx1,S) | x1,S , ε1} (S5.1)
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Similarly, we can have

∫
s

‖n1/2
2 I2(s)Eε exp(−isTxS)‖2

c0‖s‖1+|S|
ds =

n1+n2∑
j=n1+1

Z2,j + op

(
n
1/2
2

)
,

where Z2,j, j = n1 + 1, . . . , n1 + n2 are n2 independent copies of

Z2 = E

[{
∂m(βT

Sx1,S)

∂vecl(βS)

}
T

ε2‖x1,S − x2,S‖
]
α(x1,S ;βS)ε1 (S5.2)

In addition,

∫
s

n
1/2
2

∥∥∥{I3(s)− n1/2
2 Eε exp(isTxS)

}
Eε exp(−isTxS)

∥∥∥2
c0‖s‖1+|S|

ds

=

n1+n2∑
j=n1+1

Z3,j + op

(
n
1/2
2

)
,

Z3,j, j = n1 + 1, . . . , n1 + n2 are n2 independent copies of

Z3 = −ε1E {ε2‖x1,S − x2,S‖ | x1,S} − T (S5.3)

Combining the above results together allows us to write

Tn2 − T = 2n−12

n1+n2∑
j=n1+1

(Z1,j + Z2,j + Z3,j) + op

(
n
−1/2
2

)
.

The asymptotic expansions in (S5.1)-S5.3 are averages of n2 independent

and identically distributed variables. The first part of the proof is completed

with the central limit theorem.

Under local alternative, y = m(βT

SxS) +Cn2g(BT

SxS) + ε, according to

the Proof for Theorem 1 of Zhu and Zhong (2015) and similar to the proof
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for Lemma 3 of Guo, Wang and Zhu (2016), we have

n
1/2
2 (β̂S − βS) = n

−1/2
2

n1+n2∑
j=n1+1

α(xj,S ;βS)εj

+Cn2n
1/2
2 Eα(xS ;βS)g(BT

SxS) + op(1).

With similar decomposition, we can easily obtain that

I1(s) = −n−1/22

n1+n2∑
j=n1+1

{Cn2g(BT

Sxj,S) + εj}E {exp(isTxj,S) | βT

Sxj,S}+ op(1)

= −n1/2
2 Cn2E [g(BT

SxS)E {exp(isTxS) | βT

SxS}]

−n−1/22

n1+n2∑
j=n1+1

εjE {exp(isTxj,S) | βT

Sxj,S}+ op(1).

Similarly, we have

I2(s) = −Cn2n
1/2
2 E

[{
∂m(βT

SxS)

∂vecl(βS)

}
T

exp(isTxS)

]
E {α(xS ;βS)g(BT

SxS)}

−E
[{

∂m(βT

SxS)

∂vecl(βS)

}
T

exp(isTxS)

]
n
−1/2
2

n1+n2∑
j=n1+1

α(xj,S ;βS)εj + op(1),

I3(s) = n
1/2
2 Cn2E {g(BT

SxS) exp(isTxS)}+ n
−1/2
2

n1+n2∑
j=n1+1

εj exp(isTxj,S).

Particularly when Cn2 = n
−1/2
2 , if we denote ζ0(s) as a complex-valued

Gaussian random process with mean function

Eζ0(s) = E {g(BT

SxS) exp(isTxS)} − E
[{

∂m(βT

SxS)

∂vecl(βS)

}
T

exp(isTxS)

]
− E

[{
∂m(βT

SxS)

∂vecl(βS)

}
T

exp(isTxS)

]
E {α(xS ;βS)g(BT

SxS)}(S5.4)

and covariance matrix function cov{ζ0(s), ζT

0 (s0)} being of the form (S3.1),
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with almost the same arguments, ‖ζn2(s)‖2ω
d−→ ‖ζ0(s)‖2ω as n2 → ∞, and

the proof of the second part is completed.

S6 Proof of Theorem 5

Similar to Meinshausen, Meier and Bühlmann (2009), we omit the limes

superior and the function min. Define π(u) = B−1
∑B

i=1 I(pi ≤ u). Re-

call that Q(γ) = qγ ({pi/γ; i = 1, . . . , B}) which indicates {Q(γ) ≤ α} is

equivalent to {π(αγ) ≥ γ}. Then we have

P {Q(γ) ≤ α} = P{π(αγ) ≥ γ} ≤ γ−1Eπ(αγ).

By the definition of π(·),

γ−1Eπ(αγ) = (γB)−1
B∑
i=1

P (pi ≤ αγ),

Note that P (A ⊂ Si) → 1 and B is fixed, thus P (pi ≤ αγ | A ⊂ Si) = αγ

and the first assertion hold.

Since pi is a random variable which follows the uniform distribution on

[0, 1] conditioning on A ⊂ Si, then

E

{
sup

γ∈(γmin,1)

γ−1I(pi ≤ αγ)

}
=

∫ αγmin

0

γ−1mindx+

∫ α

αγmin

αx−1dx = α(1− log γmin),
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subsequently we have

E

[
sup

γ∈(γmin,1)

I {π(αγ) ≥ γ}
]
≤ α(1− log γmin),

implying that

P

[
inf

γ∈(γmin,1)
Q(γ)(1− log γmin) ≤ α

]
≤ α,

which completes the proof.
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