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Abstract: This paper proposes a simple and efficient generalized method of mo-

ments (GMM) estimation for a model with non-ignorable missing data. In contrast

to the existing the GMM estimation with a fixed number of moments, we allow

the number of moments to grow with the sample size and use optimal weighting.

Hence, our estimator is efficient, attaining the semiparametric efficiency bound de-

rived in the literature. Existing semiparametric estimators estimate an efficient

score. However, this approach is either locally efficient, or it suffers from the curse

of dimensionality and the bandwidth selection problem. In contrast, our estimator

does not suffer from these problems. Moreover, the proposed estimator and its con-

sistent covariance matrix are easily computed using commercially available GMM

packages. We propose two data-driven methods to select the number of moments.

A small-scale simulation study reveals that the proposed estimator outperforms

existing alternatives in finite samples.

Key words and phrases: Generalized method of moments, non-ignorable nonre-

sponse, semiparametric efficiency.

1. Introduction

Missing data are common in many fields. One way to resolve the problem

is to delete observations containing such data. However, in doing so, we may

produce biased estimates and erroneous conclusions, depending on the missing

data mechanism. If data are missing completely at random, standard estimation

and inference procedures remain consistent when the missing data observations

are ignored; see Heitjan and Basu (1996) and Little (1988), among others. If

data are missing at random (MAR), in the sense that the propensity of missing-

ness depends only on the observed covariates, a consistent estimation can still

be obtained using covariate balancing; see Rubin (1976a,b), Little and Rubin

(1989), Robins and Rotnitzky (1995), Robins, Rotnitzky and Zhao (1995), Bang

and Robins (2005), Qin and Zhang (2007), Chen, Hong and Tarozzi (2008), Tan

(2010), Rotnitzky et al. (2012) and Little and Rubin (2014), among others. In
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many applications, data are missing not at random (MNAR). For example, the

income question in sample surveys is often not answered by people at the top

end of the distribution; that is, their response frequency depends on an outcome

variable that is often the key focus. Alternatively, consider an investigator who

examines the effect of sleep on pain by calling subjects each day to ask them

about their previous night’s sleep and their pain that day. Patients who are

experiencing severe pain are less likely to answer the phone, resulting in data

missing for that particular day; again, this violates the MAR assumption. From

political science, roll-call votes, which measure legislatures’ ideological positions,

are subject to non-ignorable nonresponses because politicians behave strategi-

cally. In the MNAR case, the parameter of interest may not even be identified

(e.g., Robins and Ritov (1997)), let alone be consistently estimated. Specifically,

let T ∈ {0, 1} denote a binary random variable indicating the missing status

of the outcome variable Y : if Y is observed, T takes the value one, and if Y

is not observed, T takes the value zero. Let X denote a vector of explana-

tory variables, π(x, y) = P (T = 1|X = x, Y = y) denote the propensity score

function, and fY |X(y|x) denote the conditional density function of Y , given X.

Robins and Ritov (1997) shows that if both the propensity score function and

the conditional density function are completely unknown, the joint distribution

of (T, Y ), given X, is not identifiable. In this case, a necessary identification

condition is the parameterization of one of the two functions. Molenberghs and

Kenward (2007) propose parameterizing both functions as an identification strat-

egy, whereas Sverchkov (2008) and Riddles, Kim and Im (2016) parameterize the

propensity score function and only a component of the conditional density func-

tion: fY |X,T (y|x, T = 1).

If the joint distribution is not the parameter of interest, the aforementioned

identification strategy can be modified. For example, if the parameter of interest

is the conditional density of Y , given X (i.e., fY |X(y|x)), the parameterization

of the propensity score function is not needed. However, the parameterization

of fY |X(y|x) in this case is not sufficient for identification, owing to missing

data. Tang et al. (2003) suggest parameterizing the marginal density fX(x) as

well, and Zhao and Shao (2015) impose an exclusion retriction. In both studies,

fY |X(y|x) is identified and consistently estimated.

We estimate the parameter θ0 = E[U(X, Y )], where U(·) is any known

function. We suppose that the propensity score π is parameterized, but do not

restrict the conditional density function of the outcome variable. In earlier works

that adopt this framework, either the coefficients in the propensity score function
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are known or are consistently estimated from an external sample (Kim and Yu

(2011)), or an exclusion restriction is imposed (Wang, Shao and Kim (2014))

and Shao and Wang (2016)). Wang, Shao and Kim (2014) propose a gener-

alized method of moments estimation for θ0. However, their estimator is not

efficient because their moments are not optimal. Morikawa and Kim (2016) esti-

mate θ0 by deriving the efficient score function (and, hence, the semiparametric

efficiency bound) for θ0. They propose estimating this function by estimating

fY |X,T (y|,x, 1), using either a working parametric model (MK1) or a kernel non-

parametric method (MK2). However, the MK1 approach is not efficient unless

the working parametric model is correct, although it is consistent. The MK2

method suffers from the curse of dimensionality, because their smoothness con-

ditions depend on the dimensionality of the covariates (see their condition C14).

Furthermore, MK2 suffers from the bandwidth selection problem; unfortunately,

no guidance is provided on how to resolve this problem.

We study the same estimation problem as those in Wang, Shao and Kim

(2014) and Morikawa and Kim (2016), but propose a simpler, yet equally effi-

cient estimation procedure. Our proposed method does not require an explicit

nonparametric estimation and, hence, does not suffer from the curse of dimen-

sionality. The proposed estimator is motivated by the key insight that the model

parameter satisfies a parametric conditional moment restriction, of which the

semiparametric efficiency bound is identical to the bound derived in Morikawa

and Kim (2016). The conditional moment restriction is then turned into an ex-

panding set of unconditional moment restrictions, and the parameter of interest

is estimated by applying the widely available and easy to compute GMM esti-

mation (see Hansen (1982)). Under sufficient conditions, we establish that the

proposed estimator is consistent and asymptotically normally distributed, even

if the set of unconditional moment restrictions does not expand. This resolves

the curse of dimensionality and bandwidth selection problems, because when the

set does expand, the proposed estimator attains the semiparametric efficiency

bound.

The remainder of the paper is organized as follows. Section 2 describes the

estimation, and Section 3 derives the large-sample properties of the estimator.

Section 4 provides a consistent asymptotic variance estimator, and Section 5 sug-

gests two data-driven approaches to determine the number of unconditional mo-

ment restrictions. Section 6 presents on a small-scale simulation study. Section

7 concludes the paper. All technical proofs are relegated to the Supplementary

Material Ai, Linton and Zhang (2018).
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2. Basic Framework and Estimation

We begin by setting up the basic framework. Denote Z = (X>, Y )>. The

following assumption is maintained throughout the paper:

Assumption 2.1. (i) Parameterization of missing data mechanism: P (T =

1|Y,X) = π(Y,X; γ0) = π(Z; γ0) holds for some known function π(·; ·), where

γ0 ∈ Rp, for some known p ∈ N, is the true (unknown) value; (ii) exclusion

restriction: there exist nonresponse instrument variables X1 in X = (X>1 ,X
>
2 )>

such that X2 is independent of T , given both X1 and Y ; and (iii) the parameter

of interest is θ0 = E[U(Z)], for some known function U(·).

Under Assumption 2.1 and by applying the law of iterated expectations, we

obtain the following conditional moment restrictions:

E

[
1− T

π(Z; γ0)

∣∣∣∣X] = 0, (2.1)

E

[
θ0 −

T

π(Z; γ0)
U(Z)

]
= 0, (2.2)

on which the proposed estimation is based. Note that the parameters of interest

in (2.1)–(2.2) are finite dimensional (and there is no explicit infinite-dimensional

nuisance parameter), and can be easily estimated using a GMM estimation.

The (nuisance) parameter γ0 is identified by (2.1), and the parameter of

interest θ0 is identified by (2.2). The following condition is also maintained

throughout the paper:

Assumption 2.2. The parameter space Γ is a compact subset of Rp. The true

value γ0 lies in the interior of Γ, and is the only solution to (2.1). The parameter

space Θ is a compact subset of R, and the true value θ0 lies in the interior of Θ.

To estimate model (2.1)–(2.2), we first turn it into a set of unconditional

moment restrictions. We work with a set of known basis functions: for each

integer K ∈ N, with K ≥ p, let uK(X) = (u1K(X), . . . , uKK(X))>. A discussion

on the choice of uK(X) and its properties can be found in Chen (2007), in Wei,

Sun and Hu (2018), and in Section 2.2 of the Supplementary Material. Model

(2.1)–(2.2) implies the following unconditional moment restrictions:

E

[(
1− T

π(Z; γ0)

)
uK(X)

]
= 0, (2.3)
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E

[
θ0 −

T

π(Z; γ0)
U(Z)

]
= 0. (2.4)

To avoid redundant moment restrictions, we require that E
[
uK(X)uK(X)>

]
be nonsingular for every K. The following, somewhat stronger identification

condition is maintained throughout the paper:

Assumption 2.2′. The parameter space Γ is a compact subset of Rp. The true

value γ0 lies in the interior of Γ, and is the only solution to (2.3). The parameter

space Θ is a compact subset of R, and the true value θ0 lies in the interior of Θ.

We can estimate the parameter of interest using the GMM. Let {Ti,Zi}Ni=1

denote an independent and identically distributed (i.i.d.) sample drawn from

the joint distribution of (T,Z). Denote GK(γ, θ) :=
∑N

i=1 gK(Ti,Zi; γ, θ), where

gK(T,Z; γ, θ) :=
([

1− Tπ(Z; γ)−1
]
uK(X)>, θ − Tπ(Z; γ)−1U(Z)

)>
. The GMM

estimator of γ0 and θ0 is defined as

(γ̌, θ̌) = arg min
γ∈Γ,θ∈Θ

GK(γ, θ)> ·W ·GK(γ, θ),

where W is a (K+1)×(K+1) symmetric weighting matrix. For every fixed K ≥
p, Hansen (1982) shows that, under some regularity conditions, the estimator

(γ̌ − γ0, θ̌ − θ0) = Op(N
−1/2) (2.5)

is asymptotically normally distributed, but performs best only when the best

weighting matrix is used. The later matrix is the inverse of D(K+1)×(K+1) :=

E
[
gK(T,Z; γ0, θ0)gK(T,Z; γ0, θ0)>

]
. The best estimator (within the class de-

fined by the specific unconditional moments) is defined as

(γ, θ) = arg min
γ∈Γ,θ∈Θ

GK(γ, θ)> ·D−1
(K+1)×(K+1) ·GK(γ, θ).

Suppose that the propensity score function is differentiable with respect to γ.

Denote

B(K+1)×(p+1) = ∇γ,θE
[

1

N
GK(γ0, θ0)

]
=

E
[
uK(X)∇γπ(Z;γ0)>

π(Z;γ0)

]
, 0K×1

E
[
U(Z)∇γπ(Z;γ0)>

π(Z;γ0)

]
, 1
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and

VK =
{(

B(K+1)×(p+1)

)>
D−1

(K+1)×(K+1)

(
B(K+1)×(p+1)

)}−1
.

Hansen (1982) shows that, for every fixed K ≥ p,

V
−1/2
K

(√
N(γ − γ0)√
N(θ − θ0)

)
→ N

(
0, I(p+1)×(p+1)

)
in distribution. (2.6)

Because the best weighting matrix depends on the unknown parameter value, the

best estimator (γ, θ) is infeasible. Hansen (1982) suggests the following two-step

procedure:

Step I. Compute the initial
√
N -consistent estimator

Ŵ0 :=

(
1
N

∑N
i=1 uK(Xi)uK(Xi)

> 0K×1

0>K×1 1

)
,

(γ̌, θ̌) = arg min
(γ,θ)∈Γ×Θ

GK(γ, θ)T · Ŵ−1
0 ·GK(γ, θ).

Step II. Compute the best weighting matrix and the best estimator

D̂(K+1)×(K+1) :=
1

N

N∑
i=1

gK(Ti,Zi; γ̌, θ̌)gK(Ti,Zi; γ̌, θ̌)
> ,

(γ̂, θ̂) = arg min
γ∈Γ,θ∈Θ

GK(γ, θ)T · D̂−1
(K+1)×(K+1) ·GK(γ, θ),

respectively. Hansen (1982) establishes that, for every fixed K ≥ p,

V
−1/2
K

(√
N(γ̂ − γ0)√
N(θ̂ − θ0)

)
→ N

(
0, I(p+1)×(p+1)

)
in distribution. (2.7)

Moreover, denote

B̂(K+1)×(p+1) :=

N−1
∑N

i=1 uK(Xi)
∇γπ(Zi;γ̂)>

π(Zi;γ̂) , 0K×1

N−1
∑N

i=1 U(Zi)
∇γπ(Zi;γ̂)>

π(Zi;γ̂) , 1


and

V̂K :=

{(
B̂(K+1)×(p+1)

)>
D̂−1

(K+1)×(K+1)

(
B̂(K+1)×(p+1)

)}−1

.
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Hansen (1982) proves that, for every fixed K ≥ p,

V̂K → VK in probability. (2.8)

Remark 1. Despite the popularity and theoretical appeal of the inverse propen-

sity score weighting, a major practical weakness of this method is the parameter-

ization of the propensity score. It is well established that a slight misspecification

of the propensity score function can lead to substantial bias (Kang and Schafer,

2007). In practice, applied researchers can apply diagnostic procedures, such

as the “propensity score tautology” proposed in Imai, King and Stuart (2008),

to select a particular parametric function from a prespecified set of functions.

This procedure selects a particular propensity score if it balances the covariates.

Specifically, for a fixed K ∈ N larger than p, Hansen’s J-statistic,

J = N

{
1

N
GK(γ̂, θ̂)>D̂−1

(K+1)×(K+1)

1

N
GK(γ̂, θ̂)

}
d−→ χ2

K−p,

can be employed to test the null hypothesis of the propensity score being correctly

specified. If it is correctly specified, the deviation of this statistic from zero

should be within the range of the sampling error. For details, see Kosuke and

Marc (2015). For an assessment of other models used in missing data analyses,

see Ibrahim and Molenberghs (2009).

Remark 2. There are two approaches to dealing with non-ignorable missing

data in a semiparametric estimation: the moment-based approach, and the em-

pirical likelihood approach. Morikawa and Kim (2018) establish the equivalence

between the empirical likelihood estimator (Owen (2004)) and the moment-based

estimator. To describe the empirical likelihood estimation for our model, suppose

that the first n Yi are observed, and the remaining (N − n) Yi are missing; that

is, Ti = 1 for i = 1, . . . , n, and Ti = 0 for i = n+ 1, . . . , N . Qin, Leung and Shao

(2002) construct the likelihood using the data with Ti = 1, as follows:

n∏
i=1

π(Zi; γ)dF (Zi)

N∏
i=n+1

∫
{1− π(z; γ)}dF (z), (2.9)

and discretize the distribution F by wi (i = 1, . . . , n). The discretized distribu-

tion wi can be estimated by maximizing
∏n
i=1wi, subject to the following
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constraints:{
wi ≥ 0,

∑n
i=1wi = 1,

∑n
i=1wi{π(Zi; γ)− µT } = 0,∑n

i=1wi{uK(Xi)− ūK} = 0,
∑n

i=1wi{U(Zi)− θ} = 0,

where µT := E[T ] =
∫
π(z; γ)dF (z) and ūK := N−1

∑N
i=1 uK(Xi). The approx-

imating basis functions uK(X) increase the estimation efficiency. With λ1, λ2,

and λ3 as Lagrange multipliers, the solution to the above optimization problem

is ŵ−1
i = n[1+λ>1 {uK(Xi)− ūK}+λ2{U(Zi)−θ}+λ3{π(Zi; γ)−µT }]. Profiling

out the unknown F using the estimates ŵi (i = 1, . . . , n) in (2.9) and taking the

logarithm, we obtain the profile pseudo-loglikelihood

`(γ, θ, µT , λ1, λ2) =

n∑
i=1

log π(Zi; γ)

−
n∑
i=1

log[1 + λ>1 {uK(Xi)− ūK}+ λ2{U(Zi)− θ}+ λ3{π(Zi; γ)− µT }]

+ (N − n) log(1− µT ), (2.10)

where λ3 = (N/n − 1)/(1 − µT ). Morikawa and Kim (2018) show that the

empirical likelihood estimator is the same as the GMM estimator. Thus, we

choose the GMM method, owing to its computational simplicity.

The best GMM estimator (within the class defined by the specific uncon-

ditional moments) is, in general, not semiparametrically efficient. To obtain

an efficient estimator, we allow K to increase with the sample size at the rate

o(N1/3), such that {uK(X)} spans the space of measureable functions (see also

Geman and Hwang (1982) and Newey (1997)). In the next two sections, we

establish that the results in (2.5)–(2.8) still hold with increasing K = o(N1/3).

An advantage of the proposed estimator over existing estimators is that it

does not require that we estimate fY |X,T (y|x, 1), relying instead on the moment

conditions. Because the number of the unknown parameters is fixed and finite,

and is independent of the number of covariates, the proposed estimator is always

consistent, as long as the number of moment conditions exceeds the number of

the unknown parameters (i.e., K ≥ p). Further increasing the moment condi-

tions only improves efficiency. Therefore, the classical trade-off between bias and

variance in nonparametric estimations does not apply here. This is in constrast

to the estimators proposed by Riddles, Kim and Im (2016) and Morikawa and

Kim (2016), which do require an estimation of fY |X,T (y|x, 1). The estimator of
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Morikawa and Kim (2016) is consistent, even if the parametric specification of

fY |X,T (y|x, 1) is incorrect, but is inefficient. If fY |X,T (y|x, 1) is estimated non-

parametrically (e.g., kernel estimation), the resulting estimator suffers from the

curse of dimensionality and the bandwidth selection problem.

3. Asymptotic Theory

In this section, we show that the results in (2.5)–(2.7) still hold with in-

creasing K. All technical proofs can be found in the Supplementary Material

(Ai, Linton and Zhang (2018)). First, we establish the convergence rate of the

first-step estimator (γ̌, θ̌).

Theorem 1. Under Assumptions 2.1–2.2′ and Assumptions 1, 2, 4, 6, and 7

listed in the Appendix, with K = o(N1/3), the first-step estimator satisfies (γ̌ −
γ0, θ̌ − θ0) = Op

(
N−1/2

)
.

Next, we establish the large-sample properties of the infeasible best estima-

tor (γ, θ), without imposing the smoothness Assumptions 3 and 5 listed in the

Appendix.

Theorem 2. Under Assumptions 2.1–2.2′ and Assumptions 1, 2, 4, 6, and 7

listed in the Appendix, with K = o(N1/3), the infeasible best estimator satisfies

V
−1/2
K

(√
N(γ − γ0)√
N(θ − θ0)

)
→ N

(
0, I(p+1)×(p+1)

)
in distribution.

If, in addition, the smoothness Assumptions 3 and 5 are satisfied, the next

result shows that VK → Veff , where Veff := E[SeffS
>
eff ]−1 is the semipara-

metric efficiency bound of (γ0, θ0) derived in Morikawa and Kim (2016), Seff =

(S>1 , S2)>, and S1, S2 are defined in (A.1) and (A.2), respectively.

Theorem 3. Under Assumptions 2.1–2.2′ and Assumptions 1–7 listed in the

Appendix, with K = o(N1/3), we obtain VK → Veff .

By Theorem 1–3, the infeasible best estimator attains the semiparametric

efficiency bound. The next result establishes the equivalence between the best

estimator (γ̂, θ̂) and the infeasible best estimator (γ, θ), implying that the best

estimator also attains the semiparametric efficiency bound.

Theorem 4. Under Assumptions 2.1–2.2′ and Assumptions 1–7 listed in the

Appendix, with K = o(N1/3), we obtain (
√
N(γ − γ̂),

√
N(θ − θ̂)) = op(1).
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4. Variance Estimation

In order to conduct a statistical inference, we need a consistent covariance

estimator. Note that (2.5) implies that V̂K is a consistent estimator of VK , for

every fixed K ≥ p. We now show that this result still holds with increasing K,

thereby providing a consistent covariance estimator.

Theorem 5. Under Assumptions 2.1–2.2′ and Assumptions 1–7 listed in the

Appendix, with K = o(N1/3), we obtain V̂K → VK in probability.

Note that our covariance estimator is much simpler and more natural than

that suggested by Morikawa and Kim (2016), which requires a nonparametric

estimation of fY |X,T (y|x, 1), and tends to exhibit poor performance in finite

samples. Our covariance estimator is a GMM covariance estimator and is easily

computed using existing statistical packages.

5. Selection of K

The large-sample properties of the proposed estimator established in the

previous sections allow for a wide range of values for K. As a result, theoretically,

the sensitivity of the estimator to the choice of K is not as pronounced, affecting

higher-order terms in a way that does not affect the consistency and asymptotic

normality. Nevertheless, there may be some higher-order effect of the choice of K

on perfomance. In this section, we present two data-driven approaches to select

K.

Covariate balancing approach. The first approach attempts to balance

the distribution of the covariates between the whole population and the nonmiss-

ing population using weighting. Note that

E

[
T

π(Z; γ0)
I(Xj ≤ xj)

]
= E[I(Xj ≤ xj)], j ∈ {1, . . . , r},

where Xj is the jth component of X, and I(Xj ≤ xj) is the indicator function.

Obviously, the propensity score function π(Z; γ0) plays the role of balancing.

Note that the estimator γ̂ depends on K. For a given K, we compute

F̂ jN,K(xj) :=
1

N

N∑
i=1

Ti
π(Xi; γ̂)

I(Xij ≤ xj), j ∈ {1, . . . , r}.
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We compute the empirical distributions of the covariates

F̃ jN (xj) :=
1

N

N∑
i=1

I(Xij ≤ xj), j ∈ {1, . . . , r}.

We choose the lowest K such that the difference between {F̂ jN,K}rj=1 and {F̂ jN}rj=1

is small. Denote the upper bound of K by K̄ (e.g., K̄ = 7 in our simulation stud-

ies). We choose K ∈ {1, . . . , K̄} to minimize the aggregate Kolmogorov–Smirnov

distance between {F̂ jN,K}rj=1 and {F̂ jN}rj=1:

K̂ = arg min
K∈{1,...,K̄}

DN (K) :=

r∑
j=1

sup
xj∈R

∣∣∣F̃ jN (xj)− F̂ jN,K(xj)
∣∣∣ .

Higher-order mean squared error (MSE) approach. The second ap-

proach chooses K to minimize the MSE of the estimator. Donald, Imbens and

Newey (2009) derive the higher-order asymptotic MSE of a linear combination

t>γ̂, for some fixed t ∈ Rp. Let γ̌ be some preliminary estimator. Define:

Π̂(K; t) =

N∑
i=1

ξ̂iiρ(Ti,Xi, Yi; γ̌) · (t>Ω̂−1
p×pη̃i),

Φ̂(K; t) =

N∑
i=1

ξ̂ii

{
t>Ω̂−1

p×p

[
D̂∗i ρ(Ti,Xi, Yi; γ̌)2 −∇γρ(Ti,Xi, Yi; γ̌)

]}2

− t>Ω̂−1
p×p(Γ̂K×p)

>Υ̂−1
K×K Γ̂K×pΩ̂

−1
p×pt,

where ρ(Ti,Xi, Yi; γ̌), Ω̂p×p, η̃i, ξ̂ii, D̂
∗
i , Γ̂K×p, and Υ̂K×K are defined in Section

A of the Appendix. Note that Π̂(K; t)2/N is an estimate of the squared bias term

derived in Newey and Smith (2004), and Φ̂(K; t) is the asymptotic variance. The

second approach chooses K to minimize the following higher-order MSEs of γ̂j ,

for j = 1, . . . , p:

SGMM (K) =

p∑
j=1

{
1

N
Π̂(K; ej)

2 + Φ̂(K; ej)

}
, (5.1)

where ej is the jth column of the p-dimensional identity matrix. In practice,

we set the upper bound K̄, and then choose K ∈ {1, 2, . . . , K̄} to minimize the

criteria defined in (5.1) .
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6. Simulations

After establishing the large-sample properties of the proposed estimator,

we now evaluate its finite-sample performance using a small-scale simulation

study. We consider four scenarios. In all scenarios, the parameter of interest is

θ0 = E[Y ], and the sample size is set to N = 200, 500, and 1, 000.

• Scenario I: X is generated from the normal distribution N(0, 1), and the

outcome Y is generated from the normal distribution with mean X + 1

and unit variance; that is, Y ∼ N(X + 1, 1). The relationship between

the outcome variable and the covariate is linear, and the distribution of the

outcome is normal. The missing mechanism is modeled by P (T = 1|Y,X) =

[1 + exp(α0 + β0Y )]−1, with the true value (α0, β0) = (0,−1.2). The true

value of the parameter of interest is θ0 = E[Y ] = 1.

• Scenario II: X is generated from the normal distribution N(0, 1), and the

outcome Y is generated from the normal distribution with mean X2 +1 and

unit variance; that is, Y ∼ N(X2 + 1, 1). Thus, the relationship between

the outcome variable and the covariate is nonlinear, and the distribution of

the outcome is nonnormal. The missing mechanism is modeled as P (T =

1|Y,X) = [1+exp(α0 +β0Y )]−1, with the true value (α0, β0) = (1.25,−1.2).

The true value of the parameter of interest is θ0 = E[Y ] = 2.

• Scenario III. The design follows Qin, Leung and Shao (2002). We gener-

ate the outcome from Y = 0.1X2 + ZX1/2/5, where Z and X are indepen-

dent, Z is a standard normal random variable, and X follows the χ2
(6)/2

distribution. The missing mechanism is modeled as P (T = 1|Y,X) =

[1 + exp(α0 + β0Y )]−1, with the true value (α0, β0) = (3,−1). The true

value of the target parameter is θ0 = E[Y ] = 1.2.

• Scenario IV. The design is similar to that in Kang and Schafer (2007).

Z = (Z1, Z2) is generated from the standard bivariate normal distribution,

and Y is generated from the normal distribution with mean 2 + Z1 and

unit variance. The missing mechanism is modeled as P (T = 1|Y,X1, X2) =

[1 + exp(α0Z1 + β0Y )]−1, with (α0, β0) = (1,−1). The true value of the

parameter of interest is θ0 = E[Y ] = 2. Instead of observing the covariates

Z directly, we observe a nonlinear transformation of Z: X1 = exp(Z1/2)

and X2 = Z2/(1 + exp(Z1)).

In all scenarios, we generate J = 500 random samples, and for each sample, we

compute the following three estimators:
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1. Naive estimator. We compute the MAR estimator (α̃MAR, β̃MAR, θ̃MAR) as

θ̃MAR = N−1
∑N

i=1 TiYi/π(Xi; α̃MAR, β̃MAR), where π(Xi; α̃MAR, β̃MAR) is

an estimated response model. In Scenarios I, II, and III, π(Xi; α̃MAR, β̃MAR)

= [1+exp(α̃MAR+β̃MARXi)]
−1, and in Scenario IV, π(Xi; α̃MAR, β̃MAR) =[

1 + exp(α̃MARZ1i + β̃MARX2i)
]−1

, where (α̃MAR, β̃MAR) are estimated us-

ing the GMM.

2. MK2 estimator. We compute (α̂MK , β̂MK , θ̂MK) using the approach of

Morikawa and Kim (2016); that is, (α̂MK , β̂MK , θ̂MK) is the solution to

N∑
i=1

(
Ŝ1(Ti,Zi;α, β)>, Ŝ2(Ti,Zi;α, β, θ)

)>
= 0,

where

Ŝ1(T,Z;α, β)=−
(

1− T

π(Z;α, β)

)
E?
[
∇γπ(Z;α, β)

1− π(Z;α, β)

∣∣∣∣X] ,
Ŝ2(T,Z;α, β, θ)=− T

π(Z;α, β)
U(Z) + θ−

(
1− T

π(Z;α, β)

)
E? [U(Z)|X] ,

and for any function g(Z), the quantity E?[g(Z)|X] is defined by

E?[g(Z)|X=x]:=

∑N
j=1 TjKh(x−Xj)Tjπ(Zj ;α, β)−1O(x, Yj ;α, β)g(x, Yj)∑N

j=1Kh(x−Xj)Tjπ(Zj ;α, β)−1O(x, Yj ;α, β)
,

where O(z;α, β) =
1− π(z;α, β)

π(z;α, β)
, Kh(x−w) = K

(
x− w

h

)
,

K(·) is a Gaussian kernel function, and h is the bandwidth. Because

Morikawa and Kim (2016) do not describe how to select the bandwidth,

we choose h = 0.1 in Scenarios I, II, and III, and h = 0.2 in Scenario IV

(the numeric computation fails if h = 0.1 in Scenario IV, perhaps due to

overfitting in the multivariate case).

3. WSK Eestimator. We compute (α̂WSK , β̂WSK , θ̂WSK) using the approach

of Wang, Shao and Kim (2014); that is, (α̂WSK , β̂WSK , θ̂WSK) is a GMM

estimator from the following moments:

E


T

π(X,Y ;γ) − 1{
T

π(X,Y ;γ) − 1
}
X

T
π(X,Y ;γ)Y − θ

 = 0.
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4. The proposed GMM estimator. We compute (α̂, β̂, θ̂) using the proposed

approach and the covariate balancing approach to select K, with K̄ = 7 in

Scenarios I, II, and III, and K̄ = 10 in Scenario IV. Here, K̄ is the maximal

number of candidate moments to be considered.

The simulation results show the bias, standard deviation (Stdev), MSE, and

coverage probability (CP) (for significance level α = 0.05) of the point estimates

for the four scenarios; see Tables 1, 2, 3, and 4, respectively. A histogram of the

selected K (based on 500 Monte Carlo samples) in all scenarios is reported in

Figure 1. The results are as follows:

1. In all scenarios, the naive estimator using the MAR assumption has a large

bias, because this assumption does not hold.

2. In all scenarios, the proposed estimator of E[Y ] outperforms the MK esti-

mator.

3. In all scenarios, the proposed estimator of E[Y ] is always consistent, in the

sense that its bias decreases to zero as the sample size increases. However,

in Scenarios II and IV, the WSK estimator has a large bias that does not

decrease to zero as the sample size increases.

4. In all scenarios, the proposed estimators of the nuisance parameters α0 and

β0 in the response model are always consistent. The MK estimators of the

nuisance parameters demonstrate reasonable performance in Scenarios I,

III, and IV, but have a large bias in Scenario II. The WSK estimators of

the nuisance parameters exhibit relatively poor performance in Scenarios II

and IV.

5. In all scenarios, the proposed variance estimator has coverage probability

close to 95%, even when the sample size is small. The MK variance esti-

mator performs well in Scenario IV, but poorly in the other scenarios: in

Scenario I, the coverage probability using the MK approach converges to

90%, rather than 95%; in Scenario II, the CP values are far from 95% in

Scenario 2, regardless of the sample size; in Scenario III, the MK variance

estimator is consistent only when the sample size is large.

6. When the sample size is small, the optimal K tends to be two, with large

probability. When the sample size is large, the optimal K tends to be three,

with large probability. The growth rate of K is extremely slow compared
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Table 1. Simulation results under Scenario I.

N = 200

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̂WSK β̂WSK θ̂WSK α̃MAR β̃MAR θ̃MAR

Bias 0.028 -0.125 0.039 0.040 0.202 0.134 -0.140 -0.448 -0.031 -0.997 0.167 0.301

Stdev 0.254 0.413 0.129 0.229 0.256 0.118 0.910 1.183 0.150 0.197 0.266 0.101

MSE 0.065 0.186 0.018 0.054 0.106 0.032 0.849 1.601 0.023 1.033 0.099 0.101

CP — — 0.906 — — 0.860 — — 0.946 — — 0.220

N = 500

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̂WSK β̂WSK θ̂WSK α̃MAR β̃MAR θ̃MAR

Bias 0.011 -0.067 0.016 0.050 0.097 0.083 -0.029 -0.147 -0.014 -0.966 0.220 0.299

Stdev 0.161 0.282 0.090 0.152 0.173 0.075 0.207 0.403 0.108 0.126 0.160 0.063

MSE 0.026 0.084 0.008 0.025 0.039 0.013 0.044 0.184 0.012 0.949 0.074 0.093

CP — — 0.928 — — 0.844 — — 0.948 — — 0.034

N = 1, 000

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̂WSK β̂WSK θ̂WSK α̃MAR β̃MAR θ̃MAR

Bias 0.005 -0.040 0.008 0.041 0.048 0.053 -0.002 -0.057 -0.002 -0.962 0.235 0.298

Stdev 0.103 0.187 0.065 0.103 0.128 0.055 0.1118 0.218 0.073 0.078 0.099 0.045

MSE 0.010 0.036 0.004 0.012 0.018 0.006 0.012 0.051 0.005 0.932 0.065 0.091

CP — — 0.934 — — 0.864 — — 0.956 — — 0.012

Stdev: standard deviation; MSE: mean squared error; CP: coverage probability. The bandwidth used

to compute the nonparametric kernel estimators (α̂MK , β̂MK , θ̂MK) is h = 0.1.

with that of the sample size N , which is consistent with our theoretical

Assumption 7.

These results clearly show that the proposed approach exhibits better finite-

sample performance than that of its competitors.

7. Discussion

Many practical applications suffer from the data MNAR problem. Morikawa

and Kim (2016) propose two efficient estimators for a class of MNAR prob-

lems, where they parametrically and nonparametrically, respectively, estimate

fY |X,T (y|x, 1). If the working model of fY |X,T (y|x, 1) is misspecified, the para-

metric estimator is consistent, but not efficient. In this study, we examine the

same class of MNAR problems, but present a much simpler and more natural

efficient estimator. Our approach is based on a parametric moment restriction

model that does not require a nonparametric estimation and, hence, does not

suffer from the curse of dimensionality problem or the bandwidth selection prob-

lem. The simulation results confirm that the proposed approach outperforms

its competitors in finite samples. The GMM approach is also easy to adapt to
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The Monte Carlo sample size used to plot the histogram of K is J = 500.

Figure 1. Histogram of K.
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Table 2. Simulation results under Scenario II.

N = 200

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̂WSK β̂WSK θ̂WSK α̃MAR β̃MAR θ̃MAR

Bias -0.208 0.096 0.084 -0.254 0.254 0.114 -0.849 -2.158 0.003 -2.053 1.215 0.530

Stdev 0.646 0.555 0.201 0.381 0.252 0.134 8.939 16.509 0.367 0.809 0.148 0.205

MSE 0.462 0.318 0.047 0.210 0.128 0.031 80.632 277.217 0.134 4.873 1.498 0.323

CP — — 0.950 — — 0.910 — — 0.890 — — 0.138

N = 500

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̂WSK β̂WSK θ̂WSK α̃MAR β̃MAR θ̃MAR

Bias -0.081 0.040 0.044 -0.119 0.140 0.073 -0.648 -1.532 -0.077 -1.924 1.203 0.583

Stdev 0.406 0.363 0.131 0.262 0.188 0.096 8.289 10.832 0.349 0.175 0.064 0.132

MSE 0.171 0.134 0.019 0.083 0.055 0.014 69.132 119.697 0.128 3.732 1.451 0.357

CP — — 0.932 — — 0.894 — — 0.910 — — 0.06

N = 1, 000

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̂WSK β̂WSK θ̂WSK α̃MAR β̃MAR θ̃MAR

Bias -0.036 0.019 0.019 -0.078 0.093 0.047 -0.111 -0.856 -0.131 -1.900 1.201 0.590

Stdev 0.260 0.225 0.086 0.184 0.142 0.068 1.092 1.547 0.311 0.086 0.044 0.078

MSE 0.069 0.051 0.007 0.040 0.029 0.007 1.206 3.127 0.114 3.618 1.445 0.354

CP — — 0.932 — — 0.900 — — 0.902 — — 0.018

Stdev: standard deviation; MSE: mean squared error; CP: coverage probability. The bandwidth used
to compute the nonparametric kernel estimators (α̂MK , β̂MK , θ̂MK) is h = 0.1.

stratified sampling and other sampling schemes common in survey data.

Both approaches require the correct parameterization of the propensity score

function. If this function is misspecified, then both approaches yield inconsis-

tent estimates. Several attempts have been made to resolve this problem. For

instance, Zhao and Shao (2015) introduce a partial linear index to model the

missing mechanism. The proposed approach can be extended in this direction,

which we leave to future research.

Supplementary Material

The online Supplementary Material contains technical proofs for Theorems

1, 2, 3, 4, and 5.
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Table 3. Simulation results under Scenario III.

N = 200

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̂WSK β̂WSK θ̂WSK α̃MAR β̃MAR θ̃MAR

Bias 0.155 -0.171 0.003 0.047 0.015 0.071 0.184 -0.205 -0.005 -2.794 0.954 -1.146

Stdev 0.584 0.585 0.155 0.376 0.190 0.131 0.753 0.922 0.149 1.395 0.396 0.263

MSE 0.365 0.372 0.024 0.144 0.036 0.022 0.602 0.892 0.022 9.758 1.069 1.384

CP — — 0.934 — — 0.884 — — 0.942 — — 0.032

N = 500

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̂WSK β̂WSK θ̂WSK α̃MAR β̃MAR θ̃MAR

Bias 0.034 -0.036 0.000 0.012 0.012 0.034 0.037 -0.036 -0.002 0.782 0.355 0.123

Stdev 0.305 0.224 0.103 0.250 0.128 0.085 0.304 0.216 0.100 0.433 0.113 0.101

MSE 0.094 0.051 0.010 0.062 0.016 0.008 0.094 0.048 0.010 0.799 0.139 0.025

CP — — 0.902 — — 0.894 — — 0.912 — — 0.698

N = 1, 000

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̂WSK β̂WSK θ̂WSK α̃MAR β̃MAR θ̃MAR

Bias 0.009 -0.010 0.002 0.002 0.009 0.017 0.007 -0.008 0.001 0.728 0.372 0.126

Stdev 0.215 0.157 0.069 0.167 0.083 0.056 0.213 0.156 0.069 0.302 0.078 0.067

MSE 0.046 0.024 0.004 0.028 0.007 0.003 0.045 0.024 0.004 0.621 0.144 0.020

CP — — 0.932 — — 0.934 — — 0.93 — — 0.454

Stdev: standard deviation; MSE: mean squared error; CP: coverage probability. The bandwidth used
to compute the nonparametric kernel estimators (α̂MK , β̂MK , θ̂MK) is h = 0.1.
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Appendix

A. Notation

The following notation are needed for presenting the efficiency bound:

O(Z) :=
1− π(Z; γ0)

π(Z; γ0)
, S0(Z) := − ∇γπ(Z; γ0)

1− π(Z; γ0)
,

m(X) :=
E[O(Z)S0(Z)|X]

E[O(Z)|X]
, R(X) :=

E[O(Z)U(Z)|X]

E[O(Z)|X]
,

S1(T,Z; γ0) :=

(
1− T

π(Z; γ0)

)
m(X), (A.1)

S2(T,Z; γ0, θ0) := − T

π(Z; γ0)
U(Z) + θ0 −

(
1− T

π(Z; γ0)

)
R(X). (A.2)
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Table 4. Simulation results under Scenario IV.

N = 200

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̂WSK β̂WSK θ̂WSK α̃MAR β̃MAR θ̃MAR

Bias 0.097 -0.114 0.005 -0.018 0.027 0.043 0.738 -0.748 -0.011 -1.002 1.003 0.136

Stdev 1.140 0.721 0.118 0.308 0.185 0.103 3.241 3.079 0.134 0.081 0.139 0.348

MSE 1.310 0.533 0.014 0.095 0.035 0.013 11.055 10.046 0.0183 1.011 1.026 0.139

CP — — 0.914 — — 0.920 — — 0.882 — — 0.998

N = 500

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̂WSK β̂WSK θ̂WSK α̃MAR β̃MAR θ̃MAR

Bias -0.001 -0.026 0.003 -0.042 0.041 0.022 0.537 -0.564 -0.024 -1.003 1.000 0.146

Stdev 0.203 0.139 0.071 0.172 0.100 0.067 1.759 1.773 0.111 0.048 0.088 0.199

MSE 0.041 0.020 0.005 0.031 0.011 0.005 3.384 3.464 0.0131 1.010 1.009 0.061

CP — — 0.944 — — 0.946 — — 0.842 — — 1.000

N = 1, 000

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̂WSK β̂WSK θ̂WSK α̃MAR β̃MAR θ̃MAR

Bias 0.010 -0.034 -0.001 -0.027 0.024 0.011 0.580 -0.586 -0.040 -1.000 0.997 0.134

Stdev 0.262 0.264 0.052 0.122 0.070 0.048 1.565 1.509 0.107 0.035 0.065 0.148

MSE 0.068 0.070 0.002 0.015 0.005 0.002 2.787 2.623 0.013 1.003 1.000 0.039

CP — — 0.936 — — 0.932 — — 0.786 — — 1.000

Stdev: standard deviation; MSE: mean squared error; CP: coverage probability. The bandwidth used
to compute the nonparametric kernel estimators (α̂MK , β̂MK , θ̂MK) is h = 0.2.

The following notation are needed to describe the higher-order MSE criteria

proposed by Donald, Imbens and Newey (2009) :

ρ(Ti,Xi, Yi; γ̌) = 1− Ti
π(Xi, Yi; γ̌)

, Υ̂K×K =
1

N

N∑
i=1

ρ(Ti,Xi, Yi; γ̌)2uK(Xi)
⊗2,

Γ̂K×p =
1

N

N∑
i=1

uK(Xi)∇γρ(Ti,Xi, Yi; γ̌)>, Ω̂p×p = (Γ̂K×p)
>Υ̂−1

K×K Γ̂K×p,

d̃i = (Γ̂K×p)
>

 1

N

N∑
j=1

uK(Xj)
⊗2

−1

uK(Xi), η̃i = ∇γρ(Ti,Xi, Yi; γ̌)− d̃i,

ξ̂ij =
1

N
uK(Xi)

>Υ̂−1
K×KuK(Xj), D̂∗i = (Γ̂K×p)

>Υ̂−1
K×KuK(Xi).

B. Assumptions

The following assumptions are maintained in this paper:

Assumption 1. There exists a nonresponse instrumental variable X2, i.e., X =
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(X
ᵀ

1 ,X
ᵀ

2)
ᵀ
, such that X2 is independent of T , given X1 and Y ; furthermore, X2

is correlated with Y .

Assumption 2. The support of X, which is denoted by X , is a Cartesian product

of r-compact intervals, and we denote X = (X1, . . . , Xr)
>.

Assumption 3. E[O(Z)S0(Z)|X = x], E[O(Z)U(Z)|X = x] and E[O(Z)|X =

x] are s-smooth in x (the definition is given in page 5569 of Chen (2007) and

Definition 1.1 of the Supplementary Material), where s > 0.

Assumption 4. There exist two finite positive constants a and a such that the

smallest (resp. largest) eigenvalue of E[uK(X)u>K(X)] is bounded away from a

(resp. a) uniformly in K, i.e.,

0 < a ≤ λmin(E[uK(X)uK(X)>]) ≤ λmax(E[uK(X)uK(X)>]) ≤ a <∞ .

Assumption 5. (i) The parameter spaces Γ and Θ are compact; (ii) The efficient

score function Seff (T,Z; γ, θ) := (S
ᵀ

1 (T,Z; γ), S2(T,Z; γ, θ))
ᵀ

is continuously

differentiable at each (γ, θ) ∈ Γ×Θ, and E
[
∂Seff (γ, θ)/∂(γ>, θ)

]
is nonsingular

at (γ0, θ0).

Assumption 6. (i) There exist two positive constants c̄ and c such that 0 <

c ≤ π(x, y; γ) ≤ c̄ < 1 for all γ ∈ Γ and (x, y) ∈ X × R; (ii) π(x, y; γ) is twice

continuously differentiable in γ ∈ Γ, and the derivatives are uniformly bounded.

Assumption 7. Suppose K →∞ and K3/N → 0.

Assumption 1 is a sufficient condition for model identification, which is pro-

posed by Wang, Shao and Kim (2014). Assumptions 2 and 3 are required for

L2 approximations. Assumption 4 is a standard assumption for sieve basis, see

also Newey (1997). Assumptions 5 and 6 ensure the convergence of the proposed

estimator as well as the finiteness of the asymptotic variance. Assumption 7 is

required for controlling the asymptotic variance, which is desirable in practice

because K grows very slowly with N so a relatively small number of moment

conditions is sufficient for the method proposed to perform well.
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