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A Lemmas

We start with some lemmas that are useful in deriving the main results of the paper.

Lemma 1. Assume that ‖e.‖q,α <∞, where q > 2 and α > 0,
∑n

i=1w
2
i = n. Let w = (w1, ..., wn),

ςn = 1 (resp. (log n)1+2q or nq/2−1−αq) if α > 1/2− 1/q (resp. α = 0 or α < 1/2− 1/q). Then for
all x > 0, Sn =

∑n
i=1wiei,

P(|Sn| ≥ x) ≤ K1
ςn|w|qq‖e.‖qq,α

xq
+K2 exp

(
− K3x

2

n‖e.‖22,α

)
where K1,K2,K3 are constants that depend only on q and α.

Proof. See Wu and Wu (2016) Theorem 2.

Lemma 2. Assume ‖|x.|∞‖q,α < ∞, where q > 2 and α > 0, and Ψ2,α < ∞,
∑n

i=1w
2
i = n.

Let w = (w1, ..., wn) and Tn =
∑n

i=1wixi. (i) If α > 1/2 − 1/q, then for x &
√
n log pΨ2,α +

|w|q(log p)3/2‖|x.|∞‖q,α,

P(|Tn|∞ ≥ x) ≤ Kq,α|w|qq(log p)q/2‖|x.|∞‖qq,α
xq

+Kq,α exp

(
−Kq,αx

2

nΨ2
2,α

)
. (A.1)

(ii) If 0 < α < 1/2− 1/q, then for x &
√
n log pΨ2,α + n1/2−α−1/q|w|q(log p)3/2‖|x.|∞‖q,α,

P(|Tn|∞ ≥ x) ≤ Kq,αn
q/2−1−αq|w|qq(log p)q/2‖|x.|∞‖qq,α

xq
+Kq,α exp

(
−Kq,αx

2

nΨ2
2,α

)
, (A.2)

where Kq,α is a constant that depends on q and α only.

Proof. The lemma can be shown following similar arguments as those in the proof of Zhang and
Wu (2017) Theorem 6.2. Details are omitted.

Lemma 3. Let A and B denote two positive semi-definite, s-dimensional square matrices. If
max1≤j,k≤s |Ajk −Bjk| ≤ δ, then inf |ζ|2=1 ζ

′Bζ > inf |ζ|2=1 ζ
′Aζ − sδ.
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Proof. See Lemma 3 of Medeiros and Mendes (2016).

Lemma 4. For linear model Y = Xβ + e, assume that the matrix XT
(1)X(1) is invertible. Then for

any given λ > 0, and any noise term e ∈ Rn, there exists a Lasso estimator β̂(λ) which satisfies
β̂(λ) =s β, if and only if the following two conditions hold

sign

(
β(1) + (

1

n
XT

(1)X(1))
−1
[

1

n
XT

(1)e− λsign(β(1))

])
= sign(β(1)),∣∣∣∣XT

(2)X(1)(X
T
(1)X(1))

−1
[

1

n
XT

(1)e− λsign(β(1))

]
− 1

n
XT

(2)e

∣∣∣∣ ≤ λ,
where the vector inequality and equality are taken elementwise, β(1) and β(2) denote the first s and
last p− s entries of β respectively.

Proof. See Wainwright (2009).

B A general theorem of estimation error for weak sparsity

Lemma 5. Define ∆̂ = β̂ − β, where β satisfies weakly sparsity condition (Assumption 1), i.e.,∑p
j=1 |βj |θ ≤ Kθ for 0 ≤ θ < 1. Suppose ∆̂Σ̂∆̂ ≥ κ|∆̂|22, where κ is a positive constant that does

not depend on ∆̂. Choose λ ≥ 2|n−1
∑n

i=1 xiei|∞. Then we have for some constants C1, C2,

|∆̂|22 ≤ C1Kθ

(
λ

κ

)2−θ
, (B.1)

|∆̂|1 ≤ C2Kθ

(
λ

κ

)1−θ
. (B.2)

This result is deterministic and non-asymptotic. The statistical performance of β̂ relies on the
restricted eigenvalue condition properties of sample covariance Σ̂.

Proof. This result is just a simple application of the theoretical framework established in Negahban
et al. (2012), for the sake of brevity, we omitted the detailed proof here.

C Proof of Theorem 1

Proof. Recall Σ̂ = (σ̂jk)1≤j,k≤p = 1/n
∑n

i=1 xix
T
i = n−1XTX, Σ = (σjk)1≤j,k≤p. Define the events

A = {|Σ̂− Σ|∞ ≤ a} = {max
j,k
|σ̂jk − σjk| ≤ a}, (C.1)

B = {n−1
∣∣XT e

∣∣
∞ ≤ λ/2}. (C.2)

The first step is to control the probability P(Ac) and P(Bc). By Hölder’s inequality, we have
for m ≥ 0 that

∞∑
l=m

‖xljel − x∗lje∗l ‖τ ≤
∞∑
l=m

(
‖xlj(el − e∗l )‖τ + ‖(xlj − x∗lj)e∗l ‖τ

)
=

∞∑
l=m

(
‖xlj‖γ‖el − e∗l ‖q + ‖xlj − x∗lj‖γ‖e∗l ‖q

)
.
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Since α = min(αX , αe), the dependence adjusted norm satisfies

‖x.je.‖τ,α ≤ ‖x.j‖γ,0‖e.‖q,αe + ‖x.j‖γ,αX‖e.‖q,0 ≤ 2‖x.j‖γ,αX‖e.‖q,αe . (C.3)

Similarly, we have

‖x.jx.k − σjk‖γ/2,αX/2 ≤ 2‖x.j‖γ,αX‖x.k‖γ,αX , (C.4)

Hence,

max
1≤j≤p

‖x.je.‖τ,α ≤ 2MeMX , (C.5)

max
1≤j,k≤p

‖x.jx.k − σjk‖γ/2,αX/2 ≤ 2M2
X . (C.6)

Employing a similar derivation, we can show that,

‖ max
1≤j≤p

|x.je.|‖τ,α ≤ 2‖|x.|∞‖γ,αXMe, (C.7)

‖ max
1≤j,k≤p

|x.jx.k − σjk|‖γ/2,αX/2 ≤ 2‖|x.|∞‖2γ,αX
. (C.8)

Note that MX ≤ ‖|x.|∞‖γ,αX ≤ Υγ,αX .
If τ > 2, for λ &

√
log p/nMeMX + nρ/τ−1(log p)3/2Me‖|x.|∞‖γ,αX , adopting (C.5), (C.7) and

Lemma 2, we have,

P(Bc) = C4

nρ(log p)τ/2‖|x.|∞‖τγ,αX
M τ
e

(nλ)τ
+ C5e

−C6nλ2/(M2
XM

2
e ).

Under our choice of λ, if τ > 2, P(Bc) = C4(log p)−τ + C5p
−C6 . Similarly, we can prove, if

na &
√
n log pM2

X + n2ν/γ(log p)3/2‖|x.|∞‖2γ,αX
, P(Ac) = C1(log p)−γ/2 + C2p

−C3 .

Denote ω =
√

log p/nM2
X + n2ν/γ−1(log p)3/2‖|x.|∞‖2γ,αX

. Then for some constant η1 > 0, we
have

P
(
∀∆ ∈ Rp,∆′Σ̂∆ ≥ ∆′Σ∆− η1ω|∆|21

)
≥ 1− C1(log p)−γ/2 − C2p

−C3 . (C.9)

In other words, with high probability 1−P(Ac), the Restricted Strong Convexity condition ∆′Σ̂∆ ≥
κ|∆|22 − η1ω|∆|21 holds.

Denote ∆̂ = β̂ − β. For a threshold δ > 0, we choose

d = #{j ∈ {1, 2, ..., p}||βj | ≥ δ}.

Let S = {j : |βj | ≥ δ} and Sc = {j : |βj | < δ}. Applying Lemma 1 in Negahban et al. (2012), if
λ ≥ 2|n−1

∑n
i=1 xiei|∞, it holds that,

|∆̂Sc |1 ≤ 3|∆̂S |1 + 4
∑
j∈Sc

|βj |.

We thus have

|∆̂|1 ≤ |∆̂S |1 + |∆̂Sc |1 ≤ 4|∆̂S |1 + 4
∑
j∈Sc

|βj | ≤ 4
√
d|∆̂S |2 + 4

∑
j∈Sc

|βj |.

3



If follows that ∑
j∈Sc

|βj | ≤ δ
∑
j∈Sc

(
|βj |
δ

)θ
≤ δ1−θKθ. (C.10)

Thus
|∆̂|1 ≤ 4

√
d|∆̂S |2 + 4δ1−θKθ.

On the other hand, we have

d ≤
∑
j∈Sc

(
|βj |
δ

)θ
≤ δ−θKθ. (C.11)

Suppose |∆̂|2 ≥ c1
√
Kθ(λ/κ)1−θ/2 for some constant c1 > 0. Then by (C.10) and (C.11), setting

δ = λ/κ,

|∆̂|1 ≤ 4
√
d|∆̂S |2 + 4δ1−θKθ

≤ 4
√
Kθ

(
λ

κ

)−θ/2
|∆̂|2 + 4

(
λ

κ

)1−θ
Kθ

≤ 4(1 + c−11 )
√
Kθ

(
λ

κ

)−θ/2
|∆̂|2.

Recall λmin(Σ) ≥ κ > 0. If 32(1 + c−11 )2η1Kθωλ
−θ ≤ κ1−θ, we will have,

P

(
∆̂′Σ̂∆̂ ≥ 1

2
κ|∆̂|22

)
≥ 1− C1(log p)−γ/2 − C2p

−C3 .

An application of Lemma 5 shows that for constants c2, c3 > 0, if λ ≥ 2|n−1
∑n

i=1 xiei|∞, with
probability at least 1− C1(log p)−γ/2 − C2p

−C3 ,

|∆̂|2 ≤ c2
√
Kθ

(
λ

κ

)1−θ/2
,

|∆̂|1 ≤ c3Kθ

(
λ

κ

)1−θ
.

When |∆̂|2 ≤ c1
√
Kθ(λ/κ)1−θ/2 for some constant c1 > 0. Then by (C.10) and (C.11), setting

δ = λ/κ, we can still obtain

|∆̂|1 ≤ 4
√
d|∆̂S |2 + 4δ1−θKθ

≤ 4
√
Kθ

(
λ

κ

)−θ/2
|∆̂|2 + 4

(
λ

κ

)1−θ
Kθ

≤ 4(1 + c1)Kθ

(
λ

κ

)1−θ
.

Therefore, with probability at least 1−C1(log p)−γ/2−C2p
−C3 −C4(log p)−τ , we have bounds (18)

and (19).
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D Proof of Theorem 2

Proof. Applying Theorem 1 with θ = 0, with probability at least 1 − C1(log p)−γ/2 − C2p
−C3 −

C4(log p)−τ , we have

|β̂ − β|2 .
√
sλ/κ,

|β̂ − β|1 . sλ/κ.

Since s = Kθ, sω . 1 implies that

n &M4
Xs

2 log p+ s1/(1−2ν/γ)(log p)3/(2−4ν/γ)‖|x.|∞‖2/(1−2ν/γ)γ,αX
.

Recall the events

A = {|Σ̂− Σ|∞ ≤ a} = {max
j,k
|σ̂jk − σjk| ≤ a},

B = {n−1
∣∣XT e

∣∣
∞ ≤ λ/2}.

Since β̂ minimizes equation (2), we have

1

2
|Y −Xβ̂|22 + λ|β̂|1 ≤

1

2
|Y −Xβ|22 + λ|β|1. (D.1)

After some algebra, this reduces to

(β̂ − β)Σ̂(β̂ − β) + λ|β̂|1 ≤ 2eTX(β̂ − β)/n+ λ|β|1 (D.2)

On the event B, the above inequality implies that

0 ≤ (β̂ − β)Σ̂(β̂ − β) ≤ 3

2
λ|β̂J − βJ |1 −

1

2
λ|β̂Jc |1 (D.3)

Then inequality (D.3) implies that

1

2
λ|β̂ − β|1 + (β̂ − β)Σ̂(β̂ − β) ≤ 2λ|β̂J − βJ |1 ≤ 2λ

√
s|β̂J − βJ |2 (D.4)

So (22) follow on the event A ∩ B.

E Proof of Theorem 3

Proof. Reall |Σ−111 |2 = 1/N1 and let |Σ̂−111 |2 = 1/N2. Without loss of generality, let J = support(β) =
{1, ..., s}. Let X = (x1, ...,xn)′ and denote by X(1) and X(2) the first s and last p − s columns of
X. Denote Wn =

∑n
i=1 xiei and Wn(1), xi,(1), β(1) and Wn(2), xi,(2), β(2) the first s and last p− s

entries of Wn, xi and β, respectively. Define b =sign(β(1)). Let

B = (
1

n
XT

(1)X(1))
−1
[

1

n
XT

(1)e− λb
]
,

Dk = XT
(2),k

{
X(1)(X

T
(1)X(1))

−1λb−
[
X(1)(X

T
(1)X(1))

−1XT
(1) − I

] e
n

}
,
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where X(2),k = (x1k, ..., xnk)
T denote the k-th columns of X and s + 1 ≤ k ≤ p. Denote the j-th

element of B as Bj .
By rearranging terms, it is easy to see that the events

B = {max
1≤j≤s

|Bj | < L}, (E.1)

D = { max
s+1≤k≤p

|Dk| < λ}, (E.2)

are sufficient to guarantee that conditions in Lemma 4 hold. Then P(β̂ 6=s β) ≤ P(Bc) + P(Dc).
We first analyze the eventD. Recall E(xik|X(1), e) = [Σ21Σ

−1
11 xi,(1)]k and zik = xik−E(xik|X(1), e)

for s+1 ≤ k ≤ p. Let ω1 = X(1)(X
T
(1)X(1))

−1λb, ω2 = [I−X(1)(X
T
(1)X(1))

−1XT
(1)]e/n and ω = ω1+ω2.

Denote Zk = (z1k, ..., znk)
T , Uk = ZTk ω and µk = E(XT

(2),kω|X(1), e). Note that EZk = 0 and

ωT1 ω2 = 0. Then by the irrepresentable condition,

max
s+1≤k≤p

|Dk| = max
s+1≤k≤p

|µk + Uk|

≤ max
s+1≤k≤p

[|µk|+ |Uk|]

≤ (1− η)λ+ max
s+1≤k≤p

|Uk|.

From this inequality, we have

{ max
s+1≤k≤p

|Uk| < ηλ} ⊂ { max
s+1≤k≤p

|Dk| < λ}.

Define the events

A1 = {|Σ̂11 − Σ11|∞ ≤ a} = { max
1≤j,k≤s

|σ̂jk − σjk| ≤ a}, (E.3)

A2 = {n−1e2i ≤ 2σ}, (E.4)

T = {|ω|22 ≤ δ∗}. (E.5)

By Lemma 3, on the event A1 with a = N1/(2s),

N2 = inf
|ζ|2=1

ζT Σ̂11ζ > inf
|ζ|2=1

ζTΣ11ζ − sa =
N1

2
.

By Lemma 1,

P

(∣∣∣∣∣
n∑
i=1

(e2i − σ)

∣∣∣∣∣ ≥ nσ
)
≤ n‖e·‖qq,αe

nqσq
+ exp

(
− nσ2

‖e·‖22,αe

)
:= P2

Denote P1 = P(Ac) with a = N1/(2s). We know

ωT1 ω1 = λ2bT (XT
(1)X(1))

−1b ≤ λ2s

nN2
,

and

ωT2 ω2 ≤ eT e

n2
.
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Thus, we have

P(T c) ≤ P

(
ωT1 ω1 ≥

2λ2s

nN1

)
+ P

(
ωT2 ω2 ≥ 2nσ

)
≤ P1 + P2.

By Lemma 2, if ηλ &
√
δ∗ log pΨ2,αX ,(2) + n(ι−1)/γδ

1/2
∗ (log p)3/2‖|Z·|∞‖γ,αX ,

P

(
max

s+1≤k≤p
|Uk| ≥ ηλ |T

)
≤ C1(log(p− s))−γ + C2(p− s)−C3 := P3.

By the total probability rule, we have

P(Dc) ≤ P

(
max

s+1≤k≤p
|Uk| ≥ ηλ |T

)
+ P(T c) ≤ P1 + P2 + P3.

Now we analyze the event B. Note that |Σ̂−111 b|∞ ≤
√
s|Σ̂−111 |2 =

√
s/N2. Recall λ ≤ nN1L/(4

√
s).

On the event A, nL−λ|[Σ̂−111 b]j | ≥ nL(1−N1/(4N2)) ≥
√
nL/2 for all 1 ≤ j ≤ s. Simple application

of the Cauchy inequality shows that

sup
|ζ|2=1

ζT Σ̂−111 Wn(1) ≤ 1

N2

√√√√ s∑
j=1

(
n∑
i=1

xijei)2.

This yields

B =
s⋂
j=1

{|[Σ̂−111 Wn(1)]j | <
1

2
nL}

= { sup
|ζ|2=1

ζT Σ̂−111 Wn(1) <
1

2
nL}

⊇


√√√√ s∑

j=1

(

n∑
i=1

xijei)2 <
1

2
nLN2


⊇

{
max
1≤j≤s

∣∣∣∣∣
n∑
i=1

xijei

∣∣∣∣∣ < λ

}⋂{
|Σ̂11 − Σ11|∞ ≤

N1

2s

}
.

Thus,
P(Bc) ≤ P(|Wn(1)|∞ ≥ λ) + P1.

By carrying out similar procedures as those in the proof of Theorem 1, we can control the
probability P1 and P(|Wn(1)|∞ ≥ λ). Then (31) follows.

F Proof of Proposition 1

Proof. Let γl = Eyiyi−l. Set the candidate lags of this AR(2) model as d. Since γ0 = 1, we have

Σ11 =

(
1 γ1
γ1 1

)
,
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and

Σ21 =

 γ2 γ1
· · · · · ·
γd−1 γd−2

 .

Basic calculation shows that

Σ−111 =

(
1

1−γ21
− γ1

1−γ21
− γ1

1−γ21
1

1−γ21

)
,

and

γ1 =
φ1

1− φ2
,

γl = φ1γl−1 + φ2γl−2,

for 2 ≤ l ≤ d.
We first consider the case φ1 > 0 and φ2 > 0. Then the Strong Irrepresentable Condition

|Σ21Σ
−1
11 sign(β(1))|∞ = max

2≤j≤d−1

γj
1− γ21

− γj−1γ1
1− γ21

− γjγ1
1− γ21

+
γj−1

1− γ21
< 1

For j = 2, it can be shown that

γj
1− γ21

− γj−1γ1
1− γ21

− γjγ1
1− γ21

+
γj−1

1− γ21
< 1

is equivalent to φ1 + φ2 < 1. Then γ1 < 1 and γj < γj−1 for all j ≥ 1. Thus, we have,
|Σ21Σ

−1
11 sign(β(1))|∞ < 1 is equivalent to φ1 + φ2 < 1.

Similarly, we can prove the cases φ1 > 0, φ2 ≤ 0 and φ1 ≤ 0, φ2 > 0 and φ1 ≤ 0, φ2 ≤ 0.
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