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Abstract: Two major challenges arise in regression analyses of recurrent event data.

First, popular existing models, such as the Cox proportional rates model, may not

fully capture the covariate effects on the underlying recurrent event process. Sec-

ond, the censoring time remains informative about the risk of experiencing recurrent

events after accounting for covariates. We address both challenges using a general

class of semiparametric scale-change models that allow both scale-change and mul-

tiplicative covariate effects. The proposed model is flexible, and includes several

existing models as special cases, including the popular proportional rates model,

accelerated mean model, and accelerated rate model. Moreover, it accommodates

informative censoring through a subject-level latent frailty, the distribution of which

is left unspecified. A robust estimation procedure is proposed to estimate the model

parameters that does not require a parametric assumption on the distribution of

the frailty, or a Poisson assumption on the recurrent event process. The asymptotic

properties of the resulting estimator are established, with the asymptotic variance

estimated using a novel resampling approach. As a byproduct, the structure of the

model provides a model selection approach for the submodels that employs hypoth-

esis testing of the model parameters. Numerical studies show that the proposed

estimator and the model selection procedure perform well under both noninforma-

tive and informative censoring scenarios. Lastly, the methods are applied to data

from two transplant cohorts to study the risk of infection after transplantation.

Key words and phrases: Accelerated failure time model, accelerated rate model, Cox

model, frailty model, hypothesis testing, model selection, resampling.

1. Introduction

The importance of analyzing recurrent event data is widely recognized in

many fields, including medicine, public health, cybersecurity, engineering, and

the social sciences (Wei and Glidden (1997); Cook and Lawless (2007)). Exam-

ples of recurrent events include opportunistic infections experienced by patients
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who undergo a hematopoietic stem cell transplantation (Marr (2012)), repeated

cardiovascular events in survivors of myocardial infarction (Rogers et al. (2012)),

episodes of schizophrenia in chronic schizophrenic patients (Eaton et al. (1992)),

cyber attacks on network systems (Benjamin et al. (2016)), and breakdowns of re-

pairable systems (Nelson (2003)). Various regression models have been proposed

to evaluate covariate effects on the risk of recurrent events. Pepe and Cai (1993),

Lawless and Nadeau (1995), and Lin et al. (2000) considered Cox-type propor-

tional rates/intensities models that postulate multiplicative covariate effects on

the baseline rate/intensity function of the recurrent event process. Lin, Wei and

Ying (1998) studied the accelerated mean model, where covariates modify the

timescale of the cumulative mean function. Chen and Wang (2000) and Ghosh

(2004) presented accelerated rate/intensity models that formulate covariate ef-

fects to change the time-scale directly on the baseline rate/intensity function.

These three types of models are covered as special cases in a general class of

regression models proposed by Sun and Su (2008). Other covariate effect for-

mulations include the additive rate models (Schaubel, Zeng and Cai (2006)) and

the additive-multiplicative rate models (Liu et al. (2010)). The aforementioned

methods all require a noninformative censoring assumption; that is, the censor-

ing time is conditionally independent of the recurrent event process, given the

observed covariates.

In many applications, an informative censoring event or a terminal event,

such as graft failure or death, respectively, can terminate an observation. Failing

to account for informative censoring can lead to substantial bias in inferences and,

thus, invalid conclusions (e.g., Cook and Lawless (1997); Ghosh and Lin (2002);

Luo, Wang and Huang (2010)). A popular approach to accommodate informative

censoring is joint modeling, where the association between the failure event and

the recurrent event process is modeled via a shared frailty (Lancaster and Intrator

(1998); Liu, Wolfe and Huang (2004); Ye, Kalbfleisch and Schaubel (2007); Zeng

and Lin (2009); Kalbfleisch et al. (2013)). An advantage of the frailty is that it

accounts for heterogeneity that cannot be explained by the observed covariates.

Nonetheless, inferences on the shared frailty model often require a parametric

assumption on the frailty distribution and the correct modeling of the terminal

event, which are a nuisance when the primary interest is the covariate effects

on the risk of recurrent events. Despite the importance for inferences of formal

checks for the frailty distribution and the model specification of the terminal

event, research on this topic remains scarce. An alternative approach is to relax
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the parametric assumption on the shared frailty model. For instance, Wang, Qin

and Chiang (2001), Huang and Wang (2004), and Huang, Qin and Wang (2010)

considered Cox-type models, and Xu et al. (2017) studied a joint scale-change

model of the recurrent event process and the terminal event.

We propose an approach that allows a flexible form of informative censoring

in a generalized scale-change model for recurrent event processes. Our model

encompasses two types of covariate effects: a scale-change effect, which alters the

timescale, and a multiplicative effect, which modifies the risk. A similar modeling

approach has been studied for univariate survival data (Chen and Jewell (2001))

and recurrent event data (Sun and Su (2008)) under conditionally independent

censoring, given the observed covariates. Similarly to the method of Sun and Su

(2008), the proposed formulation includes Cox-type models, the accelerated mean

model, and the accelerated rate model as special cases. However, in contrast

to Sun and Su (2008), the recurrent event process in our study is associated

with the censoring time through an unobserved, subject-specific frailty, and no

parametric assumption about the frailty distribution is required. Using the mean

structure shared by the conditional distribution of recurrent events and the order

statistics of a set of right-truncated failure times, we embed the problem into

an estimation using right-truncated data, and develop a novel semiparametric

estimation procedure that does not require information about the frailty variable.

The asymptotic normality of the resulting estimator is established without the

strong Poisson-type assumption for the recurrent event process, or parametric

assumptions for the frailty variable. The asymptotic variance is estimated from

an efficient resampling-based sandwich estimator. The structure of the model

facilitates model selection from among the submodels via hypothesis testing of

the model parameters. Our numerical studies confirm the validity of the proposed

methods and the model selection procedure.

2. Model Setup

Suppose [0, τ ] is the period of a study during which recurrent events can

potentially be observed up to time τ . For a subject, let N(t) be the number of

events in interval [0, t], and X be a p × 1 covariate vector. Let C be a nonin-

formative censoring time, such as the end of the study, which is independent of

N(·), given X. Let D be an informative censoring time, such as death, which is

associated with N(·), even after conditioning on X. Define the follow-up time

as Y = min(C,D, τ). The observed data are independent and identically dis-
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tributed (i.i.d.) copies {Ni(t), Yi, Xi : t ≤ Yi, i = 1, . . . , n}. Let mi be the

number of events of subject i before time Yi. If mi > 0, the jump times of Ni(t)

are the observed event times tij , for j = 1, . . . ,mi.

Our model formulates the rate function for the counting process Ni(t), λi(t)

dt = E{dNi(t) | Zi, Xi}, given the covariate vector Xi and an unobserved

subject-specific nonnegative frailty Zi. Specifically, we postulate that

λi(t) = Ziλ0(te
X>

i α)eX
>
i β, t ∈ [0, τ ], (2.1)

where Zi has an unspecified distribution, with E(Z2
i ) < ∞, α and β are both

p×1 vectors of parameters, and λ0(t) is an unspecified, nonWeibull baseline rate

function. As in Sun and Su (2008), the Weibull baseline λ0(t) ∝ tq, for some q, is

excluded for identifiability between α and β. Define the corresponding cumulative

baseline rate function as Λ0(t) =
∫ t
0 λ0(u) du. For identifiability between Zi and

λ(t), we assume Λ0(τ) = 1 and E(Zi | Xi) = µZ ; that is, the conditional mean

of Z, given X, does not depend on X. Because Zi has a multiplicative effect on

the rate function, Model (2.1) allows the event occurrence rate to be inflated (or

deflated) by the frailty variable Zi, with an arbitrary distribution. We assume

that Yi is independent of Ni(·), given (Zi, Xi). The dependence between Yi and

Ni(·), unconditional on (Zi, Xi), can be either positive or negative, depending on

whether the association between Yi and Zi is positive or negative, given Xi.

Model (2.1) offers great flexibility and includes several popular semiparamet-

ric models for recurrent event processes as special cases. When β = 0, it reduces

to the frailty accelerated rate model λi(t) = Ziλ0(te
X>

i α), the special case of

which, with a degenerate frailty distribution, was considered in Ghosh (2004).

Covariate effects under the accelerated rate model modify the timescale of the

rate function, and allow for identical risk at time zero, a desirable property for

modeling recurrent events in randomized clinical trials. When α = β, Model (2.1)

reduces to the frailty accelerated mean model λi(t) = Ziλ0(te
X>

i α)eX
>
i α proposed

by Xu et al. (2017), where the covariate effects modify the timescale of the cumu-

lative mean function of the recurrent event process by a factor of eX
>
i α. When

α = 0, Model (2.1) reduces to the popular frailty Cox-type regression model

λi(t) = Ziλ0(t)e
X>

i β; see Lancaster and Intrator (1998), Wang, Qin and Chiang

(2001), and Huang and Wang (2004). In this case, the covariate effects modify

the magnitude of the rate function by a factor of eX
>
i β. Similarly to Sun and Su

(2008), the three submodels coincide if and only if λ0(t) is of the Weibull form.

The flexible formulation of Model (2.1) offers a new framework to test, diagnose,
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and compare these submodels using hypothesis tests on the parameters α and β;

see Section 3.

Interpretations of the covariate effects under Model (2.1) involve two types

of modifications on the rate function: a scale-change effect, which alters the

timescale by a factor of eX
>
i α, and a multiplicative effect, which modifies the

magnitude of the rate function by a factor of eX
>
i β. The effects are easily seen

when X contains a single treatment indicator. In this case, eβ characterizes the

risk ratio between treated subjects (X = 1) at time t and untreated subjects

(X = 0) at time teα. When α = β, the combined changes in timescale and

magnitude are such that the resulting cumulative mean function has a timescale

modification. This motivates a useful alternative presentation of Model (2.1). Let

Λi(t) = E{Ni(t) | Zi, Xi} be the conditional cumulative mean function. Then,

Λi(t) = ZiΛ0(te
X>

i α)eX
>
i γ , t ∈ [0, τ ],

where γ = β − α. The parameters α and γ can then be interpreted as the scale-

change effect parameter and the multiplicative effect parameter, respectively, on

the conditional cumulative mean function. In the case of a single treatment

indicator covariate, the expected number of events by time t among the treated

subjects (X = 1) is equal to eγ multiplied by the expected number of events by

time teα in the control group (X = 0).

3. Estimation and Inference

3.1. Parameter estimation

For a p-dimensional vector a, consider the transformations t∗ij(a) = tije
X>

i a

and Y ∗i (a) = Yie
X>

i a. Let R∗i (t, a) =
∑mi

j=1 I{t∗ij(a) ≤ t ≤ Y ∗i (a)}; hereafter,

when mi = 0, we define the summation operator
∑mi

j=1 to be zero. Define the

counting process for the transformed event times as N∗i (t, a) =
∑mi

j=1 I{t∗ij(a) ≤
t ∧ Y ∗i (a)}, such that N∗i (t, a) = Ni(te

−X>
i a ∧ Yi), where ∧ is the minimum

operator. Under Model (2.1), for t ≤ Yi,

E{Ni(t) | Xi, Zi, Yi} =

∫ t

0
Ziλ0(ue

X>
i α)eX

>
i β du = ZiΛ0(te

X>
i α)eX

>
i (β−α),

and, thus, for t ≤ Y ∗i , E{N∗i (t, a) | Xi, Zi, Y
∗
i } = ZiΛ0{teX

>
i (α−a)}eX>

i (β−α).

We develop a novel semiparametric estimation procedure that does not re-

quire a distributional assumption about the frailty variable. To motivate the
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procedure, we first consider the case where the true parameter is known, or

a = α. For this special case, we suppress α in the notation whenever there is

no ambiguity, and write t∗ij = tije
X>

i α, Y ∗i = Yie
X>

i α, N∗i (t) = N∗i (t, α), and

R∗i (t) = R∗i (t, α). When a = α we have E{N∗i (t) | Xi, Zi, Yi} = ZiΛ0(t)e
X>

i (β−α),

for t ≤ Yi, which implies that the rate function of the underlying transformed pro-

cess follows the Cox-type proportional rates model with a multiplicative frailty.

Because the informative censoring time Yi depends on both Xi and Zi, conven-

tional methods that require independent censoring may lead to a biased estima-

tion. Moreover, the estimation procedures in Xu et al. (2017) cannot be applied,

because the transformed process remains dependent on Xi.

We now embed the problem into a seimparametric estimation with clustered

right-truncated data by using a mean structure shared by the conditional dis-

tribution of the recurrent events and the order statistics of a set of (possibly

correlated) right-truncated failure times. Given (mi, Y
∗
i ), consider a set of mi

random variables, denoted by t̃∗i1, . . . , t̃
∗
imi

, such that each has a marginal density

function free of (Zi, Xi):
λ0(t)

Λ0(Y ∗i )
, 0 ≤ t ≤ Y ∗i . (3.1)

It follows from Λ0(τ) = 1 that Λ0(t) defines a proper distribution function and,

thus, (3.1) can be viewed as a truncation density function (Wang, Qin and Chiang

(2001); Xu et al. (2017)). In other words, t̃∗ij can be viewed as a right-truncated

failure time with truncation time Y ∗i . We show in Proposition 1 that the trans-

formed recurrent event times {t∗i1, . . . , t∗imi
} of the ith individual share the same

mean structure with the right-truncated failure times {t̃∗i1, . . . , t̃∗imi
}.

Proposition 1. Consider the counting process induced by the right-truncated

random variables t̃∗ij, for j = 1, . . . ,mi; that is, Ñ∗i (t) =
∑mi

i=1 I(t̃∗ij ≤ t), for

t ≤ Y ∗i . Then, we have E{Ñ∗i (t) | Zi, Xi, Y
∗
i } = E {N∗i (t) | Zi, Xi, Y

∗
i }.

Because E (mi | Zi, Xi, Y
∗
i ) = ZiΛ0(Y

∗)eX
>
i (β−α), Proposition 1 follows from

E{Ñ∗i (t) | Zi, Xi, Y
∗
i } = E[E{Ñ∗i (t) | mi, Zi, Xi, Y

∗
i } | Zi, Xi, Y

∗
i ] = E{miΛ0(t)/

Λ0(Y
∗
i ) | Zi, Xi, Y

∗
i } = ZiΛ0(t)e

X>
i (β−α) = E {N∗i (t) | Zi, Xi, Y

∗
i }. This mathe-

matical equivalence motivates us to extend the methods for independent right-

truncated survival data (Kalbfleisch and Lawless (1991); Wang (1989)) to the

context of clustered right-truncated data in order to construct the estimating

equations. Specifically, define Ñ∗ij(t) = I(t̃∗ij ≤ t ∧ Y ∗i ), R̃∗ij(t) = I(t̃∗ij ≤ t ≤ Ỹ ∗i ),

and R̃∗i (t) =
∑mi

j=1 R̃
∗
ij(t). It is known that, with right-truncated data, Ñ∗ij(τ−t)−∫M

τ−t R̃
∗
ij(u) dH(u), where H(u) = log Λ0(u), defines a martingale on [0, τ ]. Sim-
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ple algebra, with a change of variable, yields E{dÑ∗ij(t)− R̃∗ij(t) dH(t)} = 0, for

t ∈ [0, τ ], which defines a zero-mean process M̃∗ij(t) = Ñ∗ij(t)−
∫ τ
t R̃

∗
ij(u) dH(u).

Furthermore, the stochastic process based on the clustered right-truncated data

{t̃∗i1, . . . , t̃∗imi
},

M̃∗i (t)=

mi∑
j=1

M̃∗ij(t)=

mi∑
j=1

Ñ∗ij(t)−
mi∑
j=1

∫ τ

t
R̃∗ij(u) dH(u)=Ñ∗i (t)−

∫ t

0
R̃∗i (u) dH(u),

has a zero mean. Following the above discussion, we can treat the observa-

tions {t∗i1, . . . , t∗imi
} as the order statistics of {t̃∗i1, . . . , t̃∗imi

}; in this case, N∗i (t) =

Ñ∗i (t) and R∗i (t) = R̃∗i (t). Therefore, the stochastic process M∗i (t) = N∗i (t) −∫ t
0 R
∗
i (u) dH(u), for t ∈ [0, τ ], though not a martingale, also has a zero mean.

The proof is given in Appendix S1 of the Supplementary Material. Moreover, for

all t ∈ [0, τ ], we have the following equations:

E

{
n∑
i=1

∫ t

0
dM∗i (u)

}
= 0 and E

{
n∑
i=1

∫ τ

0
Xi dM∗i (u)

}
= 0. (3.2)

Note that t∗ij may be correlated, but the estimating equations in (3.2) remain

unbiased. The first term in (3.2) introduces a consistent estimator for H, via

dĤ(t) =

∑n
i=1 dN∗i (t)∑n
i=1R

∗
i (t)

.

The proof of the consistency of Ĥ(·) is given in Appendix S1 of the Supplementary

Material.

ReplacingH with Ĥ in (3.2), we estimate α by solving the following equation:

Sn(a) := n−1
n∑
i=1

∫ τ

0

{
Xi −

R(1)
n (u, a)

R(0)
n (u, a)

}
dN∗i (t, a) = 0, (3.3)

where R(k)
n (t, a) =

∑n
i=1X

k
i R
∗
i (t, a), for k ∈ {0, 1}. The estimating function

Sn(a) is similar to the accelerated failure time model with truncated data (Lai and

Ying (1991)), and can be solved using, for example, the derivative-free algorithm

of Barzilai and Borwein (1988), implemented in Varadhan and Gilbert (2009).

Let α̂n be the solution to (3.3). It is easy to see that H can be estimated by

Ĥn(t; α̂n) = −
∫ τ

t

∑n
i=1 dN∗i (u; α̂n)∑n
i=1R

∗
i (u; α̂n)

,
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and, thus, Λ0 can be estimated by Λ̂n(t) = exp{Ĥn(t; α̂n)}.
With α estimated, we now estimate γ, defined earlier as γ = β−α. It follows

from (2.1) that

E
[
miΛ

−1
0 (Y ∗i ) | Xi

]
= E

[
E{mi | Xi, Y

∗
i , Zi}Λ−10 (Y ∗i ) | Xi

]
= E

[
Zi exp(X>i γ) | Xi

]
= exp(X̄>i θ),

where X̄>i = (1, X>i ) and θ> = (logµZ , γ
>). This expectation suggests the

following estimating equation if α and Λ0 are known: n−1
∑n

i=1 X̄
>
i {miΛ

−1
0 (Y ∗i )

−exp(X̄>i θ)} = 0. The estimator for θ, denoted by θ̂n, can be obtained by solving

the following estimating equation, with α and Λ0 replaced by their estimators

from the first step:

Un(θ; α̂n) := n−1
n∑
i=1

X̄>i

[
miΛ̂

−1
n {Y ∗i (α̂n)} − exp(X̄>i θ)

]
= 0. (3.4)

Then, β can be estimated by β̂n = α̂n + γ̂n. Given α̂n and Λ̂n, the estimating

equation in (3.4) is monotone and continuously differentiable with respect to θ;

hence, its root can be obtained easily using standard software.

3.2. Asymptotic theory and variance estimation

To study the large-sample properties of the proposed estimators, we impose

the following regularity conditions.

Condition 1 Pr(Y ∗ ≥ τ) > 0, where Y ∗ = Y eX
>α.

Condition 2 The covariate X is bounded; the latent variable Z is positive, with

E(Z2) <∞.

Condition 3 The conditional probability density function of Y , given (Z,X), is

continuous and uniformly bounded.

Condition 4 The rate function λ0(t), for t ∈ [0, τ ], is strictly bounded below by

zero, and has a bounded second derivative function.

Condition 5 The matrices J and J2, defined in Appendix S1 of the Supplemen-

tary Material, are nonsingular.

Conditions 1–5 are common assumptions in survival models. Condition 4 imposes

the bounded second derivative function of λ0(t), which is usually required by the
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accelerated failure time model to evaluate the asymptotic covariance matrix.

Based on these regularity conditions, we have the following asymptotic results;

the proofs are provided in Appendix S1 of the Supplementary Material.

Theorem 1. Under Conditions 1–5, n1/2(α̂n − α, β̂n − β) converges weakly to a

multivariate normal distribution with mean zero and covariance matrix Σ(α, β),

specified in Appendix S1 of the Supplementary Material. Furthermore, for the

estimated baseline rate function, we have that n1/2{Λ̂n(t, α̂n) − Λ0(t)}, for t ∈
[0, τ ], converges weakly to a zero-mean Gaussian process.

Theorem 1 allows us to use the asymptotic joint Gaussian distribution of

n1/2(α̂n − α, β̂n − β) to make inferences on the model parameters. Because the

limiting covariance matrix Σ(α, β) depends on the unknown density functions of

the censoring time, it may be computationally difficult and inefficient to estimate

it directly from the data. Therefore, we propose an efficient resampling approach

to estimate the covariance matrix Σ(α, β).

We first describe an approach to estimate the covariance of n1/2(α̂n−α, θ̂n−
θ), denoted by Σ(α, θ), and then use it to retrieve the estimation of Σ(α, β). From

the proof of Theorem 1,

n1/2

(
α̂n − α
θ̂n − θ

)
= n1/2J−1α,θ

(
Sn(α)

Un(θ;α)

)
+ op(1),

where Jα,θ is the slope matrix

Jα,θ =

(
J 0

J1 J2

)
,

with J , J1, and J2 defined in Appendix S1 of the Supplementary Material. This

implies that Σ(α, θ) has the following sandwich form: J−1α,θVα,θ(J
−1
α,θ)
>, where

Vα,θ is the limiting covariance matrix of n1/2{S>n (α), U>n (θ;α)}. The proposed

resampling approach estimates the two components Vα,θ and Jα,θ separately, and

requires neither density estimations nor intensive computation.

Step 1: Estimation of Vα,θ. Let (ξ1, . . . , ξn) be a set of i.i.d. positive random

variables with unit mean and unit variance (e.g., standard exponential). Then,

we define the perturbed estimating functions as follows:
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S†n(α) = n−1
n∑
i=1

mi∑
j=1

∫ τ

0

{
ξiXi −

∑n
k=1

∑mk

l=1 ξkXkR
∗
k,l(t, α)∑n

k=1

∑mk

l=1 ξkR
∗
k,l(t, α)

}
dN∗ij(t, α),

and

U †n(θ;α) = n−1
n∑
i=1

ξiX̄
>
i

[
mi

Λ̂†n{Y ∗i (α)}
− exp(X̄>i θ)

]
,

where

Λ̂†n(t) = exp{Ĥ†n(t; α̂n)} and Ĥ†n(t; α̂n) =

∫ t

0

∑n
i=1

∑mi

j=1 ξi dN∗ij(u; α̂n)∑n
i=1

∑mi

j=1 ξiR
∗
ij(u; α̂n)

.

Following the arguments in Zeng and Lin (2008), n1/2{S†n(α̂n), U †n(θ̂n; α̂n)}, con-

ditional on the observed data, has the same asymptotic distribution as n1/2{
Sn(α), Un(θ;α)}, evaluated at the true parameters. Thus, a consistent estimator

of Vα,θ, denoted by V̂α̂n,θ̂n
, is given by the sample variance of the perturbed repli-

cates of the derivative-free Barzilai–Borwein spectral algorithm, n−1/2{S†n(α̂n),

U †n(θ̂n; α̂n)}.

Step 2: Estimation of Jα,θ. Estimating the slope matrix, Jα,θ, is challeng-

ing, owing to the nonsmoothness of the estimating functions. For a (2p + 1)-

dimensional vector, s = (s1, s2) ∈ R2p+1, and (a, r) in a small neighborhood of

(α, θ), such that ‖(a, r) − (α, θ)‖ → 0, the proof of Theorem 1 implies that the

estimating functions can be uniformly decomposed into

n1/2

(
Sn(a+ n−1/2s1)− Sn(a),

Un(r + n−1/2s2; a+ n−1/2s1)− Un(r; a)

)
= Jα,θ

(
s1
s2

)
+ op(1).

Because Sn(α̂n) = 0 and Un(γ̂n, α̂n) = 0, we have

n1/2

(
Sn(α̂n + n−1/2s1)

Un(θ̂n + n−1/2s2; α̂n + n−1/2s1)

)
= Jα,θ

(
s1
s2

)
+ op(1).

The above equation presents an asymptotic linear relationship between the es-

timating equations. Motivated by these results, the jth row of Jα,θ can be ap-

proximated by regressing the jth component of n1/2{Sn(α̂n + n−1/2s1), Un(θ̂n +

n−1/2s2; α̂n + n−1/2s1)} on s, which is generated from a (2p + 1)-dimensional

standard normal distribution. Putting the estimated regression coefficients into
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a matrix gives an estimator Ĵα̂n,θ̂n
of Jα,θ.

The target sandwich variance matrix Σ(α, θ) is then estimated by Σ̂(α̂n, θ̂n) =

Ĵ−1
α̂n,θ̂n

V̂α̂n,θ̂n
(Ĵ−1
α̂n,θ̂n

)>. Compared with the conventional bootstrap methods, which

require that we solve estimating equations repeatedly, the proposed resampling

approach is computationally much more efficient, because it requires only evalu-

ations of (rather than a solution to) the perturbed estimating functions and that

we perform least squares regressions. Using Σ̂(α̂n, θ̂n), the estimated covariance

matrix of Σ(α, β) can be obtained as Σ̂(α̂n, β̂n) = AΣ̂(α̂n, θ̂n)A>, with

A =

(
Ip 0p×1 0p×p
Ip 0p×1 Ip

)
,

where Ip is the p × p identity matrix. Following the above discussion and the

argument in Zeng and Lin (2008), the estimator Σ̂(α̂n, β̂n) is consistent under

Conditions 1–5.

3.3. Hypothesis testing of submodels

The asymptotic results enable model selection for the nested submodels. For

example, the Cox-type proportional rates assumption can be tested using H0 :

α = 0 vs. H1 : α 6= 0 under the proposed model. In this case, a test statistic can

be constructed as Tcox = α̂>n Σ̂(α̂n)−1α̂n, where Σ̂(α̂n) is the estimated covariance

matrix of n1/2(α̂n − α). Under the null hypothesis, Tcox converges weakly to a

Chi-square distribution χ2
p, with p degrees of freedom. To evaluate the power

of the test statistics, consider the true local alternative α = n−1/2h, where h ∈
Rp. Then, by the central limit theorem, Tcox converges weakly to a noncentral

Chi-square distribution, with p degrees of freedom and noncentrality parameter

h>Σ(α)−1h. Therefore, the power of the test goes to one if h>Σ(α)−1h→∞ or

‖n1/2α‖ → ∞.
The other two submodels can be tested and diagnosed in a similar way. For

the accelerated mean model, we consider H0 : γ = 0 vs. H1 : γ 6= 0, with the test

statistic Tam = γ̂>n Σ̂(γ̂n)−1γ̂n, where Σ̂(γ̂n) is the estimated covariance matrix

of n1/2(γ̂n − γ). For the accelerated rate model, we consider H0 : β = 0 vs.

H1 : β 6= 0 and Tar = β̂>n Σ̂(β̂n)−1β̂n, where Σ̂(β̂n) is the estimated covariance

matrix of n1/2(β̂n− β). Following similar arguments, Tam and Tar both converge

weakly to the Chi-square distribution χ2
p. In addition, the power of each test

goes to one when the true parameters satisfy ‖n1/2γ‖ → ∞ and ‖n1/2β‖ → ∞,

respectively.
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4. Numerical Studies

Simulations were conducted to evaluate the performance of the proposed

method. The recurrent event process is generated from a nonstationary Pois-

son process, with intensity function λ(t) = Zλ0(te
α1X1+α2X2)eβ1X1+β2X2 , where

λ0(t) = [2(1 + t)]−1, and X1 and X2 are generated from independent standard

normal distributions. The subject-specific latent variable Z is either set as Z = 1,

or is generated from a gamma distribution with mean 1 and variance 0.25. The

latter yields a scenario of informative censoring, whereas the former yields a sce-

nario of noninformative censoring. In these settings, we use E(Z) = 1 rather than

Λ0(τ) = 1, which we assumed in Section 2 for ease of discussion. Because we

only require one of these identifiability conditions, the proposed estimation pro-

cedure remains valid. We altered the regression coefficients α and β to generate

data from either the proposed generalized scale-change model or the submodels

discussed in Section 2. The censoring time is generated from an exponential

distribution, with mean 60e−X1/Z. We set τ = 60.

For n ∈ {200, 400} and 1,000 replications, Tables 1 and 2 summarize the

results for a generalized scale-change model and a Cox-type proportional rates

model, respectively. The results for the accelerated rate model and accelerated

mean model are presented in Appendix S2 of the Supplementary Material. Under

our settings, the average number of observed recurrent events ranges from 1.5 to

5.7. The standard errors of the proposed method are obtained using the proposed

resampling approach with 200 bootstrap samples. For comparison purposes, we

also report the results of the estimator proposed by Sun and Su (2008), which

requires a noninformative censoring assumption. Both the proposed estimator

and the estimator proposed by Sun and Su (2008) were obtained by solving the

corresponding estimating equations using the derivative-free Barzilai–Borwein

spectral algorithm, implemented in Varadhan and Gilbert (2009). Zero vectors

were used as the initial values for the equation solver. We also present results

based on using the true values as the initial values, in order to investigate the

stability of the estimating equations.

The proposed estimator is virtually unbiased for all scenarios considered,

regardless of the choice of initial values. The average standard errors for the

proposed estimators are reasonably close to their empirical counterparts, indi-

cating that the proposed variance estimator performs well, even with a moderate

bootstrap sample of size 200. Furthermore, the proposed estimator yields empir-

ical coverage probabilities that are close to the nominal level of 95%, suggesting
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Table 1. Simulation results with α = (−1,−1)> and β = (1, 1)>. Columns without an
asterisk (∗) present results using the zero vector as the initial value; columns with an
asterisk present results using the true value as the initial value; Bias is the empirical bias;
ESE is the empirical standard error; ASE is the average of the standard error obtained
from resampling; CP is the empirical coverage probability (%) of the 95% confidence
intervals.

Proposed Sun and Su (2008)

n Bias ESE ASE CP Bias∗ ESE∗ Bias ESE ASE CP Bias∗ ESE∗

Z = 1

200 α1 0.005 0.307 0.295 93.0 −0.011 0.308 0.678 0.533 0.218 19.2 0.003 0.095

α2 0.007 0.277 0.264 93.1 −0.013 0.273 0.646 0.499 0.214 19.9 0.003 0.091

β1 0.005 0.181 0.184 93.7 0.004 0.179 0.373 0.332 0.142 33.5 −0.010 0.091

β2 0.005 0.175 0.174 94.2 −0.002 0.174 0.375 0.323 0.140 34.7 0.007 0.094

400 α1 0.019 0.218 0.210 94.6 −0.004 0.217 0.218 0.251 0.161 39.5 0.001 0.086

α2 0.011 0.194 0.186 94.2 0.003 0.189 0.194 0.239 0.155 41.4 −0.008 0.087

β1 0.006 0.135 0.131 95.1 0.005 0.131 0.123 0.172 0.109 57.1 −0.001 0.077

β2 0.008 0.129 0.128 95.0 0.000 0.130 0.113 0.165 0.105 57.4 −0.002 0.077

Z ∼ Gamma(4, 4)

200 α1 0.001 0.314 0.301 93.7 0.001 0.320 0.683 0.410 0.224 18.8 −0.113 0.159

α2 −0.010 0.281 0.267 93.3 0.023 0.281 0.536 0.386 0.230 25.1 0.095 0.146

β1 −0.008 0.221 0.219 93.7 −0.006 0.223 0.311 0.305 0.173 44.1 0.103 0.169

β2 0.003 0.213 0.209 93.5 0.013 0.214 0.311 0.301 0.180 49.6 0.096 0.168

400 α1 0.005 0.232 0.215 94.5 −0.008 0.224 0.432 0.257 0.162 23.9 −0.147 0.156

α2 0.002 0.203 0.191 94.4 −0.009 0.205 0.264 0.218 0.158 41.7 −0.091 0.144

β1 0.005 0.163 0.158 94.4 −0.006 0.168 0.169 0.190 0.136 62.6 −0.090 0.136

β2 −0.001 0.151 0.151 94.7 −0.000 0.147 0.134 0.188 0.138 70.4 0.097 0.141

that the normal approximation for the distribution of the proposed estimators

is appropriate. When n = 200, the empirical coverage probabilities for β̂n are

closer to the anticipated level of 95% than those are for α̂n, suggesting that the

normality approximation may require a larger sample size for α̂n than it does

for β̂n. Similar trends are observed in the scenarios presented in Appendix S2

of the Supplementary Material. The estimates of the baseline cumulative rate

functions for all scenarios are also presented in Appendix S2 of the Supplemen-

tary Material. The averages of Λ̂0(t) are indistinguishable from the truth, for all

cases considered.

The results of our simulation studies show that the estimator of Sun and Su

(2008) is sensitive to the choice of initial values. As seen in Tables 1 and 2, the

estimator of Sun and Su (2008) yields a large bias when the initial values are set

to be zero. The average standard errors for the estimator of Sun and Su (2008)

were obtained using the classical bootstrap approach with 200 bootstrap samples.

For most cases, the bootstrap standard errors are not close to their empirical
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Table 2. Simulation results with α = (0, 0)> and β = (−1,−1)>. Columns without an
asterisk (∗) present results using the zero vector as the initial value; columns with an
asterisk present results using the true value as the initial value; Bias is the empirical bias;
ESE is the empirical standard error; ASE is the average of the standard error obtained
from resampling; CP is the empirical coverage probability (%) of the 95% confidence
intervals.

Proposed Sun and Su (2008)

n Bias ESE ASE CP Bias∗ ESE∗ Bias ESE ASE CP Bias∗ ESE∗

Z = 1

200 α1 −0.004 0.161 0.155 92.5 −0.006 0.148 0.358 0.240 0.092 15.2 −0.019 0.049

α2 −0.001 0.153 0.151 92.5 0.005 0.150 0.394 0.237 0.097 11.6 −0.018 0.043

β1 −0.001 0.118 0.114 92.9 −0.003 0.109 0.241 0.154 0.081 20.3 −0.013 0.069

β2 −0.003 0.112 0.113 92.5 0.003 0.112 0.262 0.158 0.082 18.2 −0.012 0.072

400 α1 0.001 0.104 0.100 94.9 0.001 0.110 0.187 0.215 0.078 33.3 −0.016 0.039

α2 −0.005 0.102 0.096 93.6 −0.001 0.102 0.199 0.214 0.077 30.4 0.008 0.042

β1 −0.001 0.078 0.073 94.8 0.001 0.081 0.127 0.145 0.064 39.8 −0.010 0.062

β2 −0.003 0.076 0.071 94.6 −0.001 0.076 0.135 0.148 0.063 39.4 0.005 0.058

Z ∼ Gamma(4, 4)

200 α1 0.007 0.167 0.146 92.4 −0.011 0.169 0.414 0.219 0.118 15.0 −0.042 0.062

α2 0.002 0.155 0.141 94.0 −0.001 0.155 0.388 0.253 0.124 18.2 −0.045 0.077

β1 0.007 0.149 0.124 91.7 −0.000 0.142 0.273 0.168 0.127 35.9 −0.044 0.129

β2 0.003 0.146 0.123 90.7 0.005 0.143 0.255 0.202 0.131 40.5 −0.043 0.121

400 α1 0.005 0.113 0.101 92.2 0.001 0.112 0.302 0.208 0.093 20.3 −0.051 0.071

α2 0.001 0.108 0.099 93.6 0.001 0.105 0.249 0.231 0.100 32.0 −0.049 0.074

β1 0.000 0.106 0.095 91.9 0.005 0.102 0.189 0.168 0.100 42.7 −0.044 0.096

β2 −0.005 0.102 0.099 91.8 0.006 0.100 0.174 0.186 0.102 49.4 −0.055 0.102

counterparts. The inconsistency of the bootstrap standard errors reflects the

instability of the estimator of Sun and Su (2008). As a result, the subsequent

coverage probabilities are far from the nominal level. When the initial value was

specified at the true value, their estimator yields small biases when Z = 1, but

moderate biases when the noninformative censoring assumption is not met. The

estimator of Sun and Su (2008) yields smaller empirical standard errors for all

cases when the initial value was specified at the true value, which is not realistic

in practice.

In Appendix S2 of the Supplementary Material, we report the results of ad-

ditional simulation studies. Here, we considered a gamma frailty of variance 0.5

and 1, implying a larger degree of heterogeneity among subjects. For all settings

considered, our estimator remains virtually unbiased, with estimated standard

errors reasonably close to the empirical standard errors. The magnitude of the

estimated standard errors seems to increase with the variance of the frailty vari-

able, but the empirical coverage rates remain close to the nominal level in all
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(b) n = 200, α = (k, k)>, β = (0, 0)>.
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(c) n = 400, α = (0, 0)>, β = (k, k)>.
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(d) n = 400, α = (k, k)>, β = (0, 0)>.

Figure 1. Rejection rates based on 1,000 replications at the 0.05 significance level using
the hypothesis testing procedures described in Section 3. Solid lines ( ) present the
rejection rates for H0 : α = 0, which is used to test the Cox-type proportional rates
assumption; Dashed lines ( ) present the rejection rates for H0 : β = 0, which is used
to test the accelerated rate assumption; Dotted lines ( ) present the rejection rates for
H0 : α = β or γ = 0, which is used to test the accelerated mean assumption.

scenarios. We also considered additional scenarios with a lower average number

of events per subject than those in the earlier settings, as well as scenarios in

which the recurrent events were generated from a nonPoisson process, given the

frailty. In the later case, we include a second latent variable in the rate model

and/or change the distribution of the inter-arrival time to something other than

the exponential distribution. The performance of our estimator remains satisfac-
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tory in all scenarios.

Now that we have shown that the proposed estimator is robust in most prac-

tical settings, we evaluate its performance when testing the nested submodels.

We consider the same simulation settings, but with α1 = α2 and β1 = β2. In

addition, we focus only on the informative censoring scenarios. Based on 1,000

replications, Figure 1 displays the rejection rate at a 0.05 significance level for

the tests discussed in Section 3, fixing either α or β at (0, 0)>, and the other at

(k, k)>, for some constant k. We set k = 0 initially, and then move k away from

zero in both directions to denote a gradual deviation from the accelerated mean

model, and a migration to the Cox-type model or accelerated rate model. When

α = β = 0, all rejection proportions are close to the nominal level of 0.05. In

Figure 1a, the rejection proportions for the Tcox test are close to the nominal level

of 0.05, reflected in the true value of α = 0. As β deviates from zero in Figure 1a,

both the Tam and Tar tests increase in power, with slightly higher power for the

Tam test. Similarly, in Figure 1b, the Tcox test and Tam test increase in power as

α deviates from zero, whereas the Tar test remains at the nominal level of 0.05

throughout. Among the tests, the Tam test appears to have the highest rejection

proportion, indicating that our method is more likely to reject the accelerated

mean model. For a given k, the rejection proportion for the Tar test is higher

than that for the Tcox test, which is because β̂n is usually associated with smaller

standard errors.

5. Application

Serious infection is a major source of complications after a transplant, and

is known to be associated with increased risk of allograft failure and death.

A prospective cohort study was conducted at the Johns Hopkins Hospital to

evaluate morbidity and mortality after transplant. In this study, patients who

consented to an IRB-approved protocol were contacted every three months to

obtain information on serious infection episodes. This preliminary cohort con-

tained 161 kidney transplant recipients and 164 patients who had undergone

hematopoietic stem cell transplant (HSCT) at the Johns Hopkins Hospital in

2012. Patients were followed until death, graft failure, or the end of the study.

The median follow-up time was 20.2 months for the kidney transplant cohort,

and 12.2 months for the HSCT cohort. During the study, the kidney transplant

recipients experienced a total of 206 infection episodes (1.3 per recipient), and

the HSCT recipients experienced a total of 290 infection episodes (1.8 per recip-
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Figure 2. Longitudinal plots of the infection data; horizontal gray lines indicate the
time elapsed from transplant to end of follow-up; × represents an infection episode; •
represents death.

ient). There were 42 deaths observed during the study period, among which 36

were in the HSCT cohort.

We first analyze the infection process of the kidney transplant cohort. Of

the 161 kidney transplant recipients, 91 (56.5%) were white, 47 (29.2%) had hy-

pertension, and 11 (6.8%) had diabetes at the time of the transplant. The age

at transplant among the kidney transplant recipients ranged from 19.7 to 81.8

years, with a median of 53.5 years. Other potential risk factors used in the anal-

ysis include human leukocyte antigen (HLA) incompatibility and the high-risk

cytomegalovirus (CMV) serostatus (CMV-negative recipients and CMV-positive

donors vs. others). There were 31 (19.3%) HLA-incompatible patients and 21

(13.0%) patients with high-risk CMV serostatus. The age variable was centered

and scaled to have unit variance. Figure 2a depicts the longitudinal patterns

of recurrent infection episodes by HLA compatibility in the kidney transplant

cohort. The plot suggests that HLA-incompatible transplant recipients tend to

have a higher frequency of serious infections than HLA-compatible recipients

do. The upper panel of Table 3 summarizes the estimated covariate effects for

the kidney transplant cohort, with standard errors estimated using the proposed

resampling approach, with 500 bootstraps. Using Wald’s Chi-square test, the

p-values used to test H0 : α = 0, H0 : β = 0, and H0 : γ = 0 are all less than
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Table 3. Summary of the infection data; α̂ and β̂ are point estimators; SE(α̂) and SE(β̂)
are the corresponding standard errors; the age variable is standardized to have mean
zero and standard deviation one.

Proposed Model

α̂ SE(α̂) β̂ SE(β̂)
Kidney transplant cohort

Age 1.025 0.354 0.557 0.263
White −1.729 0.952 −0.631 0.600

HLA incompatible 1.757 0.651 1.374 0.478
CMV −1.609 0.654 −0.087 0.487

Diabetes 1.076 1.383 0.019 0.821
Hypertension −1.864 0.918 −0.917 0.729

HSCT cohort
Age −0.320 0.567 0.075 0.149

White −0.966 0.871 −0.281 0.504
Male −2.237 2.781 −0.864 0.773

Allogeneic −2.038 0.804 0.517 0.907
Lymphomas disease −1.048 1.347 −0.478 0.565

0.001. The hypothesis testing results suggest that none of the submodels are

appropriate for the data, and that the covariates modify both the timescale of

the infection process and the magnitude of the rate of infections. The estimated

coefficients for age and HLA incompatibility are both significant and positive,

implying that patients who were older or who were HLA incompatible were more

likely to experience infections sooner, and more frequently throughout the follow-

up period. In particular, for a one standard deviation increase in age (12.8 years),

their time-to-infection episodes accelerate by a factor of 0.36, and their risk in-

creases to 1.75. Similarly, patients who underwent an HLA-incompatible kidney

transplantation experienced time-to-infection episodes that were accelerated by

a factor of 0.17, and an elevated risk of 3.95. Patients with a high-risk of the

CMV disease or with hypertension tend to have time-to-infection episodes that

were decelerated by a factor of 5.00 and 6.46, respectively.

A similar analysis was performed for the HSCT cohort, where, instead of

HLA incompatibility and CMV serostatus, the type of stem cell transplant (al-

logeneic vs. autologous) was included as a covariate. Among the 164 HSCT

patients, 126 (76.8%) were white, 93 (56.7%) were male, 128 (78.1%) had an

allogeneic transplant, and 42 (25.6%) had lymphomas disease at the time of the

transplant. The age at transplant ranged from 19.2 to 75.5 years, with a median

of 52.2 years. We used the standardized age in this analysis. Figure 2b depicts
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the longitudinal patterns of the recurrent infection episodes and death, by type

of HSCT transplantation. The figure shows that HSCT patients who underwent

an allogeneic transplant tended to experience serious infections at a higher fre-

quency. The lower panel of Table 3 summarizes the parameter estimates and

their standard errors. The p-values used to test H0 : β = 0 is 0.37, and the

p-values used to test testing H0 : α = 0 and H0 : γ = 0 are both less than 0.001.

The hypothesis testing results suggest that the covariates are not significantly

associated with the rate of infection, and the proposed model reduces to the accel-

erated rate model. Because the proposed procedure estimates the timescale effect

parameter without requiring an estimation of the multiplicative effect parame-

ter, our inferences for the regression coefficients in the accelerated rate model

are still valid. The only significant risk factor is the allogeneic transplant, which

decelerated the time-to-infection episodes by a factor of 0.13.

Finally, we conduct a graphical assessment of whether the baseline rate func-

tion, λ0(t), is in the Weibull class. The assessment is motivated by the fact that,

under the Weibull model, the proposed model reduces to the Cox-type model of

Wang, Qin and Chiang (2001) and log{Λ̂0(t)} is linear in log(t). The plots of

log{Λ̂0(t)} versus log(t) in Appendix S3 of the Supplementary Material suggest

that λ0(t) is not Weibull.

6. Discussion

The proposed model addresses the need to characterize covariate effects in a

flexible modeling framework and to account for informative censoring in recurrent

event data analyses using a generalized scale-change model with an unspecified

frailty. The estimation procedure is novel, and avoids requiring information about

the frailties by exploiting the model structure. The asymptotic properties of the

proposed estimator are established, and inferences are based on a computation-

ally efficient resampling method. Because the model encompasses several popular

models as special cases, the proposed approach includes model specification tests

for the submodels that employ various restrictions on the model parameters.

The proposed estimation procedure is based on a quasi-conditional likeli-

hood, conditioning on (Xi, Zi) and Yi. Thus, our model is simple, in the sense

that model specifications for the censoring event time and the frailty are not

needed, because they can be treated as nuisances. For the same reason, our model

is robust against the misspecification of the censoring time distribution, making

it an appealing alternative to most joint modeling approaches that model the
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risk of recurrent events and the informative time jointly. The proposed method

can be extended easily to a joint modeling framework when a joint analysis of

the covariate effects on the recurrent events and the terminal event is of interest.

For instance, in addition to assuming Model (2.1) for the underlying recurrent

event process, we may consider the accelerated failure time model of Xu et al.

(2017). Then we can specify the hazard function of the terminal event D as

h(t) = Zh0(te
X>ζ)eX

>ζ , t ∈ [0, τ ], (6.1)

where ζ is a p × 1 vector of model parameters, and h0(t) is the baseline hazard

function. Under the joint models, the recurrent event model can still be esti-

mated by applying the estimation procedure described in Section 3. In addition,

Model (6.1) can be estimated using the “borrow-strength” technique, originally

proposed in Huang and Wang (2004), and later adopted in Xu et al. (2017). This

is an interesting extension to pursue in future research.

There are also several other possible research directions. The robustness of

the proposed method comes at the cost of an efficiency loss. Thus, it would be

of interest to evaluate this efficiency loss by comparing the performance of the

proposed methods with that of the likelihood-based joint analyses of recurrent

and terminal events, because the latter is expected to yield the most efficient pa-

rameter estimation under a correct model specification. In particular, the current

estimation of α does not depend on the estimation of β, because in our carefully

devised estimation procedure, β is not involved in the embedded seimparametric

estimation in clustered right-truncated data. A more efficient estimator may be

constructed by incorporating the knowledge about β in the estimation of α, thus,

developing an iterative algorithm for estimating both β and α. Nonetheless, such

a procedure is difficult to derive without additional assumptions, because eβ
>Xi

and the unobserved frailty variable Zi are coupled together in the rate function.

It is expected that an additional assumption on the distribution of Zi will be

needed in order to exploit the information about β. For instance, one may use

a likelihood-based estimation approach by assuming a distribution for the frailty

variable. However, likelihood-based inferences using the proposed model have

not been investigated in the literature, either for univariate survival data, or for

recurrent event data, and thus warrants further research. Given that the current

method can deal only with time-independent baseline covariates, it would also be

of interest to extend the proposed method to allow both time-independent and

time-dependent covariates (Huang, Qin and Wang (2010)). From a model identi-



GENERALIZED SCALE-CHANGE MODELS 1793

fiability perspective, we recommend that the Weibull model should be fitted and

diagnosed first. Then, if it is rejected, the proposed model can be fitted. Lastly,

because graphical diagnoses are often subjective, a formal goodness-of-fit test

for the Weibull model with frailty would be useful before applying the proposed

model.

Supplementary Material

The online Supplementary Material contains the proof of Theorem 1, addi-

tional simulation results, and a graphical diagnosis of the Weibull model.
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