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Abstract: When researchers do not have enough scientific knowledge to assume

a particular regression model, sufficient dimension reduction is a flexible yet par-

simonious nonparametric framework to study how covariates are associated with

an outcome. We propose a novel estimator of low-dimensional composite scores

that summarizes the contribution of covariates on a right-censored survival out-

come. The proposed estimator determines the degree of dimension reduction adap-

tively from the data; it estimates the structural dimension, the central subspace,

and a rate-optimal smoothing bandwidth parameter simultaneously from a single

criterion. The methodology is formulated in a counting process framework. Fur-

thermore, the estimation is free of the inverse probability weighting employed in

existing methods, which often leads to instability in small samples. We derive the

large-sample properties for the estimated central subspace with a data-adaptive

structural dimension and bandwidth. The estimation can be implemented easily

using a forward selection algorithm; this implementation is justified by the asymp-

totic convexity of the criterion in working dimensions. Numerical simulations and

two real examples are given to illustrate the proposed method.

Key words and phrases: Central subspace, counting process, data-adaptive band-

width, higher-order kernel, structural dimension.

1. Introduction

A primary goal of survival analyses is to predict or explain the association

between survival times and interesting covariates when the survival time is sub-

jected to censorship caused by the termination of a follow-up study or patients

dropping out. In the literature, semiparametric models for right-censored survival

data include Cox’s proportional hazards model (Cox (1972)), the proportional

odds model (Bennett (1983)), and the accelerated failure time model (Cox and

Oakes (1984)), among many others. Although semiparametric models do not

impose full distributional assumptions, certain parametric structures are still
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specified for the relation between the response and the covariates. In practice,

there is often not enough scientific knowledge to assume a particular transforma-

tion or link function. A possible solution is provided by a fully nonparametric

regression, such as Beran’s estimator (Beran (1981)), for the conditional survival

function. When the number of covariates increases, the nonparametric estimator

usually suffers from the curse of dimensionality. To consider a more flexible, yet

parsimonious model formulation between parametric and nonparametric frame-

works, sufficient dimension reduction (Li (1991)) arises as an appealing middle

ground, in which the model complexity is controlled by the structural dimension.

To obtain the best results, we need to estimate the structural dimension jointly

with the central subspace, for which we provide a vigorous solution in this paper

for censored survival outcomes collected in biomedical studies.

For uncensored data, various methods have been proposed to estimate the

central subspace of the sufficient dimension reduction model with a fixed dimen-

sion. These methods include the inverse regression (Li (1991); Li and Wang

(2007); Zhu, Zhu and Feng (2010)), minimum average variance estimation cou-

pled with average derivatives (Zhu and Zeng (2006); Xia (2007); Wang and

Xia (2008); Yin and Li (2011)), semiparametric framework (Ma and Zhu (2012,

2013)), and reproducing kernel approaches (Fukumizu, Bach and Jordan (2009);

Fukumizu and Leng (2014)). To determine the structural dimension, commonly

used methods are sequential testing (Li (1991)), a bic-type criterion (Zhu, Miao

and Peng (2006); Ma and Zhang (2015)), cross-validation (Wang and Xia (2008)),

and bootstrap (Dong and Li (2010)). Under a right-censoring mechanism, the

data structure may not permit direct extensions of these approaches, and only a

limited number of methods have been studied. Using an imputation technique,

Li, Wang and Chen (1999) proposed a consistent estimator for the central sub-

space by calculating the conditional expectation of the unobserved part of the

response in the sliced inverse regression. Another method, proposed by Lu and

Li (2011), used inverse censoring probability weighting (ICPW) to remove the

bias caused by censoring; the structural dimension is determined by a bic-type

criterion. Similarly, Nadkarni, Zhao and Kosorok (2011) proposed a minimum

discrepancy approach, coupled with inverse censoring weighting, to build a more

efficient inverse regression estimator. In addition, they used bootstrapping to es-

timate the structural dimension. To relax strong assumptions, such as linearity

and constant variance conditions, on the design matrices from the conventional

sliced inverse regression, Xia, Zhang and Xu (2010) proposed using inverse sur-

vival weighting and double kernel smoothing techniques, and used the minimum
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average variance estimation based on hazard functions (hMAVE). To obtain the

structural dimension, the authors applied a cross-validation criterion for the con-

ditional hazard function.

Among these methods, an inverse weighting technique is required to adjust

the censored response. However, in practice, the inverse weights often lead to un-

stable estimators, especially when the values of the weights are close to zero. In

this work, we propose a new criterion that focuses directly on the mean function of

the counting process for the observed failure event, rather than treating the par-

tially observed failure time as a missing data problem. Hence, no inverse weights

are required, and the resulting estimator is more stable than existing estimators.

In addition, existing methodologies consider the basis estimation and dimension

determination as separate problems, and require different criteria to estimate the

parameters of interest. Instead, we use a single criterion to simultaneously es-

timate the effective dimension, central subspace, and a rate-optimal bandwidth

for the estimation of conditional cumulative hazard and survival functions, which

eases the burden of computation, in practice. The data-adaptive bandwidth is

another important contribution, because existing nonparametric methods often

involve a subjective bandwidth which could compromise performance. In addi-

tion, no subjective tuning parameters are required.

The rest of this article is organized as follows. Section 2 introduces the

model structure. The proposed estimator is introduced in Section 3, and its

asymptotic properties are established. In Section 4, a series of simulation studies

are conducted and two empirical examples are given in Section 5 to illustrate the

proposed methods. Concluding remarks are provided in Section 6. All technical

proofs are given in the Appendix.

2. Sufficient Dimension Reduction Model for Censored Survival Data

Let T denote the failure time of interest and X = (X1, . . . , Xp)
T be a co-

variate vector of interest. The sufficient dimension reduction model is of the

form:

T X |BTX (2.1)

for some full-rank p × d parameter matrix B with d ≤ p, where denotes

independence. The column space of B is called a sufficient dimension reduction

subspace and is denoted by span(B). Obviously, (2.1) holds trivially when d = p

and B is equal to the p× p identity matrix, because T X |X. Moreover, when
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span(B1) is a sufficient dimension reduction subspace and span(B2) ⊇ span(B1),

it is easy to see that span(B2) is also a sufficient dimension reduction subspace.

Thus, the model with fixed d1 is a submodel of that with fixed d2 > d1. Owing to

this nested structure, the primary parameter of interest is the sufficient dimension

subspace with the smallest dimension, which is called the central subspace, and

is denoted by ST |X. The corresponding basis matrix is denoted by B0, and its

dimension d0 is called the structural dimension. For further discussion on the

existence and uniqueness of the central subspace, see Cook (1998).

Another equivalent form of (2.1) is

FT (t |x) = F (t, BTx) (2.2)

for some unknown function F (·, ·), where FT (t |x) is the conditional distribution

function of T given X = x. Expression (2.2) shows that the sufficient dimen-

sion reduction is indeed a distribution regression problem, and that the central

subspace can capture all information between T and X. Let λT (t |x) be the

conditional hazard function of T given X = x. By the one-to-one relationship

between the distribution and the hazard function, (2.2) is equivalent to

λT (t |x) = λ(t, BTx) (2.3)

for some unspecified function λ(·, ·) (Xia, Zhang and Xu (2010)). Under (2.2)

and (2.3), FT (t |x) and λT (t |x) remain the same for any basis matrix B with the

same column space. In fact, there are infinitely many basis matrices spanning the

same space, which are isomorphic up to a linear transformation. The parameter

space of B is a subspace of Rp×d, called the Grassmann manifold Gr(d,Rp) (Ma

and Zhu (2013)).

In survival analyses, the failure time is often censored by a censoring time

C. One can only observe Y = T ∧C = min(T,C) and the noncensoring indicator

δ = 1(T ≤ C), where 1(·) represents the indicator function. For identifiability,

conditional independence between T and C is assumed; that is,

T C |X. (2.4)

The condition in (2.4) is a common assumption in regression analyses of survival

data. Let SY (t |x), ST (t |x), and SC(t |x) be the conditional survival functions

of Y , T , and C, respectively, given X = x. From (2.4), it is easy to see that

SY (t |x) = ST (t |x)SC(t |x) and pr(δ = 1 |X = x) =
∫∞

0 SC(t − |x)dFT (t |x).
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These properties further ensure that SY |X ⊆ S(Y,δ)|X ⊆ ST |X + SC|X, where the

sum L1 + L2 of two linear subspaces L1 and L2 is defined as {v1 + v2 : v1 ∈
L1,v2 ∈ L2}. Because only Y and (Y, δ) are observable, existing methods for

uncensored data can be applied directly in order to obtain SY |X and S(Y,δ)|X.

However, these subspaces cannot recover ST |X directly. Thus, we have to investi-

gate the relationship between S(Y,δ)|X and ST |X to target the primary parameter

of interest.

Because the hazard function can only be identified up to the maximal support

of the survival function of Y , denoted by τ , one can only estimate the central

subspace of T up to τ , such that B0 satisfies (2.2) and (2.3) for t ∈ [0, τ ]. For

example, when λT (t |x) = λ(t, BT

0 x) for t ∈ [0, τ ], and λT (t |x) = λ(t, B̃Tx) for

t > τ with B̃ 6∈ span(B0), the overall central subspace is ST |X = span(B0) +

span(B̃). In such cases, B̃ can never be identified from the right-censored data

observable up to τ . However, the proposed method is still able to estimate B0.

Because our method can be applied to finite or infinite τ , for simplicity, we set

τ to be +∞ in the following discussion so that the parameter of interest ST |X is

as the same as span(B0).

3. The Proposed Estimator

We propose an estimation criterion based on the counting process Nt =

1(Y ≤ t, δ = 1) for the observed failure event. Let Rt = 1(Y ≥ t). From (2.3),

we have the following.

Proposition 1. E(dNt |Rt,X = x) = Rtλ(t, BT

0 x)dt.

Proposition 1 transforms the original sufficient dimension reduction problem into

a mean-regression problem, using the counting process for the observed failure

event as the outcome. Although Proposition 1 seems standard, as do many

common methods in survival analyses, our objective of estimating d0 and B0

simultaneously poses a unique challenge. Here, we must consider a prediction

criterion, shown in (3.3), based on a least squares criterion

E

{∫ ∞
0

(
Nt −

∫ t

0
Rsλ(s,BTx)ds

)2

dFY (t)

}
, (3.1)

for the estimation of B0, where FY (t) is the marginal distribution of Y . Note

that the expectation is taken with respect to the joint distribution of (Y, δ,X).

Instead of using E{dNt/E(Rt |X) |X = x} = λ(t, BT

0 x)dt, as in the existing
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methods, our approach puts Rt in the conditional mean and, hence, no inverse

weight E(Rt |x) is required. A simple calculation shows that this criterion can

be decomposed into

E

{∫ ∞
0

(
Nt −

∫ t

0
Rsλ(s,BT

0 x)ds

)2

dFY (t)

}

+ E

[∫ ∞
0

SY (t |X){Λ(t, BT

0 X)− Λ(t, BTX)}2dFY (t)

]
+ E

[∫ ∞
0

∫ t

0
{Λ(s,BT

0 X)− Λ(s,BTX)}2dFY (s |X)dFY (t)

]
, (3.2)

where Λ(t, BTx) =
∫ t

0 λ(s,BTx)ds and FY (t |x) = 1 − SY (t |x). Note that

{Λ(s,BT

0 X)−Λ(s,BTX)}2 is nonnegative. Thus, when both SY (t |x) and λ(t, BT

x) are continuous in t ∈ (0,∞) and SY (t |X) > 0 for t ∈ [0, τ ], it can be shown

that the last two terms in (3.2) are equal to zero if and only if span(B) ⊇
span(B0). Thus, the criterion in (3.1) attains its minimum if and only if the

column space of B is a sufficient dimension reduction subspace. To further dis-

tinguish the overfitted models with d > d0, we follow Huang and Chiang (2017),

and propose the following leave-one-out cross-validation criterion for Λ(t, BT

0 x).

From Proposition 1, we have

Λ(t, BT

0 x) =

∫ t

0

E(dNs |BT

0 X = BT

0 x)

E(Rs |BT

0 X = BT

0 x)
.

Thus, a nonparametric estimator for Λ(t, BT

0 x) can be

Λ̂(t, BT

0 x) =

∫ t

0

dĤ(s,BT

0 x)

R̂(s,BT

0 x)
,

where

Ĥ(t, BTx) =

∑n
i=1NitKh(BTXi −BTx)∑n
i=1Kh(BTXi −BTx)

,

R̂(t, BTx) =

∑n
i=1RitKh(BTXi −BTx)∑n
i=1Kh(BTXi −BTx)

,

Nit = 1(Yi ≤ t, δi = 1), Rit = 1(Yi ≥ t), Kh(u) =
∏d
k=1K(uk/h)/h with

u = (u1, . . . , ud)
T, h is a positive bandwidth, and K is a qth-order kernel func-

tion. Note that Ĥ(t, BTx) and R̂(t, BTx) are kernel smoothing estimators for

H(t, BTx) = E[Nt |BTX = BTx] and R(t, BTx) = E[Rt |BTX = BTx], respec-
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tively. Here, we suggest taking q = max{4, 2b(d+ 6)/4c} (see Remark 3). Now,

let (Y 0, δ0,X0) be a future run, independent of current data {(Yi, δi,Xi)}ni=1,

N0
t = 1(Y 0 ≤ t, δ0 = 1), and R0

t = 1(Y 0 ≥ t). To perform the cross-validation,

we consider a prediction risk

E

[∫ ∞
0

{
N0
t −

∫ t

0
R0
sdΛ̂(s,BTX0)

}2

dFY (t)

]
, (3.3)

which can be decomposed into σ2
0 + b20(B) + miseB(h) + C(B, h), where

σ2
0 = E

[∫ ∞
0

{
N0
t −

∫ t

0
R0
sdΛ(s,BT

0 X0)

}2

dFY (t)

]
,

b20(B)= E

[∫ ∞
0

SY (t |X0){Λ(t, BT

0 X0)− Λ(t, BTX0)}2dFY (t)

]
+E

[∫ ∞
0

∫ t

0
{Λ(s,BT

0 X0)− Λ(s,BTX0)}2dFY (s |X0)dFY (t)

]
, (3.4)

miseB(h)= E

(∫ ∞
0

[∫ t

0
R0
sd{Λ(s,BTX0)− Λ̂(s,BTX0)}

]2

dFY (t)

)
, and

C(B, h)= E

(∫ ∞
0

[∫ t

0
R0
sd{Λ(s,BT

0 X0)− Λ(s,BTX0)}
]

·
[∫ t

0
R0
sd{Λ(s,BTX0)− Λ̂(s,BTX0)}

]
dFY (t)

)
. (3.5)

Note that the expectation is taken with respect to the joint distribution of

{(Yi, δi,Xi)}ni=1 and (Y 0, δ0,X0). When h → 0 and nhd → ∞, we can show

that both miseB(h) and C(B, h) converge to zero and, thus, (3.3) is dominated

by σ2
0 + b20(B). Because model (2.3) has a nested structure, b20(B) decreases

with an increase of the working dimension when the working dimension is less

than the structural dimension d0. Furthermore, as discussed in relation to (3.2),

b20(B) ≥ 0, and the equality holds if and only if span(B) is a sufficient dimen-

sion reduction subspace. Thus, the minimum of the prediction risk occurs only

when span(B) ⊇ span(B0). In this case, C(B, h) = 0, and (3.3) reduces to

σ2
0 +miseB(h). In addition, to minimize miseB(h) = Op{h2q + 1/(nhd)}, the op-

timal rate of h is O{n−1/(2q+d)}. Thus, once the working dimension d is greater

than or equal to the structural dimension when span(B) ⊇ span(B0), the pre-

diction risk has an asymptotic order of σ2
0 + Op{n−2q/(2q+d)}, which starts to

increase in d. In summary, we have the following proposition.
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Proposition 2. Under model (2.1), the basis matrix B0 of the central subspace

ST |X and the optimal bandwidth h0 = cd0n
−1/(2q+d0) minimize the prediction in

(3.3) as h → 0, nhd0 → ∞, and n → ∞, where the constant cd0 is given in

Appendix A.1.

Based on Proposition 2, the proposed estimator for (B0, h0) is the minimizer

of the sample analogue

cv(B, h) =
1

n

n∑
i=1

∫ ∞
0

{
Nit −

∫ t

0
RisdΛ̂−i(s,BTXi)

}2

dF̂Y (t),

where F̂Y (t) is the empirical distribution of {Yi}ni=1, and the superscript −i
indicates an estimator based on a sample with the ith subject excluded. Note

that Λ̂−i(t, BTXi) and F̂Y (t) are both step functions in t, and that the integrals

in cv(B, h) indeed have closed forms for computation. More precisely,

cv(B, h) =
1

n2

n∑
i=1

n∑
k=1

{1(Yi ≤ Yk, δi = 1)− Λ̂−i(Yi ∧ Yk, BTXi)}2.

Because the prediction risk is asymptotically convex in d, we utilize the following

procedure to obtain the estimator.

Step a. For d = 0, calculate

ĉv(0) =
1

n

n∑
i=1

∫ ∞
0

{
Nit −

∫ t

0
RisdΛ̂(s)

}2

dF̂Y (t),

where

Λ̂(t) =
1

n

n∑
i=1

∫ t

0

dNis

1− F̂Y (s−)
.

Step b. For d ≥ 1, define (B̂d, ĥd) as the minimizer of cv(B, h) over all B ∈
Gr(d,Rp) and h ∈ R; then, calculate ĉv(d) = cv(B̂d, ĥd). Because B is

identifiable only up to its column space, we use an iterative procedure for

separated B and h to implement the optimization problem.

Step b1. Choose a proper initial value (B̂
(0)
d , ĥ

(0)
d ). A possible choice of

ĥ
(0)
d is n−1/(2q+d). The choice of B̂

(0)
d is discussed further in Remark 1.

Step b2. For k = 1, 2, . . ., define ĥ
(k)
d as the minimizer of cv(B̂

(k−1)
d , h).
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This step is a univariate optimization problem, which can be solved

using common methods such as the gradient descent and Newton-type

algorithms.

Step b3. Define B̂
(k)
d as the minimizer of cv(B, ĥ

(k)
d ). The practical im-

plementation is discussed in Remark 1.

Step b4. Repeat Steps b2–b3 until |cv(B̂
(k)
d , ĥ

(k)
d )− cv(B̂

(k−1)
d , ĥ

(k−1)
d )| <

ε, for some pre-chosen ε > 0.

Step c. Repeat Step b until d = d̂ with ĉv(d̂ + 1) > ĉv(d̂). The proposed

estimator (B̂, ĥ) is then defined as (B̂
d̂
, ĥ

d̂
).

In Appendix A.4, we show that cv(B, h) converges to the prediction risk in

(3.3) as n → ∞. Thus, its minimizer provides a valid estimator for the central

subspace. A distinguishing feature of our estimation procedure is that it esti-

mates the basis matrix and the dimension of the central subspace simultaneously.

Thus, it requires less computing time than existing methods do (Xia, Zhang and

Xu (2010); Nadkarni, Zhao and Kosorok (2011)). Moreover, the bandwidth used

in the estimation criterion is also selected at the same time, and can be used to

estimate the conditional survival functions after obtaining the estimated central

subspace. Although the cross-validation criterion may not be convex in d for

small samples, it is asymptotically convex in d, such that the stopping rule of

the forward-searching procedure ensures convergence of the proposed estimator

to the global optimum in large samples.

Remark 1. Step b3 can be performed in two ways. First, the Newton-type

optimization algorithms for Grassmann manifolds (Edelman, Arias and Smith

(1999); Adragni, Cook and Wu (2012)) can be applied to solve the minimization

problem. We suggest using the method of Xia, Zhang and Xu (2010) to determine

the initial value, which can be computed quickly and does not rely on additional

distributional assumptions, as is required in some other existing methods. An

alternative way to implement Step b3 is to employ a local coordinate system of

the Grassmann manifold (Ma and Zhu (2013)), which transforms the Grassmann

manifold optimization to an unconstrained optimization of (p−d)×d free param-

eters. The transformation is possible through Gaussian elimination, given a con-

sistent initial value, and a Newton-type algorithm (Fletcher and Reeves (1964))

can be employed directly in the resulting optimization problem. In limited sim-

ulations, we found that two methods exhibit similar performance. However, the

latter requires slightly less computing time and, thus, is recommended.
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Remark 2. Although a cross-validation criterion has also been considered (Xia,

Zhang and Xu (2010)), the cross-validation values can be unbounded and are

sensitive to bandwidth selection. On the other hand, our proposed method fits

the observed failure process using its conditional mean. As a result, the proposed

cross-validation function is bounded.

Based on the notation and assumptions in Appendix A.2, the large-sample

properties of our proposed estimator are established in the following theorem.

Theorem 1. Suppose that Assumptions A1–A5 are satisfied. Then, pr(d̂ =

d0)→ 1, ĥ
d̂

= Op{n−1/(2q+d0)}, and

√
nvec(B̂ −B0)1{d̂ = d0}

d→ Npd0(0, V −1(B0)E{S⊗2(B0)}V −1(B0))

as n→∞. The asymptotic variance is defined in the Appendix.

Remark 3. We show that ĥd = Op{n−1/(2q+d)} for each fixed d in the proof

of Theorem 1. Coupled with the restriction in Assumption A3, the order of the

kernel function should satisfy q > max{2, (d + 2)/2}. Because we always use a

symmetric kernel function with an even order, and require that the order be as

small as possible, a suggested choice is to take q = max{4, 2b(d+ 6)/4c} for each

working dimension d. Because q ≥ 4, in the practical implementation, we use the

bi-weight kernel K(u) = (105/64)(1−3u2)(1−u2)21(|u| ≤ 1). More details about

higher-order kernel functions can be found in the literature (Hansen (2005)).

4. Simulation Studies

In this section, we investigate the finite-sample performance of our proposed

estimator, and compare it with that of the hMAVE (Xia, Zhang and Xu (2010))

and ICPW (Lu and Li (2011)) estimators. We also performed additional simula-

tions using the IRE estimator (Nadkarni, Zhao and Kosorok (2011)); the results

were qualitatively similar to the ICPW estimator, and are not presented here.

We first consider two different settings, which are slight modifications to existing

examples (Xia, Zhang and Xu (2010)). The first is a proportional hazard model

M1. T = Λ−1
0 {ε exp(6BT

0 X + 1)},

where ε ∼ Exp(1) and X = (X1, . . . , X7) ∼ N(0, I7) are independent, B0 =

(−0.5, 0, 0.5, 0,−0.5, 0, 0.5)T, and Λ−1
0 (v) = Φ{5(v − 2)} with Φ(·) being the cu-

mulative distribution function of the standard normal distribution. The censoring
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time follows C = Φ(2X2 + 2X3) + c1, where c1 is a constant used to control the

proportions of the censoring. The second setting is a nonlinear model

M2. T = exp{5− 10(1− 21/2BT

0 X)2 + ε},

where ε ∼ N(0, 0.22), Xk ∼ Uniform(0, 1) independently, for k = 1, . . . , 7, and

B0 = 2−1/2(1, 0, 0, 0, 1, 0, . . . , 0)T. Furthermore, the censoring time is set as C =

c221/2βT

cX, where βc = 2−1/2(0, 1, 0, 0, 1, 0, . . . , 0)T and c2 is used to control the

censoring rate. A more complicated model setting is also considered:

M3. λT (t |X) = 10(φ(t− 4) exp(−XTβ1) + φ(t− 8) exp(−0.5XTβ2)

+ φ(t− 14) exp(2XTβ3)),

where X = (X1, . . . , X20), φ is the standard normal density function, β1 =

(1, 0, 0, 0.1, . . . , 0.1), β2 = (0, 1, 0, 0.1, . . . , 0.1), β3 = (0, 0, 1, 0.1, . . . , 0.1), and

Xk ∼ Uniform(0, 10) are independently generated, for k = 1, . . . , 20. The true

basis matrix is hence B0 = (β1, β2, β3). The censoring time C = c221/2βT

cX,

where βc = 2−1/2(0, 1, 0, 0, 1, 0, . . . , 0)T, and c3 is used to control the censoring

rate. All settings are implemented through 1,000 simulations and the estimation

errors for an estimator B̂ are measured by the Frobenius norm of B̂(B̂TB̂)−1B̂T−
B0(BT

0B0)−1BT

0 .

The simulation results are displayed in Tables 1–2, and show that the pro-

posed method selects the correct structure dimension very often. For all settings,

the proportion of simulations that select the true dimension increases with the

sample size. In addition, our proposed estimator has a smaller average estimation

error than those of the hMAVE and ICPW estimators, whereas the variabilities

of the estimation errors are fairly comparable. In an ICPW estimation, the con-

ditional censoring distribution is estimated by a flexible kernel-weighted local

Kaplan-Meier estimator, which suffers from the curse of dimensionality, and is

highly variable when the censoring rate is low; a related conclusion can be found

in Lu and Li (2011). Moreover, the poor performance of the ICPW estimator

under M2 is probably caused by an additional violation of a linearity condition

in covariate distributions.

Because the estimation of the conditional survival function of the observed

time is not required in the proposed method, the final estimator is more robust to

a misspecification of the censoring distribution, censoring rate, and/or dimension

of the covariates. From the computational time shown in Table 2, the proposed

method is comparable to hMAVE, and is often faster. Even though hMAVE
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adopts a local linear regression to estimate the gradient of the conditional haz-

ard function and avoid the nonlinear minimization in the estimation, the method

needs an iterative refinement procedure to update the estimator to deal with

the curse of dimensionality. In our method, we adopt a forward-selection proce-

dure from a lower dimension to avoid high-dimensional smoothing and estimate

the cumulative hazard functions directly, conditioning on fixed subspaces. Be-

cause there is no additional refinement, the proposed estimation procedure often

performs faster than hMAVE.

5. Applications

5.1. Worcester heart attack study data

The first example is based on the Worcester heart attack study data, which

were collected from 1975 to 2001 on all acute myocardial infarction patients

admitted to hospitals in the Worcester, Massachusetts Standard Metropolitan

Statistical Area. The main goal of this study is to describe factors associated with

trends over time in the incidence and survival rates following hospital admission

for acute myocardial infarction. Because the data set is not fully released, we use

a random subsample of 500 patients (Hosmer, Lemeshow and May (2008)) and

consider all 13 variables, which are displayed in the first two columns of Table 3.

In addition, all variables are standardized to have mean zero and unit variance.

There are 215 observed deaths in the study; hence the censoring rate is 57%.

The cross-validation values for the working dimensions d = 0, 1, 2 are 0.302,

0.247, and 0.264, respectively, with corresponding standard errors 0.022, 0.024,

and 0.023. The standard errors are obtained from Hájek projections, because

cv(B, h) has an asymptotic representation as a U-statistic. Thus, the estimated

structural dimension is one, and the estimated coefficients of the linear index

b̂TX, with corresponding standard errors, are shown in the third column of Table

3. The estimated bandwidth is 2.538. In general, we detect the same covari-

ates as those detected by hMAVE (b̌1, b̌2, b̌3, b̌4) (Xia, Zhang and Xu (2010)),

except for age and complete heart block. Our estimated structural dimension

is much smaller than that obtained by hMAVE, and a central subspace with a

smaller dimension is preferred in practice. The sample correlation of b̂TX and

(b̌T1X, b̌
T

2X, b̌
T

3X, b̌
T

4X) is (−0.112, 0.416,−0.399,−0.747). Thus, the fourth direc-

tion is more significant when selected using our cross-validation criterion. To

assess the model fitting for the observed failure process, we also calculate the

cross-validation value based on hMAVE (0.335), which is 36% larger than our
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cross-validation value of 0.247, with a 95% confidence interval of (0.200, 0.295).

Thus, our method arrives at a more parsimonious estimate and a better fit to

the observed data.

5.2. AIDS clinical trials group study 175

The second example is taken from randomized clinical trial that compared

the effects of different treatments on adults infected with the human immunod-

eficiency virus type I (HIV-1), whose CD4 T cell counts were between 200 and

500 per cubic millimeter, at baseline. The patients were randomly assigned to

four treatment groups: zidovudine, zidovudine plus didanosine, zidovudine plus

zalcitabine, and didanosine, where zidovudine (i.e., the first group) is consid-

ered as the baseline comparison group. There are 2,467 patients in this data

set. Excluding subjects with missing values or unrecorded relevant information,

we consider a subset of 2,139 subjects from the original data, which is found in

the R package speff2trial. A detailed description of the data can be found

in the literature (Hammer et al. (1996)). The events of interest are the diag-

nosed acquired immune deficiency syndrome (AIDS), which is defined as first

occurrence of a decline in CD4 T cell count of at least 50, or death. In this

work, we are interested in assessing the effects of baseline covariates in addi-

tion to the treatments X = (X1, . . . , X17) on the patients’ time to event T .

The events are observed for 521 subjects (24.4%). The covariates considered

are listed in the first two columns of Table 4. The covariates X1 and X2 are

calculated as log(CD4 counts + 1) and log(CD8 counts + 1), respectively, and

are then centralized and standardized. The covariates X6, X7, and X11 are

log-transformed, centralized, and standardized, and X14 is centralized and stan-

dardized from the original covariates. In the literature, some studies have found

that log(CD4 counts + 1) and log((CD4 counts + 1)/(CD8 counts + 1)) may be

better predictors than the original log(CD4 counts+1) and log(CD8 counts+1).

However, under the proposed semiparametric model, the new designed covariates

are simply linear combinations of the originals. Thus, they lead to the same con-

ditional survival model and prediction values for the survival time. For the sake

of convenience, we simply choose log(CD4 counts + 1) and log(CD8 counts + 1)

as our design covariates.

The cross-validation values for the working dimensions d = 0, 1, 2, 3 are 0.193,

0.190, 0.188, and 0.189, respectively, with standard errors 0.010, 0.010, 0.010, and

0.010. Our proposed method reveals two linear indices to explain the relationship

between T and X. The coefficients of the indices (̂bT1X, b̂T2X) and the correspond-
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ing standard errors are shown in the third and fourth columns of Table 4. The

standard errors are obtained by estimating the asymptotic covariance matrix in

Theorem 1. The estimated bandwidth is 4.251. The 95% confidence intervals of

the treatment arms do not include zero in both central subspace directions, but

have opposite signs. To further understand the direction-of-treatment effects, we

examine the survival probabilities pr{Y > t | b̂T1X = b̂T1X̄ + re1, b̂
T

2X = b̂T2X̄} and

pr{Y > t | b̂T1X = b̂T1X̄, b̂T2X = b̂T2X̄ + re2}, where X̄ is the sample mean of X,

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), and r is a perturbation parameter. We

plot the estimates for t = 1 and 2 years in Figure 1. As shown in the solid lines,

the survival probabilities increase with an increase in CD4 counts, but remain

constant or decrease with an increase in CD8 counts, holding other factors con-

stant. This also shows that survival increases with the first linear index, but

decreases, in general, with the second. Therefore, the three treatment arms are

associated with improved survival compared with that of the zidovudine only

group. Moreover, the relationship between the second linear index and the con-

ditional survival function is nonlinear, which may not be discovered by common

regression models.

We also implement the hMAVE method for this data set, yielding an one-

dimensional central subspace with basis matrix b̌ = (0.027,−0.029,−0.318, 0.178,

−0.237, 0.024,−0.053,−0.490,−0.049, 0.327, 0.155,−0.388,−0.071, 0.343,−0.269,

−0.085,−0.282)T. The cross-validation criterion based on the linear index b̌TX

gives a value of 0.193, which shows a slightly poorer prediction accuracy than

that of our estimated linear indices.

6. Discussion

Sufficient dimension reduction is a flexible alternative to regression models to

summarize the relationship between a response and a covariate vector when there

is not enough prior knowledge to assume a particular regression model. This is

well studied for completely observable response data, but far less so for survival

data. In this work, we consider dimension reduction for survival data and pro-

pose a novel estimation method to estimate the central subspace. This method

requires no inverse probability weighting and outperforms existing methods in

numerical studies. An appealing feature of the sufficient dimension reduction

model is that it does not assume any stringent structure for the conditional sur-

vival function. Furthermore, we estimate the effective dimensions simultaneously

with the basis matrix.
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To estimate the central subspace, the existing literature often suggests us-

ing separate criteria to estimate the basis matrix and the structural dimension.

Thus, a longer computation is required to calculate the different criteria. The

main advantage of the proposed method is that we can estimate the basis and

dimension using a single criterion. Thus, the computation burden is eased, in

practice. Moreover, the tuning bandwidth can be selected at the same time.

We have shown that the estimated bandwidth is Op{n−1/(2q+d0)}, which reaches

the optimal rate for a nonparametric estimation of the conditional survival func-

tion (Dabrowska (1992)). Indeed, this bandwidth minimizes the integrated mean

squared error miseB0
(h), asymptotically. Examining the weak convergence of the

estimated conditional survival function is left to future research.

The investigation of the semiparametric efficiency bound for the central sub-

space under the survival regression setting remains an open problem. A profile

likelihood approach may reach the semiparametric efficiency bound for a fixed di-

mension, but would be unable to select the structural dimension simultaneously,

because the associated bandwidth estimator would be sub-optimal, for reasons

given in the literature (Hall (1987)). Thus, it becomes a major challenge to find

a simple criterion that can be used to estimate the structural dimension and the

basis matrix simultaneously and efficiently.

Owing to its connection with the counting process framework, this study

provides a novel way to extend the idea into different survival data structures,

for example, to left-truncated response or recurrent events. These topics, too,

are left to future research.
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A. Appendix

A.1. Proof of Proposition 2

Proof. In Section 3 we have seen that the minimum of the prediction risk in (5)

is attained if and only if span(B) ⊇ span(B0), which reduces the prediction risk

into σ2
0 +miseB(h). By paralleling the proof steps of Du and Akritas (2002), we
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Table 1. The proportion of estimated structural dimension (d̂) and the means and
standard deviations (s.d.) of estimated bandwidths. c.r. denotes censoring rate (%).

model c.r. n
d̂ bandwidth

0 1 2 3 4 5 6 7 mean s.d.

M1 20 100 0.000 0.924 0.076 0.000 0.000 0.000 0.000 0.000 0.010 0.0351

200 0.000 0.950 0.050 0.000 0.000 0.000 0.000 0.000 0.012 0.0385

400 0.000 0.978 0.022 0.000 0.000 0.000 0.000 0.000 0.025 0.1082

50 100 0.000 0.934 0.066 0.000 0.000 0.000 0.000 0.000 0.009 0.0330

200 0.000 0.941 0.059 0.000 0.000 0.000 0.000 0.000 0.007 0.0292

400 0.000 0.962 0.038 0.000 0.000 0.000 0.000 0.000 0.007 0.0274

M2 20 100 0.010 0.875 0.114 0.001 0.000 0.000 0.000 0.000 0.019 0.0720

200 0.001 0.957 0.040 0.002 0.000 0.000 0.000 0.000 0.012 0.0986

400 0.000 0.981 0.019 0.000 0.000 0.000 0.000 0.000 0.003 0.0191

50 100 0.013 0.799 0.183 0.005 0.000 0.000 0.000 0.000 0.030 0.0773

200 0.000 0.919 0.078 0.003 0.000 0.000 0.000 0.000 0.014 0.0727

400 0.000 0.976 0.023 0.001 0.000 0.000 0.000 0.000 0.006 0.0645

M3 20 100 0.000 0.000 0.248 0.571 0.172 0.008 0.001 0.000 1.650 0.5278

200 0.000 0.000 0.176 0.688 0.131 0.005 0.000 0.000 1.551 0.4705

400 0.000 0.000 0.069 0.848 0.080 0.002 0.001 0.000 1.456 0.3111

50 100 0.000 0.000 0.290 0.566 0.136 0.007 0.001 0.000 1.553 0.4978

200 0.000 0.000 0.252 0.618 0.120 0.009 0.000 0.001 1.434 0.4258

400 0.000 0.000 0.200 0.699 0.099 0.002 0.000 0.000 1.389 0.3921
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Figure 1. The estimated conditional survival probabilities as functions of covariates,
perturbed along the leading coefficient of the first (solid line) and second (dashed line)
linear indices around the mean covariates.
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Table 2. The means and standard deviations (s.d.) of the basis estimation errors, and
the averaged computing time (in seconds). c.r. denotes censoring rate (%).

model c.r. n
proposed hMAVE ICPW

mean s.d. time mean s.d. time mean s.d. time

M1 20 100 0.087 0.0860 3.05 0.127 0.1126 3.19 0.489 0.4957 0.03

200 0.051 0.0522 13.05 0.073 0.0638 11.81 0.217 0.2854 0.14

400 0.038 0.0461 57.66 0.049 0.0576 97.00 0.077 0.1003 0.57

50 100 0.076 0.0892 3.11 0.109 0.1143 2.93 0.245 0.1495 0.04

200 0.039 0.0540 14.56 0.055 0.0694 11.80 0.113 0.0675 0.16

400 0.028 0.0414 54.59 0.036 0.0509 51.96 0.057 0.0341 0.61

M2 20 100 0.140 0.3303 4.06 0.147 0.3309 19.36 0.911 0.0934 0.04

200 0.016 0.1184 15.92 0.019 0.1193 65.64 0.912 0.0749 0.18

400 0.001 0.0004 63.28 0.002 0.0009 278.08 0.910 0.0558 0.68

50 100 0.173 0.3413 3.69 0.198 0.3379 23.33 0.960 0.0514 0.04

200 0.040 0.1727 15.33 0.055 0.1737 72.37 0.961 0.0415 0.18

400 0.004 0.0435 62.22 0.010 0.0443 266.22 0.962 0.0299 0.63

M3 20 100 1.714 0.6722 10.45 3.824 0.2984 23.42 3.146 0.2642 0.06

200 1.555 0.7308 45.33 3.677 0.2791 86.61 2.937 0.2217 0.22

400 1.410 0.7672 197.58 3.670 0.3039 335.90 2.825 0.2053 0.87

50 100 1.865 0.5943 9.26 4.432 0.4375 24.89 3.375 0.3008 0.06

200 1.677 0.6275 44.05 4.003 0.3615 94.08 3.043 0.2497 0.23

400 1.550 0.6666 178.37 3.792 0.3633 333.52 2.880 0.2086 0.89

can derive that

Λ̂(t, BTx)− Λ(t, BTx) =
1

n

n∑
i=1

{
Nit

R(t, BTx)
−
∫ t

0

Ris
R(s,BTx)

dΛ(s,BTx)

}
Kh{BT(Xi − x)}
fBTX(BTx)

+Op(h
2q + 1/(nhd)3/4), (A.1)

where fBTX(u) is the density of BTX. By substituting (A.1) into miseB(h)

and from the arguments of Härdle and Marron (1985); Härdle, Hall and Marron

(1988), we can show that miseB(h) = amiseB(h){1 + op(1)}, where

amiseB(h) = h2q

∫ ∞
0

∫
B2(t,x;B)dFX(x)dFY (t)

+(nhd)−1

∫ ∞
0

∫
V(t,x;B)dFX(x)dFY (t),
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Table 3. The estimated coefficients and corresponding standard errors for Worcester
heart attack study data.

collected variable covariate b̂

initial systolic blood X1 1

initial diastolic pressure X2 0.836(0.0954)

congestive heart complications X3 −0.486(0.0845)

age (in years) X4 0.125(0.0792)

myocardial infarction order X5 −0.173(0.0917)

body mass index X6 −0.528(0.1181)

gender X7 −0.510(0.0683)

initial heart rate X8 0.553(0.0888)

history of cardiovascular disease X9 −0.062(0.0727)

atrial fibrillation X10 −0.086(0.0816)

cardiogenic shock X11 0.621(0.0802)

complete heart bolck X12 0.054(0.0319)

myocardial infarction type X13 −0.506(0.1061)

B2(t,x;B) =
∫ ∫ t

0 SY (s − |x)dB2
Λ(s,x;B), and V(t,x;B) =

∫ t
0 SY (s − |x)dV(s,

x;B) with FX(x) being the marginal distribution function of X. When h =

cdn
−1/(2q+d) with

cd =

{
d
∫∞

0

∫
V(t,x;B)dFX(x)dFY (t)

2q
∫∞

0

∫
B2(t,x;B)dFX(x)dFY (t)

}1/(2q+d)

,

amiseB(h) has minimum
∫∞

0

∫
{c2q
d B

2(t,x;B) + c−dd V(t,x;B)}dFX(x)dFY (t),

which is increasing in d. Thus, the prediction risk in (5) attains its minimum

when B = B0 and h = cd0n
−1/(2q+d0).

A.2. Notations and Assumptions

Let (·)⊗ be the Kronecker power of a vector. Define

f [m](x;B)=∂mBTx[E{(X− x)⊗m |BTX=BTx}fBTX(BTx)],

G
[m]
R (t,x;B)=∂mBTx[E(Rt |BTX=BTx)E{(X− x)⊗m |BTX=BTx}fBTX(BTx)],

G
[m]
H (t,x;B)=∂mBTx[E(Nt |BTX=BTx)E{(X− x)⊗m |BTX=BTx}fBTX(BTx)],

for m = 0, 1, 2. The estimators Λ̂(t, BTx) and its derivatives ∂mvec(B)Λ̂(t, BTx)
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will be shown to converge uniformly to Λ(t, BTx) and Λ[m](t,x;B) =
∑m

`=0

(
m
`

)
R[`−m](s,x;B)dH [`](s,x;B), where

R[m](t,x;B) =

m∑
`=0

(
m

`

)
G

[`]
R (t,x;B)f [`−m](x;B),

H [m](t,x;B) =

m∑
`=0

(
m

`

)
G

[`]
H (t,x;B)f [`−m](x;B),

f [−1](x;B) =− f [1](x;B)

f2
BTX(BTx)

, f [−2](x;B) =
2(f [1](x;B))2

f3
BTX(BTx)

− f [2](x;B)

f2
BTX(BTx)

,

for m = 1, 2. Moreover, to derive the asymptotic normality of our proposed esti-

mator, we also define the corresponding score vectors and information matrices

of cv(B, h):

S(B) =

∫ ∞
0

{(
Nt −

∫ t

0
RsdΛ(s,BTX)

)∫ t

0
RsdΛ[1](s,X;B)

}
dFY (t),

V (B) = E

(∫ ∞
0

[(∫ t

0
RsdΛ[1](s,X;B)

)⊗2

−
{
Nt −

∫ t

0
RsdΛ(s,BTX)

}∫ t

0
RsdΛ[2](s,X;B)

]
dFY (t)

)
.

The following regularity conditions are imposed for our theorem:

A1 ∂q+2
u E(Rt |BTX = u), ∂q+2

u E(Nt |BTX = u), ∂q+mu E{(X − x)⊗m |BTX =

u}, and ∂q+2
u fBTX(u) are Lipschitz continuous in u with the Lipschitz con-

stants being independent of (t,x, B).

A2 inf(x,B) fBTX(BTx) > 0 and inf(t,x,B)R(t, BTx) > 0.

A3 For d ≥ 1, there exist δ ∈ (1/(4q), 1/max{2d + 2, d + 4}) and positive

constants hl,d and hu,d such that both ς and h fall in the interval Hδ,n =

[hl,dn
−δ, hu,dn

−δ].

A4 inf{B:d<d0} b
2
0(B) > 0 and b20(B) = 0 if and only if B = B0 when d = d0.

A5 V (Bd,0) is non-singular for d ≥ d0.

Assumptions A1–A2 are smoothness and boundedness conditions for the popu-

lation functions to ensure the uniform convergence of kernel estimators used in

cv(B, h). Moreover, assumption A3 is used to remove the remainder term in
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Table 4. The estimated coefficients and corresponding standard errors for ACTG175
data.

collected variable covariate b̂1 b̂2

CD4 T cell count X1 1 0

CD8 T cell count X2 0 1

treatment arm

zidovudine and didanosine X3 2.964(0.1327) −1.727(0.2006)

zidovudine and zalcitabine X4 1.666(0.0833) −1.584(0.1852)

didanosine X5 1.284(0.1188) −2.204(0.1188)

v.s. zidovudine

age (in years) X6 −0.172(0.0408) 0.281(0.0536)

weight (in kg) X7 −0.217(0.0256) 0.862(0.0475)

hemophilia X8 1.002(0.1592) 2.045(0.2823)

homosexual activity X9 0.007(0.0955) 0.232(0.1490)

history of intravenous drug use X10 0.340(0.0885) −1.933(0.1589)

Karnofsky score X11 0.489(0.0205) −1.086(0.0729)

prior treatment

non-zidovudine antiretroviral X12 0.947(0.2025) 3.012(0.2981)

zidovudine use in the 30 days X13 1.686(0.1117) 7.248(0.2151)

number of days of antiretroviral X14 0.115(0.0628) 1.964(0.1229)

race X15 −0.035(0.0597) −1.061(0.1269)

gender X16 1.192(0.1372) 4.020(0.1503)

symptomatic indicator X17 −1.033(0.0445) 0.891(0.0894)

the approximation of cvY (B, h) and cv(B, h) to their target functions and to

establish the n1/2-consistency of B̂. Assumptions A4–A5 are made to ensure the

identifiability of B0. One should also note that only BTX are required to have

continuous density. Thus, some discrete covariates are allowed in our proposal

as long as there exists at least one continuous covariate. Related conditions can

also be found in assumption A1 in Ma and Zhu (2013).

A.3. Preliminary Lemmas

We first derive the large sample properties of ∂mvec(B)Λ̂(t, BTx) for m = 0, 1, 2.

To simplify our presentation, the following notations are further introduced:

Ĝ
[m]
R,c(t,x;B) = ∂mvec(B){R̂(t, BTx)f̂(BTx)} −G[m]

R (t,x;B),
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Ĝ
[m]
H,c(t,x;B) = ∂mvec(B){Ĥ(t, BTx)f̂(BTx)} −G[m]

H (t,x;B),

Ĥ [m]
c (t,x;B) = ∂mvec(B)Ĥ(t, BTx)−H [m](t,x;B),

R̂[m]
c (t,x;B) = ∂mvec(B)R̂(t, BTx)−R[m](t,x;B),

Λ̂[m]
c (t,x;B) = ∂mvec(B)Λ̂(t, BTx)− Λ[m](t,x;B)

f̂ [m]
c (x;B) = ∂mvec(B)f̂(BTx)− f [m](x;B),

where f̂(BTx) = n−1
∑n

i=1Kh{BT(Xi − x)}. Moreover, we define the strong

representations for ∂mvec(B)Λ̂(t, BTx), m = 0, 1, as follows:

1

n

n∑
i=1

ξΛ,i(t,x;B) =

∫ t

0

dĤ
[0]
c (s,x;B)

R(s,BTx)
− R̂

[0]
c (s,x;B)dΛ(s,BTx)

R(s,BTx)
,

1

n

n∑
i=1

ξ
[1]
Λ,i(t,x;B) =

∫ t

0

dĤ
[1]
c (s,x;B)

R(s,BTx)
+
R̂

[1]
c (s,x;B)dΛ(s,BTx)

R(s,BTx)

− R̂[1](s,x;B)dĤ
[0]
c (s,x;B)

R2(s,BTx)

− R̂
[0]
c (s,x;B){dH [1](s,x;B) + 2R[1](s,x;B)dΛ(s,BTx)}

R2(s,BTx)
.

Since the VC-indices of {1(Y ≤ y) : y ∈ R}, {a1K
(k)(XTb + a2) : a1, a2 ∈ R, b ∈

Rd}, and {(X− x)⊗k : x ∈ Rd} are 1, d, and 1, respectively for k = 0, 1, 2, these

classes is ensured to be Euclidean by Lemma 2.12 of Pakes and Pollard (1989).

Coupled with Lemma 2.14 of Pakes and Pollard (1989) and Theorem II.37 of

Pollard (1984), we can show that

sup
x,B
‖∂mvec(B)f̂(BTx)− E{∂mvec(B)f̂(BTx)}‖ = o

{
log n

n1/2h(d+2m)/2

}
,

sup
x,B
‖∂mvec(B)(R̂(t, BTx)f̂(BTx))− E[∂mvec(B)(R̂(t, BTx)f̂(BTx))]‖

= o

{
log n

n1/2h(d+2m)/2

}
,

sup
x,B
‖∂mvec(B)(Ĥ(t, BTx)f̂(BTx))− E[∂mvec(B)(Ĥ(t, BTx)f̂(BTx))]‖

= o

{
log n

n1/2h(d+2m)/2

}



1306 HUANG AND CHAN

almost surely. By assumption A1, one can further derive that

sup
x,B
‖E{∂mvec(B)f̂(BTx)} − f [m](x;B)‖ = O(hq),

sup
x,B
−‖E[∂mvec(B){R̂(t, BTx)f̂(BTx)}]−G[m]

R (t,x;B)‖ = O(hq),

sup
x,B
‖E[∂mvec(B){Ĥ(t, BTx)f̂(BTx)}]−G[m]

H (t,x;B)‖ = O(hq).

Coupled with the triangular inequality, we obtain the following lemma:

Lemma 1. Suppose that assumption A1 is satisfied. Then,

sup
x,B
‖f̂ [m]
c (x;B)‖ = O(hq) + o

{
log n

n1/2h(d+2m)/2

}
,

sup
x,B
‖Ĝ[m]

R,c(t,x;B)‖ = O(hq) + o

{
log n

n1/2h(d+2m)/2

}
,

sup
x,B
‖Ĝ[m]

H,c(t,x;B)‖ = O(hq) + o

{
log n

n1/2h(d+2m)/2

}
almost surely.

By applying the Taylor expansion thoerem and the results in Lemma 1, one

can further ensure from assumptions A2–A3 that

Lemma 2. Suppose that assumptions A1–A3 are satisfied. Then,

sup
x,B

∥∥∥∥∥Λ̂[0]
c (t,x;B)− 1

n

n∑
i=1

ξΛ,i(t,x;B)

∥∥∥∥∥ = op(n
−1/2),

sup
x,B

∥∥∥∥∥Λ̂[1]
c (t,x;B)− 1

n

n∑
i=1

ξ
[1]
Λ,i(t,x;B)

∥∥∥∥∥ = op(n
−1/2).

A.4. Proof of Theorem 1

Proof. The proof is very similar to that in Huang and Chiang (2017). Thus, we

only outline the steps here. Let ecv(B, h) = σ2
0 + b20(B) + amiseB(h). The first

step is to show the uniform convergence of cv(B, h) to ecv(B, h). By substi-

tuting Eit = Nit −
∫ t

0 RisdΛ(s,BT

0 x), Mit(B) =
∫ t

0 Risd{Λ(s,BT

0 x)− Λ(s,BTx)},
and Pit(B) =

∫ t
0 Risd{Λ(s,BTx) − Λ̂(s,BTx)} into the proof of Theorem 1 in
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Huang and Chiang (2017), we have

sup
B,h

|cv(B, h)− ecv(B, h)|
amiseB(h)

= o(1) a.s. for span(B) ⊇ span(B0), (A.2)

sup
B,h

|cv(B, h)− ecv(B, h)|
b0(B)amise

1/2
B (h)

= O(1) a.s. for span(B) + span(B0). (A.3)

The second step is to show that the underestimated dimension will be asymp-

totically excluded. Denote dcv(B, h) = cv(B, h)− ecv(B, h). By virtue of the

minimizer (B̂, ĥ) of cv(B, h) and the Boole’s inequality, we have the following

inequalities:

1 ≤pr{b20(B̂) < ε}

+ pr

{
b20(B̂) ≥ ε, dcv(B̂, ĥ)

b0(B̂)
+

dcv(B0, h0)

ε1/2
≥ ε1/2 − amiseB0

(h0)

ε1/2

}
(A.4)

for any ε > 0. Since dcv(B̂, ĥ)/b0(B̂) = Op{amise1/2

B̂
(ĥ)} → 0, dcv(B0, h0)/ε1/2

= op{amiseB0
(h0)} → 0, and amiseB0

(h0)→0, one has pr{b20(B̂) < ε} → 1

for any ε > 0. Now by taking ε = inf{B:d<d0} b
2
0(B)/2 and using the Boole’s

inequality again, we have pr(d̂ ≥ d0)→ 1.

In the third step, we derive the asymptotic properties of B̂d for d ≥ d0.

Similar to the derivation in the second step, we can also show that

pr{b20(B̂d) < ε} → 1 as n→∞ for any ε > 0. (A.5)

Since span(B̂d) ⊇ span(B0) implies that b20(B̂d) = 0, we now consider the case

when span(B̂d) + span(B0) and, hence, B̂d
p→ Bd,0. By the first-order Taylor

expansion of ∂vec(B)cv(B, h) at B = Bd,0 and ∂vec(B)cv(B̂d, ĥd) = 0, it yields

that

[Ipd + V −1(Bd,0){∂2
vec(B)cv(B̂∗d , ĥd)− V (Bd,0)}]n1/2vec(B̂d −Bd,0)

= n1/2V −1(Bd,0)∂vec(B)cv(Bd,0, ĥd) (A.6)

where vec(B̂∗d) lies on the line segment between vec(B̂d) and vec(Bd,0). Similar

to the approximation in the proof of Theorem 2 in Huang and Chiang (2017),

we have

n1/2vec(B̂d −Bd,0)
d→ N(0, V −1(Bd,0)E{S⊗2(Bd,0)}V −1(Bd,0)), (A.7)
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and, hence, b20(B̂) = Op(n
−1). Coupled with assumption A3, it further implies

that

b20(B̂)

amiseB̂(ĥ)
= op(1). (A.8)

To show the consistency of (d̂, ĥ) and asymptotic normality of B̂, we define

the following sets first:

E0 =
{
b20(B̂) < log

n

n
, ĥ ∈ H

1/(2q+d̂),n
, d̂ = d0

}
, E1 =

{
b20(B̂) ≥ log

n

n

}
,

E2 ={d̂ < d0}, E3 =

{
b20(B̂) < log

n

n
, d̂ ≥ d0, ĥ ∈ Hδ̂,n

with δ̂ 6= 1

(2q + d̂)

}
,

E4 =
{
b20(B̂) < log

n

n
, ĥ ∈ H

1/(2q+d̂),n
, d̂ > d0

}
,

and Econ={dcv(B̂, ĥ) + dcv(B0, h0) ≥ ecv(B̂, ĥ)− ecv(B0, h0)}.

By the minimizer (B̂, ĥ) of cv(B, h) and the Boole’s inequality, one has

1 = pr{cv(B̂, ĥ) ≤ cv(B0, h0)} ≤ pr(E0) +

4∑
m=1

pr(Econ ∩ Em). (A.9)

From b20(B̂) = Op(n
−1), we have

pr(Econ ∩ E1) ≤ pr(E1)→ 0 as n→∞. (A.10)

Moreover, from pr(d̂ ≥ d0)→ 1 we have

pr(Econ ∩ E2) ≤ pr(d̂ < d0)→ 0 as n→∞. (A.11)

Since amiseB(h) = O{h2q+1/(nhd)}, amiseB0
(h0) = O{n−2q/(2q+d0)} ≤ Cn−2q/

(2q+d̂) for some constant C when d̂ ≥ d0 as n→∞. Thus,

pr(Econ ∩ E3)

≤ pr

{
dcv(B̂, ĥ) + dcv(B0, h0)

−n2q/(2q+d̂)
≥B2

n−2q(δ̂−1/(2q+d̂)) + Vn−d̂(1/(2q+d̂)−δ̂) − C,

d̂ ≥ d0

}
→ 0, (A.12)
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where B2
=
∫∞

0

∫
B2(t,x;B0)dFX(x)dFY (t) and V =

∫∞
0

∫
V(t,x;B0)dFX(x)

dFY (t), since the left-hand side converges to zero by (A.2), (A.3), and (A.8) and

the right-hand side tends to infinity when δ̂ 6= 1/(2q+ d̂) as n→∞. Further, we

also have

pr(Econ ∩ E4)

≤ pr

{
dcv(B̂, ĥ) + dcv(B0, h0)

n−2q/(2q+d0)
≥ C

d̂
n2q/(2q+d0)−2q/(2q+d̂) − Cd0 , d̂ > d0

}
→ 0, (A.13)

since the left-hand side converges to zero by (A.2), (A.3), and (A.8) and the right-

hand side tends to infinity when d̂ > d0 as n→∞. By substituting (A.10)–(A.13)

into (A.9), we immediately have

pr(E0)→ 1 as n→∞. (A.14)

Finally, the asymptotic normality in Theorem 1 is ensured by (A.14) and (A.7).
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