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Abstract: Residual-based analysis is generally considered a cornerstone of statistical

methodology. For a special case of indirect regression, we investigate a residual-

based empirical distribution function and provide a uniform expansion of this esti-

mator, which is also shown to be asymptotically most precise. This investigation

naturally leads to a completely data-driven technique for selecting the regulariza-

tion parameter used in our indirect regression function estimator. The resulting

methodology is based on a smooth bootstrap of the model residuals. A simulation

study demonstrates the effectiveness of our approach.
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1. Introduction

In many experiments, we can make only indirect observations of the physical

process being observed. However, although important quantities of interest are

not directly available for statistical inferences in these so-called inverse problems,

images of these quantities under some transformation, such as a convolution, can

be used instead. Here, we consider an inverse regression model. We observe a

signal of interest from indirect observations

Yj =
[
Kθ
]
(xj) + εj , j = −n, . . . , n, (1.1)

where K is an operator specifying a convolution of the true underlying regression

θ with a distortion function ψ; that is,

[
Kθ
]
(xj) =

∫ 1/2

−1/2
θ(u)ψ(xj − u) du.

The resulting function Kθ can be viewed as a distorted regression function. We

assume that θ is a smooth periodic function, a common assumption in many
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inverse problems. According to Tsybakov (2009), this means that the Fourier

coefficients of θ are assumed to satisfy a crucial technical summability require-

ment (see Section 2 for further details).

We assume that ψ is known and behaves like a probability density function on

the interval [−1/2, 1/2], that is, ψ is positive-valued on the interval [−1/2, 1/2]

and integrates to one. Later, we specify further technical requirements for ψ.

However, to ensure that the convolution operation is well defined, ψ must be

extended periodically to the intervals [x−1/2, x+1/2], for each x ∈ [−1/2, 1/2].

The covariates xj in model (1.1) are uniformly distributed design points in the

interval [−1/2, 1/2]; that is, xj = j/2n, for j = −n, . . . , n. In addition, the

errors εj are assumed to be independent, have mean zero, and have a common

distribution function F . Note that the assumptions given above only guarantee

that model (1.1) is a well defined indirect regression model, where θ is identifiable

(see, e.g.,Cavalier and Golubev (2006); Mair and Ruymgaart (1996)).

Statistical inverse problems have received much attention related to con-

structing estimators for various densities and indirect regression models. In par-

ticular, early works consider the properties of estimators for a range of important

statistical inverse problems. Examples of such works include Masry (1991), who

investigates estimators of a multivariate density function in an errors-in-variables

model, using a deconvolution technique; Fan (1991), who derives the optimal

rates of convergence for the density estimators in these models; and Masry (1993),

who investigates estimators of a smooth multivariate regression function using

deconvolution techniques when the estimation includes contaminated covariates.

Later studies on statistical inverse problems such as those considered in (1.1)

yield a better understanding of the asymptotic properties of the estimators from

a theoretical perspective. Here, important results include those of Mair and

Ruymgaart (1996), who estimate an indirect regression function in a flexible

model based on Hilbert scales. This includes the popular case of Sobolev classes,

where the authors describe general regularization approaches for operator inver-

sion, and show that the considered estimators are, in fact, minimax optimal.

Cavalier and Tsybakov (2002) investigate an indirect heteroscedastic regression

model, and prove the minimax optimality of their estimators. Moreover, Cavalier

(2008) surveys the available literature for deconvolution estimators, and provides

minimax rates of reconstructions for several models, including that in (1.1).

More recently, statistical testing and model selection properties have been

considered in statistical inverse problems of the type in (1.1). Bissantz and Holz-

mann (2008) describe how to construct confidence intervals and confidence bands
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in univariate statistical inverse problems. Later, Proksch, Bissantz and Dette

(2015) generalize the univariate case in the previous study, and construct confi-

dence bands for an indirect regression function of multiple covariates. Marteau

and Mathé (2014) test for distorted signals using general regularization schemes.

The aforementioned deconvolution estimators are all based on projections

of the data and result in kernel-type estimators that depend on some kind of

regularization parameter. This quantity is analogous to the bandwidth found in

the usual nonparametric function estimators. The data-driven selection of this

parameter is an important problem that we examine closely in this article. In

general, the techniques used to choose a sequence of regularization parameters

focus on choosing a suitable estimator of the integrated mean squared error of

an indirect regression estimator, or on choosing some other related quantity (see

Section 3). Cavalier and Golubev (2006) make a particularly important con-

tribution to this problem by investigating the integrated mean squared error of

indirect regression estimators. Furthermore, they propose a suitably penalized

quantity based on a threshold of this important estimation performance metric.

The authors call this a risk hull approach because of the resulting bowl-shaped

objective function used to choose the parameter sequence. From another per-

spective, we can consider potential bootstrap approaches to this problem, where

we instead calculate the integrated mean squared error of a bootstrap version of

the indirect regression estimator. The bootstrap method for choosing the reg-

ularization parameter sequence appears to be particularly promising compared

with the risk hull approach.

We provide a statistical methodology for selecting a best fitting (most fea-

sible) regression estimator from a sequence of function estimators, based on ob-

servations from model (1.1), and using the resulting model residuals constructed

from the estimator θ̂; see (2.2):

ε̂j = Yj −
[
Kθ̂
]
(xj), j = −n, . . . , n.

Many statistical procedures are residual-based, including the bootstrap method-

ology for selecting the regularization that we investigate. This requires that

we first study the distribution function F of the model errors, which is usually

unknown and must be estimated.

To the best of our knowledge, this topic has not been studied before with

respect to statistical deconvolutions in a completely nonparametric setting. We

form an estimator of F using the empirical distribution function of the model
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residuals:

F̂(t) =
1

2n+ 1

n∑
j=−n

1
[
ε̂j ≤ t

]
=

1

2n+ 1

n∑
j=−n

1
[
Yj −

[
Kθ̂
]
(xj) ≤ t

]
, t ∈ R.

The estimator θ̂ is shown to be a suitable estimator of θ, such that we can study

the limiting behavior of F̂, which is new. In addition, this work reveals that new

and stronger conditions are required on the smoothness of θ in order for F̂ to be a

consistent estimator of F . Hence, any residual-based inference procedure relying

on F̂ also requires this stronger smoothness condition, for example, Kolmogorov–

Smirnov-type and Cramér–von-Mises-type statistics.

Studying these problems requires new results related to the estimator θ̂ and

its bootstrap analog. The literature on statistical deconvolution problems is ex-

tensive, and, hence, some results will be familiar. In particular, we show that the

estimator θ̂ has a strong uniform rate of consistency for the function θ that is

analogous to the already known minimax optimal rate of convergence (see Theo-

rem 1 in Section 2.1 and Remark 3 in Section 3). There are also many results in

the literature on residual-based empirical distribution functions for direct regres-

sion models; for example, uniform consistency and asymptotic optimality. We

show that the estimator F̂ satisfies both of these properties (see Theorem 2 and

Remark 2 in Section 2.1). The residual-based empirical distribution functions re-

sulting from a wide class of semiparametric direct regression models are studied

by Müller, Schick and Wefelmeyer (2007), and we derive comparable results for

the indirect regression model (1.1).

The remainder of the paper proceeds as follows. Further notation and the

estimation method are introduced in Section 2, along with the asymptotic results

for the estimators θ̂ and F̂. In Section 3, we consider the problem of finding an

optimal regularization parameter for the estimator θ̂. Here, we provide a rule-of-

thumb approach in the spirit of Silverman (1986) and, in Section 3.1, we develop

a data-driven approach for selecting this parameter using a smooth bootstrap of

the model residuals, following Neumeyer (2009). We conclude the article with a

numerical study in Section 4, which indicates good finite-sample performance of

the proposed data-driven regularization against that of the theoretically optimal

regularization. In addition, we consider a comparative technique for choosing

the regularization for spectral cutoff estimators (a special case of our approach)

proposed by Cavalier and Golubev (2006). All proofs are available in the online

Supplementary Material.
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2. Estimation Using The Indirect Regression Model

We begin with the space of square integrable functions L2([−1/2, 1/2]) with

domain [−1/2, 1/2]. This function space has the well known and countable or-

thonormal basis {
ei2πkx : x ∈

[
−1

2
,
1

2

]}
k∈Z

.

In order to construct an estimator for the function θ, we need to restrict θ to a

smooth class of functions from L2([−1/2, 1/2]). Thus, we only consider functions

θ that are weakly differentiable in L2([−1/2, 1/2]).

For clarity, we now introduce some notation. Let d ∈ N. We call q(i), for 1 ≤
i ≤ d, a weak derivative of q in L2([−1/2, 1/2]) of order i, if q(i) ∈ L2([−1/2, 1/2])

and q(i) satisfies∫ 1/2

−1/2
q(x)

di

dxi
φ(x) dx = (−1)i

∫ 1/2

−1/2
q(i)(x)φ(x) dx,

for every infinitely differentiable function φ with support [−1/2, 1/2] that has

evaluations of φ, (di
′
φ)/(dxi

′
), for i′ = 1, . . . , i, at 1/2 and −1/2 equal to

zero. The corresponding space of smooth periodic functions is the Sobolev space

W2,d([−1/2, 1/2]), where

W2,d

([
−1

2
,
1

2

])
=

{
q ∈ L2

([
−1

2
,
1

2

])
: q(1), . . . , q(d) ∈ L2

([
−1

2
,
1

2

])}
=

{
q ∈ L2

([
−1

2
,
1

2

])
:

∞∑
k=−∞

(
1 + k2

)d|ρ(k)|2 <∞
}
.

Here, {ρ(k)}k∈Z are the Fourier coefficients of q:

ρ(k) =

∫ 1/2

−1/2
q(u)e−i2πkudu, k ∈ Z.

Replacing d with a positive real number motivates the consideration of smooth-

ness orders s > 0; that is, W2,s([−1/2, 1/2]) is defined in the same way as

W2,d([−1/2, 1/2]); but with s in place of d. We require that θ satisfies a stronger

series condition than that stated for W2,d([−1/2, 1/2]) above. Following Condi-

tion C1 in Politis and Romano (1999), which is similar to a condition imposed in
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Watson and Leadbetter (1963), we restrict Rs to a subspace ofW2,s([−1/2, 1/2]):

Rs =

{
q ∈ W2,s

([
−1

2
,
1

2

])
:

∞∑
k=−∞

|k|s|ρ(k)| <∞
}
.

Note that θ ∈ Rs implies a restriction on the Fourier coefficients {Θ(k)}k∈Z of θ,

which are defined similarly to the Fourier coefficients {ρ(k)}k∈Z above.

Another important note related to the Fourier basis {exp(i2πkx) : x ∈
[−1/2, 1/2]}k∈Z is that it decomposes the operator K into a singular value de-

composition along each of the orthonormal basis functions. Here, we need only

consider the Fourier coefficients {Ψ(k)}k∈Z of the distortion function ψ, which

are defined similarly to the Fourier coefficients {ρ(k)}k∈Z above. Much of the

research in the area of deconvolution problems has focused on two important

cases. The first case is that of the so-called ordinarily smooth distortion func-

tions. Here, we assume that the Fourier coefficients {Ψ(k)}k∈Z decay at a poly-

nomic rate: there is some b > 0, such that |Ψ(k)| ∼ |k|−b. Here, “∼” denotes

asymptotic similarity. Under this assumption, we can construct an estimator θ̂

for θ with a strong uniform consistency rate that is comparable, albeit worse,

with the rates expected in the usual nonparametric regression case. In addition,

we can show that the estimator F̂ is both root-n consistent for F , uniformly in

t ∈ R, and asymptotically most precise. The second case is that of the so-called

super smooth distortion functions. Here, we assume that the Fourier coefficients

{Ψ(k)}k∈Z decay at an exponential rate, for example, |Ψ(k)| ∼ exp(−|k|b). Under

this assumption, the resulting indirect regression estimator has a strong uniform

consistency rate that is polynomic in the logarithm of n only, which we expect is

too slow for us to maintain the root-n consistency of F̂. Therefore, in this paper,

we focus on the first case of ordinarily smooth distortion functions ψ, employing

a similar assumption to (1.4) of Fan (1991).

Assumption 1. There are finite constants b > 0, Γ > 0, and 0 < CΨ < C∗Ψ,

such that for every |k| > Γ, the Fourier coefficients {Ψ(k)}k∈Z of ψ satisfy CΨ <

|k|b|Ψ(k)| < C∗Ψ.

Example 1. Suppose ψ is known to be the standard Laplace density function

restricted to the interval [−1/2, 1/2]; that is,

ψ(x) =
(1/2)e−|x|∫ 1/2

−1/2(1/2)e−|x| dx
=

(1/2)e−|x|

1− e−1/2
, x ∈

[
−1

2
,

1

2

]
.
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Then, the Fourier coefficients {Ψ(k)}k∈Z are given by

Ψ(k) =
1

1 + 4π2k2

1− eiπ|k|e−1/2

1− e−1/2
, k ∈ Z.

Thus, Assumption 1 is satisfied for the choices b = 2, Γ = 1, CΨ = (1 + 4π2)−1,

and C∗Ψ = 5(4π2)−1.

Recall that we use a uniform fixed design on the interval [−1/2, 1/2]. Writ-

ing Q for the conditional distribution of a response Y , given a fixed design point

x, results in the equivalence Q(y |x) = Px(Y ≤ y), where Px denotes the distri-

bution of Y depending on x, which is not random. It follows that we can write

the Fourier coefficients {R(k)}k∈Z of Kθ as

R(k) =

∫ 1/2

−1/2

∫ ∞
−∞

ye−i2πkxQ(dy |x) dx, k ∈ Z. (2.1)

The double integral on the right-hand side of (2.1) is an average. We can con-

struct an estimator for this average from an empirical average using data (xj , Yj),

for j = −n, . . . , n, obtaining

R̂(k) =
1

2n+ 1

n∑
j=−n

Yje
−i2πkxj , k ∈ Z.

To recover θ from the convolution Kθ, we use the convolution theorem for

the Fourier transformation: R(k) = Θ(k)Ψ(k), k ∈ Z. Because ψ is a probability

density function that is bounded away from zero on [−1/2, 1/2], it follows that

{Ψ(k)}k∈Z is bounded away from zero in absolute value on any bounded region

Z ⊂ Z. Hence, Ψ−1 is well defined (see, e.g., the discussion on preconditioning

on page 1425 of Mair and Ruymgaart (1996)). Observing that the Fourier trans-

formation reduces the convolution to a multiplication, we exploit the Fourier

inversion formula by writing

θ(x) =

∞∑
k=−∞

R(k)

Ψ(k)
ei2πkx, x ∈

[
−1

2
,

1

2

]
.

To substitute our estimated Fourier coefficients {R̂(k)}k∈Z for the Fourier co-

efficients {R(k)}k∈Z, we need to control the random fluctuations that occur at

high frequency spectra. That is, the inversion of the operator K in (1.1) re-

quires regularization; see Cavalier and Golubev (2006) for a clear discussion on
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regularization and ill-posedness.

Politis and Romano (1999) introduce spectral smoothing to control these

fluctuations at higher frequencies, which amounts to regularizing the inversion op-

erator, following Mair and Ruymgaart (1996). Consider the ratio |R̂(k)|/|Ψ(k)|,
which becomes large as |k| increases. We wish to utilize lower frequencies and

dampen the contributions from higher frequencies by introducing a sequence of

weights. The most striking difference between the approaches taken by Politis

and Romano (1999) and that of Mair and Ruymgaart (1996) is that the latter

require the regularization in order to preserve the fundamental Fourier frequency.

That is, the regularization must be equal to one around some neighborhood of

the zero-th Fourier frequency. This approach to regularization is easy to specify

for applications and leads to the desired optimality properties.

Let us now introduce some notation. Write {hn}n≥1 for a regularizing se-

quence that satisfies hn → 0, as n → ∞. Consider smoothing kernel functions

similar to those used in typical nonparametric function estimators, that is, maps

x 7→ h−1
n δ(x/hn), where δ is a suitably constrained probability density function.

Politis and Romano (1999) observe that the Fourier transform of a smoothing

kernel h−1
n δ(x/hn) takes the form Λ(hnk), where Λ is the Fourier transform of the

desired kernel function KΛ. Thus, the Fourier transform of a smoothing kernel

depends on n only through the regularizing sequence {hn}n≥1 by shrinking the

Fourier frequency from k to hnk. We require that our smoothing kernel has a

Fourier transform Λ that satisfies the following general assumption.

Assumption 2. The region I = {k ∈ Z : |k| ≤ M} exists for some integer

M ≥ 1, such that Λ(k) = 1 when k ∈ I, and |Λ(k)| ≤ 1 otherwise. Let Λ satisfy∫∞
−∞ |u|

b|Λ(u)| du < ∞, where b > 0 is the degree of ill-posedness introduced in

Assumption 1.

To facilitate discussion, we introduce the order notationO(an) when there are

sequences {an}n≥1 (of positive real numbers) and {bn}n≥1 satisfying a−1
n bn → L,

for some finite constant L, and we write o(an) when L = 0. Similarly, we write

OP and oP when the analogous statements hold on an event with probability

tending to one as the sample size (depending on n) increases. Assumption 2

ensures that only the estimation bias has a desirable rate of convergence: order

O(hsn), when θ ∈ Rs. This is comparable with the direct estimation setting

of sufficiently high-order kernels, or the so-called “superkernels” (see, e.g., the

discussion on page 3 of Politis and Romano (1999)). The idea of restricting the

choice of the smoothing kernel function based on obtaining a suitable rate of
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convergence in the estimation bias dates back to Parzen (1962).

An estimator of θ is given by a kernel smoother:

θ̂(x) =

∞∑
k=−∞

Λ(hnk)
R̂(k)

Ψ(k)
ei2πkx =

1

2n+ 1

n∑
j=−n

YjWhn

(
x− xj

)
, x ∈

[
−1

2
,

1

2

]
,

(2.2)

where the smoothing kernel Whn
is given by

Whn

(
x− xj

)
=

∞∑
k=−∞

Λ(hnk)

Ψ(k)
exp

(
i2πk

(
x− xj

))
.

The smoothing kernel Whn
is sometimes called a deconvolution kernel (see, e.g.,

Birke, Bissantz and Holzmann (2010)).

2.1. Asymptotic results for the deconvolution estimator and the em-

pirical distribution function of the residuals

Our first result specifies the asymptotic order of the bias of θ̂.

Lemma 1. Let θ ∈ Rs, with s ≥ 1, and let Assumptions 1 and 2 hold. Then,

for any regularizing sequence {hn}n≥1 satisfying hn → 0 and nhb+1
n → ∞, as

n→∞, we have

sup
x∈[−1/2, 1/2]

∣∣∣E[θ̂(x)
]
− θ(x)

∣∣∣ = O
(
hsn + (nhb+1

n )−1
)
.

The asymptotic order of the bias of θ̂ is affected by the degree of ill-posedness

of the inverse problem, which we expect can be made negligible by the choice

of regularization parameters {hn}n≥1. In the following result, we observe this

detrimental effect in the asymptotic order of consistency as well.

Lemma 2. Let θ ∈ Rs, with s ≥ 1, and let Assumptions 1 and 2 hold. As-

sume that Λ satisfies
∫∞
−∞ |u|

b+1|Λ(u)| du < ∞, and that the random variables

Y−n, . . . , Yn have a finite absolute moment of order κ > 2 + 1/b. Finally, let the

regularizing sequence {hn}n≥1 satisfy hn → 0, such that (nh2b+1
n )−1 log(n) → 0,

as n→∞. Then,

sup
x∈[−1/2, 1/2]

∣∣∣θ̂(x)− E
[
θ̂(x)

]∣∣∣ = O
((
nh2b+1

n

)−1/2
log1/2(n)

)
, a.s..

The two lemmas above imply that we can obtain a strong uniform rate of

convergence of the estimator θ̂ for θ by choosing a regularizing sequence {hn}n≥1
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that balances the asymptotic orders of both the bias and consistency; that is,

hn = O
(
n−1/(2s+2b+1) log1/(2s+2b+1)(n)

)
. (2.3)

For this choice of regularizing parameters, we have (nhb+1
n )−1 = o(hsn), which

implies that the bias of θ̂ is of order O(hsn). Note that Lemma 2 requires that

the responses have a finite moment of order larger than 2 + 1/b, which is only a

sufficient condition. One can easily show that κ > 2+1/(s+b) is necessary when

{hn}n≥1 satisfies (2.3), which is more reasonable for situations when b→ 0. We

now state the uniform rate of convergence of θ̂ for θ when the parameter sequence

{hn}n≥1 satisfies (2.3), as well as two additional properties of the estimator θ̂.

Theorem 1. Let the assumptions of Lemma 2 hold, but now require only κ >

2 + 1/(s+ b). Choose the regularizing sequence {hn}n≥1 to satisfy (2.3). Then,

sup
x∈[−1/2, 1/2]

∣∣∣θ̂(x)− θ(x)
∣∣∣ = O

(
n−s/(2s+2b+1) logs/(2s+2b+1)(n)

)
, a.s..

In addition, if s > (2b+ 1)/(2γ), for some 0 < γ ≤ 1, then[
sup

x∈[−1/2, 1/2]

∣∣∣θ̂(x)− θ(x)
∣∣∣]1+γ

= o(n−1/2), a.s..

If Λ satisfies
∫∞
−∞ |u|

s+b−1/2|Λ(u)| du <∞, then, for sufficiently large n,

θ̂ − θ ∈ Rs−1/2,1, a.s.,

where Rs−1/2,1 = {q ∈ Rs−1/2 : ‖q‖∞ ≤ 1} is the unit ball of the metric space

(Rs−1/2, ‖ · ‖∞).

Remark 1. The second statement of Theorem 1 requires that the smoothness

index s of the function space Rs be larger than the degree of ill-posedness b of

the inverse problem, which is a stronger requirement than that specified in the

literature. The additional smoothness is simply explained by the entanglement

of the smoothness index s and the degree of ill-posedness b in the strong uniform

consistency rate given in the first statement of Theorem 1: O(n−s/(2s+2b+1)

logs/(2s+2b+1)(n)). This entanglement also occurs for indirect regression estima-

tors that satisfy minimax optimality, where the integrated mean squared error is

now of order O(n−(2s)/(2s+2b+1)).

We are now ready to state our main results for the estimator F̂.
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Theorem 2. Assume the error distribution function F admits a bounded Lebesgue

density function f that is Hölder continuous with exponent 0 < γ ≤ 1, and let

ε−n, . . . , εn have a finite absolute moment of order κ > 2 + 1/(s + b). Let the

remaining assumptions of Theorem 1 be satisfied, but now with s > max{(2b +

1)/(2γ), 3/2}. Then,

sup
t∈R

∣∣∣∣ 1

2n+ 1

n∑
j=−n

{
1
[
ε̂j ≤ t

]
− 1
[
εj ≤ t

]
− εjf(t)

}∣∣∣∣ = oP (n−1/2).

Corollary 1. Under the conditions of Theorem 2, the process

Gn(t) = (2n+ 1)1/2{F̂(t)− F (t)}

= (2n+ 1)−1/2
n∑

j=−n

{
1
[
εj ≤ t

]
− F (t) + εjf(t)

}
+ oP (1),

for t ∈ R, weakly converges to a mean zero Gaussian process {Z(t) : t ∈ R},
with the following covariance function, for u, v ∈ R:

Σ(u, v) =F
(

min{u, v}
)
− F (u)F (v)

+ f(u)E
[
ε1[ε ≤ v]

]
+ f(v)E

[
ε1[ε ≤ u]

]
+ σ2f(u)f(v).

Here, we write σ2 = E[ε2] and ε for a generic random variable with distribution

function F .

Remark 2. Model (1.1) is a nonparametric regression. The estimator F̂ has

influence function 1[ε ≤ t] − F (t) + εf(t), where ε is a generic random variable

with distribution function F . If we additionally assume that F has finite Fisher

information for location, it follows that F̂ is efficient for estimating F , in the

sense of Hájek and Le Cam, from the results of Müller, Schick and Wefelmeyer

(2004).

3. Regularization Parameter Selection and The Smooth Bootstrap of

residuals

We now consider the problem of choosing an appropriate sequence of regu-

larization parameters {hn}n≥1 required by the estimator θ̂. Popular approaches

in the literature suggest that a practical choice of regularization is a scheme that

minimizes the integrated mean squared error (IMSE) of θ̂. However, the selec-

tion of such a parameter can also be viewed as a model selection problem, where
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we select the most feasible regression model from a sequence of regression func-

tion estimators generated from a sequence of regularization parameters. In the

case of iterative estimation procedures, a suitable stopping iteration is sought.

Multiscale and related methods based on partial sums of normalized residuals

have been thoroughly investigated in the literature (see, e.g., González-Manteiga,

Martinez-Miranda and Pérez-González (2004); Bissantz, Mair and Munk (2006,

2008); Davies and Meise (2008); Hotz et al. (2012)). The Lepski methodology

has recently become a popular approach in this context, where the IMSE of

the indirect regression estimator is replaced by a suitable nonrandom objective

function using oracle inequalities (see, e.g., Goldenshluger (1999); Cavalier and

Tsybakov (2002); Mathé and Pereverzev (2006); Blanchard and Mathé (2012);

Blanchard, Hoffmann and Reiß (2016)). An important approach for spectral

cutoff estimators, based on assessing a risk hull, is investigated by Cavalier and

Golubev (2006), which we have already discussed. In contrast to previous works,

we propose a methodology based on a smooth bootstrap of the model residuals to

form a consistent estimator of the IMSE of θ̂. Furthermore, from the perspective

of conducting model selection, we propose choosing the regularization parameter

sequence that minimizes this quantity.

In the following result, we give the asymptotic order of the integrated vari-

ance and the integrated squared bias of the estimator θ̂ that will lead to a rule-

of-thumb approach for selecting regularization parameters that approximately

minimize the IMSE of θ̂.

Proposition 1. Let θ ∈ Rs, with s ≥ 1, and let Assumptions 1 and 2 hold.

Assume that ε−n, . . . , εn have finite variance σ2. Then, for any regularizing se-

quence {hn}n≥1 satisfying hn → 0, such that both nh2b+1
n →∞, as n→∞, and

(nhb+1
n )−1 = o(hsn) hold, there are constants CΛ > 0 and CR > 0, such that∫ 1/2

−1/2
E
[{
θ̂(x)− E

[
θ̂(x)

]}2
]
dx = CΛσ

2(nh2b+1
n )−1 + o

(
(nh2b+1

n )−1
)

and ∫ 1/2

−1/2

{
E
[
θ̂(x)

]
− θ(x)

}2
dx = CRh

2s
n + o

(
h2s
n

)
.

Remark 3. From the results of Proposition 1, we can obtain an approximately

optimal regularizing sequence, in the sense of minimizing the IMSE of θ̂:

hn,opt ≈
(

2b+ 1

2s

CΛ

CR
σ2

)1/(2s+2b+1)

n−1/(2s+2b+1).
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Consequently, the integrated mean squared error of θ̂ is of order O(

n−(2s)/(2s+2b+1)). Setting ε = εn = O(n−1/2) in Table 1 on page 9 of Cavalier

(2008) yields that θ̂ is indeed minimax optimal for estimating θ.

The conclusion that θ̂, formed from a regularizing sequence of order

O(n−1/(2s+2b+1)), is minimax optimal only guarantees that the estimation strat-

egy is optimal, in the sense that it both minimizes the rate of convergence for the

integrated mean squared error, a measure of estimation performance, and that

no other estimator will achieve a faster rate of convergence for this performance

metric. However, as we can see from Remark 3, the choice of regularizing param-

eters {hn,opt}n≥1 requires further investigation using numerical methods, because

some unknown constants are not directly estimable. For example, working with

the approximately optimal bandwidth choice in Remark 3, the constant CΛ is

proportional to the limit of h2b+1
n

∑∞
k=−∞{Λ(hnk)/Ψ(k)}2, which can be approx-

imated by a finite series and a pilot regularizing sequence. On the other hand,

CR is essentially an asymptotically stabilized bias. Usually, this is not observable

and, hence, a numerical method such as bootstrap or cross-validation is required

to estimate it. In addition, and more generally, the optimal bandwidth depends

on the unknown smoothness index s of the function space Rs. Estimating this

quantity is very difficult and likely not even possible without harsh and con-

fining assumptions. However, an educated guess yields the optimal bandwidth

choice corresponding to the fastest possible decay of the IMSE of θ̂. This means

choosing s as large as possible. Unfortunately, the resulting methodology is still

arbitrary.

3.1. Smooth bootstrap of residuals

Computational approaches for automated and data-driven bandwidth selec-

tion methods have been well studied in the literature for many nonparametric

function estimators. In general, the approaches focus on estimating the IMSE

of the estimator using either a cross-validation or a bootstrap approach, which

can then be minimized with respect to the choice of bandwidth in an exact or

approximate way. Cao (1993) studies two methods for selecting a bandwidth

in a kernel density estimator using a smooth bootstrap of their univariate data.

More recently, Neumeyer (2009) has proven the general validity of a smooth boot-

strap process of the model residuals from a nonparametric regression. Owing to

its simplicity, we introduce a similar smooth bootstrap process that admits a

consistent estimator of the IMSE of θ̂, which requires mirroring the restrictions
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given by Theorem 2 on model (1.1) in the bootstrap scheme. Throughout this

section, we describe the stochastic properties of our random quantities using a

smooth bootstrap measure P ∗, which, for a single bootstrap response Y ∗, is the

conditional probability function

P ∗x (Y ∗ ≤ t) = Px(Y ∗ ≤ t |D) = Px(ε∗ ≤ t− [Kθ̂](x) |D),

given the original sample of data D = {(x−n, Y−n), . . . , (xn, Yn)}. Here, ε∗ is a

smooth bootstrap model residual, which we construct as follows.

We begin by examining the requirements imposed by Theorem 2 on model

(1.1). We need to ensure our smooth bootstrap model residual ε∗ satisfies having

a mean equal to zero, independence, a finite moment of order κ > 2 + 1/(s+ b),

and a common distribution function F ∗n that admits a bounded Lebesgue density

function f∗n that is Hölder continuous. The first requirement is satisfied merely

by centering our original model residuals:

ε̃j = ε̂j −
1

2n+ 1

n∑
l=−n

ε̂l, j = −n, . . . , n.

Turning our attention to the next constraint, we can see that conditioning on

the original sample D and selecting from ε̃−n, . . . , ε̃n, completely at random and

with replacement, satisfies independence under P ∗ (and, therefore, conditionally

on the observed data D). However, the remaining assumptions are not satisfied

because resampling in this way results in the bootstrap model residuals ε̃∗j having

a discrete distribution.

To fulfill the last requirements imposed on model (1.1), we contaminate the

randomly selected centered model residual ε̃∗j using an independent, centered

random variable Uj that has a finite moment of order κ > 2 + 1/(s + b) and

a common distribution function characterized by a bounded Lebesgue density

function w. Hence, we construct our smooth bootstrap model residuals ε∗−n =

ε̃∗−n+cnU−n, . . . , ε
∗
n = ε̃∗n+cnUn. Here, the sequence {cn}n≥1 is a scaling sequence

similar to a bandwidth for a kernel density estimation. Consequently, ε∗j has the

common distribution function

F ∗n(t) = P ∗(ε∗j ≤ t) =
1

(2n+ 1)cn

n∑
j=−n

∫ t

−∞
w

(
u− ε̃j
cn

)
du, t ∈ R, (3.1)
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and density function

f∗n(t) =
1

(2n+ 1)cn

n∑
j=−n

w

(
t− ε̃j
cn

)
, t ∈ R.

We can see that F ∗n is a smooth estimator of F based on a kernel density estimator

f∗n of the original error density f . Hence, the remaining requirement imposed by

Theorem 2 on F can be mirrored in the bootstrap process by our choice of w; that

is, we can choose w to be Hölder continuous with the desired exponent. Using

model (1.1), we obtain our bootstrap sample (x−n, Y
∗
−n), . . . , (xn, Y

∗
n ), where

Y ∗j =
[
Kθ̂
]
(xj) + ε∗j , j = −n, . . . , n.

Define θ̂∗ as in (2.2), but substitute Y ∗j for Yj and the regularizing sequence

{gn}n≥1 for the regularizing sequence {hn}n≥1, which is also chosen to satisfy

(2.3). Choosing the scaling sequence {cn}n≥1 such that cn = O(n−α), for some

0 < α < 1/2 + 1/κ < 1, results in the bootstrap indirect regression estimator

θ̂∗ satisfying similar properties to those of θ̂ given in Theorem 1. We summarize

these results in Proposition 4 in the Supplementary Material.

In practice, an important use of bootstrapping is to find suitable quantiles for

test statistics. In the case of a residual-based analysis, one is typically interested

in continuous functionals T (ZF0
) of a Gaussian process ZF0

, parameterized under

a null hypothesis H0 : F = F0 against an alternative hypothesis Ha : F = Fa 6=
F0. A test statistic Tn = T (Ĝn) is convenient for assessing the adequacy of the

null hypothesis H0, but this quantity depends on the unknown error distribution

F . Neumeyer (2009) uses a smooth bootstrapping of residuals obtained from

nonparametric smoothing in a direct regression model to approximate quantiles

of the limiting distribution of Tn, using a bootstrap version T ∗n = T (G∗n) of this

quantity, where G∗n = (2n+1)1/2{F̂∗−F ∗n} is the smooth bootstrap analog of Gn.

We therefore expect our results to be analogous to those of Neumeyer (2009).

In the following, we work with residuals constructed from the following boot-

strap data:

ε̂∗j = Y ∗j −
[
Kθ̂∗

]
(xj), j = −n, . . . , n.

The following result is the analog of Theorem 2 for the empirical distribution

function of these residuals. The proof of this result follows along the same lines as

the proof of Theorem 2 and its supporting results (see the online Supplementary

Material). These have been omitted, for brevity.
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Theorem 3. Assume the density function w is Hölder continuous, with expo-

nent 0 < γ ≤ 1. Let the assumptions of Proposition 4 from the Supplementary

Material be satisfied, with s > max{(2b+ 1)/(2γ), 3/2}. Then,

sup
t∈R

∣∣∣∣ 1

2n+ 1

n∑
j=−n

{
1
[
ε̂∗j ≤ t

]
− 1
[
ε∗j ≤ t

]
− ε∗jf∗n(t)

}∣∣∣∣ = oP ∗(n
−1/2).

Note that this result always includes the optimal bandwidth choice cn =

O(n−1/5) for density estimation. This fact, together with the results of Proposi-

tion 3 from the Supplementary Material yield the following analog of Corollary

1.

Corollary 2. Let the assumptions of Theorem 3 be satisfied. If, additionally,

both densities f and w are Hölder continuous with exponent 2/3 < γ ≤ 1, the

scaling sequence {cn}n≥1 satisfies cn = O(n−1/5), and s > (1+γ)(2b+1)/(3γ−2),

then the process

(2n+ 1)−1/2
n∑

j=−n

{
1
[
ε̂∗j ≤ t

]
− F ∗n(t)

}
= (2n+ 1)−1/2

n∑
j=−n

{
1
[
ε∗j ≤ t

]
− F ∗n(t) + ε∗jf

∗
n(t)

}
+ oP ∗(1),

for t ∈ R, weakly converges, conditionally on the sample (x−n, Y−n), . . . , (xn, Yn),

to a mean zero Gaussian process {Z∗(t) : t ∈ R}, with covariance function, for

u, v ∈ R,

Σ∗(u, v) = F ∗n
(

min{u, v}
)
− F ∗n(u)F ∗n(v) + f∗n(u)E∗

[
ε∗1[ε∗ ≤ v]

]
+ f∗n(v)E∗

[
ε∗1[ε∗ ≤ u]

]
+ σ2,∗f∗n(u)f∗n(v),

where ε∗ is a generic random variable with distribution function F ∗n and σ2,∗ =

E∗[(ε∗)2]. Additionally, we have

sup
u,v∈R

∣∣∣Σ∗(u, v)− Σ(u, v)
∣∣∣ = oP (1),

where Σ is given in Corollary 1.

Following the observations on pages 207–209 in Neumeyer (2009), we imme-

diately obtain valid smooth bootstrap approximations of the quantiles of the test

statistics Tn. We conclude this section with the following remark.
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Remark 4. The residual-based empirical process Gn and its smooth bootstrap

analog G∗n have the same limiting distribution when the conditions of Corollary 2

are satisfied. This limiting distribution is given by the Gaussian process described

in Corollary 1, which has continuous sample paths. It then follows that statistics

Tn = T (Gn) and their smooth bootstrap version T ∗n = T (G∗n), obtained from

continuous functionals, satisfy the following consistency property. Define q∗n,α
by P ∗(T ∗n ≤ q∗n,α) = α. Combining the continuity of the functional used to

construct Tn and T ∗n and the continuous sample paths of Gaussian processes

using the continuous mapping theorem, we obtain

P
(
Tn ≤ q∗n,α

)
= α+ o(1),

which characterizes the validity of the proposed smooth bootstrap of the model

residuals. Hence, the bootstrap described here can be used to approximate the

unknown quantiles of test statistics obtained from continuous functionals of ZF0
.

3.2. Regularization parameter selection by bootstrap

Now, we turn our attention to a different choice of regularization parameters

that also approximately minimizes the IMSE of the indirect regression estimator

θ̂. For clarity, throughout this section, we subscript the estimators θ̂ and θ̂∗

using the regularization parameters used to form them; that is, we write θ̂hn
to

indicate that the regularizing sequence {hn}n≥1 is used to form the estimator

θ̂. The IMSE of θ̂hn
, which we want to minimize with respect to the parameter

sequence {hn}n≥1, is given by

IMSE
(
θ̂hn

)
=

∫ 1/2

−1/2
E
[{
θ̂hn

(x)− θ(x)
}2
]
dx, (3.2)

which can be viewed as an objective function with respect to the mapping hn 7→
IMSE(θ̂hn

).

Following Cao (1993), we arbitrarily choose the original regularizing sequence

{hn}n≥1 according to Theorem 1 as a pilot sequence to form an initial and con-

sistent estimator θ̂hn
. A practical choice for {hn}n≥1 is the rule-of-thumb param-

eter sequence given in Remark 3, where the unknown constants are estimated

and the smoothness index s is chosen to be small. It is crucial that, in order for

our approach to admit an asymptotically nearly optimal choice of regularizing

parameters, the pilot sequence {hn}n≥1 is chosen such that s0 − 1/2 ≤ s < s0,

where s0 is the largest possible (finite) smoothness index such that θ ∈ Rs0 .
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Consider the IMSE objective, but for the bootstrap data, where we instead

have θ̂hn
for the unknown function θ in (3.2). Hence, we have an analogous

form of (3.2) in the smooth bootstrap measure P ∗ that can be approximated via

Monte Carlo simulation:

IMSE∗
(
θ̂∗gn
)

=

∫ 1/2

−1/2
E∗
[{
θ̂∗gn(x)− θ̂hn

(x)}2
]
dx. (3.3)

Because both θ̂hn
and θ̂∗gn satisfy the projective representation (2.2), it fol-

lows that the expected values on the far right-hand sides of (3.2) and (3.3) are

averages, taken with respect to the distribution functions F and F ∗n , respectively.

We can then use standard arguments to show

E∗
[ ∫ 1/2

−1/2

{
θ̂∗gn(x)− θ̂hn

(x)
}2
dx

]
= E

[ ∫ 1/2

−1/2

{
θ̂gn(x)− θ(x)

}2
dx

]{
C + oP (1)

}
+ oP (1),

for a constant C > 0. Hence, we obtain IMSE∗(θ̂∗gn) = CIMSE(θ̂gn) + oP (1).

This implies (3.3) is a close predictor of (3.2), and, thus, we can use the map-

ping gn 7→ IMSE∗(θ̂∗gn) as an objective criterion for finding a nearly optimal

regularizing sequence. It follows that we can choose {gn,opt}n≥1, such that

gn,opt = arg min
g∈(0,~]

E∗
[ ∫ 1/2

−1/2

{
θ̂∗g(x)− θ̂hn

(x)
}2
dx

]
, (3.4)

where ~ > 0 is a constant chosen larger than the optimal regularization param-

eter. Consequently, the resulting regularization parameters {gn,opt}n≥1 can be

viewed as objective corrections to the subjective pilot regularization parameters

{hn}n≥1.

Recall the Fourier frequency smoothing kernel Λ used in the deconvolution

estimators θ̂hn
and θ̂∗gn . It is easy to see that restricting the choice of Λ, and,

hence, restricting the choice of the resulting deconvolution smoothing kernel from

(2.2), leads to unique minimizers for each of (3.2) and (3.3). For example, choos-

ing Λ as an indicator function (e.g., working with spectral cutoff estimators)

leads to the deconvolution smoothing kernel in (2.2) being a smooth function

with infinitely many derivatives.

Remark 5. The bootstrap methodology for finding an asymptotically nearly
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optimal regularizing sequence critically requires that the pilot sequence {hn}n≥1

be chosen to undersmooth the estimator θ̂. Interestingly, this contrasts with

the bootstrap methodology outlined in Cao (1993), who recommends using an

oversmoothing pilot bandwidth to identify an optimal bandwidth to use with a

kernel density estimator. Apparently, pilot bandwidths gn satisfying ng3
n → ∞,

gn = O(n−1/7), or gn = O(n−2/13) are satisfactory in that case.

4. Finite-sample Properties

We conclude this article with a small numerical study of the previous re-

sults, and investigate the effectiveness of our smooth bootstrap methodology for

selecting a regularization parameter. In the following simulations, we choose two

regression functions θ1 and θ2, where

θ1(x) =
6

5
+
√

2 cos
(
2πx

)
+

√
2

4
cos
(
4πx

)
and

θ2(x) =
3

2
+

√
2

2
cos
(
2πx

)
−
√

2

8
cos
(
4πx

)
− 4
√

2

3
cos
(
6πx

)
,

with x ∈ [−1/2, 1/2]. On this interval, the function θ1 is similar in shape to

a unimodal probability density function, whereas the function θ2 is more com-

plicated. For greater transparency, one can easily check that θ1 and θ2 belong

to the restricted space Rs for s > 0 using their respective Fourier coefficients

{Θ1(k)}k∈Z and {Θ2(k)}k∈Z, given by

Θ1(k) =
6

5
1[k = 0] +

√
2

2
1[|k| = 1]−

√
2

8
1[|k| = 2], k ∈ Z,

and

Θ2(k) =
3

2
1[k = 0] +

√
2

4
1[|k| = 1]−

√
2

16
1[|k| = 2]− 2

√
2

3
1[|k| = 3], k ∈ Z.

The distortion function ψ is taken as the Laplace density with mean zero and

a scale of 1/10 that has been restricted to the interval [−1/2, 1/2], as in Example

1, which also satisfies Assumption 1 for the choice b = 2. The fixed covariates

are taken as xj = j/(2n + 1), which is asymptotically equivalent to j/(2n).

This choice allows us to use the fast Fourier transform algorithm to estimate the

functions θ1 and θ2. Finally, we consider two cases for the model errors: normally

distributed errors, with mean zero and scale 2/3, and t-distributed errors, with



1274 BISSANTZ, CHOWN AND DETTE

four degrees of freedom and scale 2/3. Our simulations consider samples of sizes

51, 101, 201, and 301; that is, n is taken as 25, 50, 100, and 150.

We work with the smoothing kernel that has Fourier coefficients satisfying

Λ(k) =


1 if |k| ≤ 7,(
|k|
7

)−6
if 7 < |k| ≤ n,

0 otherwise,

which leads to considering function spaces Rs with 5/2 < s < 7/2. In order to

select an appropriate regularization parameter for the indirect regression function

estimators, we use the pilot sequences hn,1 = 5(2n + 1)−1/11 log1/11(2n + 1),

which correspond to a choice s = 3 in (2.3), to estimate θ1, and use hn,2 =

2.5(2n+ 1)−1/11 log1/11(2n+ 1) to estimate θ2.

To create the smooth bootstrap of the residuals, we use standard normally

distributed contaminates Uj and Silverman’s rule to select a bandwidth in kernel

density estimation; that is, we take the scaling sequence cn = 1.06σ̂(2n+ 1)−1/5,

where σ̂ is the estimated standard deviation of the model residuals obtained

using the pilot regularizing sequence. Using 200 smooth bootstrap replications

to construct suitable approximations of the IMSE of the estimators of θ1 and θ2,

we take 100 equally spaced candidate regularization parameters in an interval

[ln, un], where ln = (2n+1)−1/10, which results in undersmoothed estimators, and

un = 10(2n+ 1)−1/12 log1/12(2n+ 1), which results in oversmoothed estimators.

Following the discussion in Section 3.2, we choose the optimal regularization

parameter gn,opt as the grid point that minimizes this approximate IMSE, which

we then use to construct the resulting function estimators of θ1 and θ2.

The assumptions of Theorem 2 are satisfied for the choices made above. Fig-

ure 1 displays the results of our indirect regression estimator for a typical data

set obtained from the indirect regression θ2 and t-distributed errors based on a

sample size of 201. The scatter plot of the data shows the function estimators θ̂

and Kθ̂ work well in terms of estimating θ2 and Kθ2, respectively. Clearly, the

indirect regression estimator, constructed using the proposed data-driven regu-

larization methodology, is explaining the data very well, which is supported by

the appearance of the completely random scatter in the plot of the residuals. The

plot of the distribution functions shows that the empirical distribution function

of the residuals F̂ matches very closely the true error distribution function F , as

expected.

Turning our attention to the numerical summaries of the estimator F̂, we can
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Figure 1. From left to right: A scatter plot of the data overlaid with the fitted blurred
regression (solid), estimated regression (dashed), true blurred regression function (dot-
ted), and the true regression function (dot-dashed); A scatter plot of the model residuals
overlaid with a line at zero; A plot of the residual-based empirical distribution function
(solid), overlaid with the true error distribution function (dashed).

Table 1. Simulated asymptotic bias and variance (in parentheses) of (2n+ 1)1/2{F̂(t)−
F (t)} at the points −2, −1, 0, 1, and 2 for the case of normally distributed errors. The
results from each regression θ1 and θ2 are given as rows within each sample size, with
the first row corresponding to θ1, and the second to θ2.

n
t

-2 -1 0 1 2

51 −0.001 (0.001) −0.020 (0.047) 0.000 (0.092) 0.022 (0.046) −0.001 (0.002)

−0.003 (0.001) −0.083 (0.042) 0.005 (0.095) 0.078 (0.045) 0.005 (0.001)

101 −0.001 (0.001) −0.036 (0.044) 0.002 (0.091) 0.031 (0.047) 0.000 (0.001)

−0.005 (0.001) −0.063 (0.043) 0.015 (0.086) 0.066 (0.047) 0.002 (0.001)

201 −0.001 (0.001) −0.041 (0.046) 0.003 (0.090) 0.044 (0.047) 0.001 (0.001)

−0.004 (0.001) −0.067 (0.045) −0.001 (0.087) 0.056 (0.044) 0.005 (0.001)

301 −0.001 (0.001) −0.022 (0.044) 0.001 (0.092) 0.019 (0.045) 0.000 (0.001)

−0.003 (0.001) −0.035 (0.048) −0.015 (0.091) 0.047 (0.046) 0.002 (0.001)

plainly see this estimator is performing well. Beginning with the case of normally

distributed errors, Table 1 shows the figures for the simulated asymptotic biases

and variances of F̂ at the points −2, −1, 0, 1, and 2. The simulated asymptotic

biases are calculated by computing the simulated biases of F̂, and multiplying

these by the square root of the corresponding sample size. The simulated asymp-

totic variance is similarly calculated, but now we multiply by the corresponding

sample size. Inspecting Table 1, we find the squared asymptotic bias of F̂ be-

comes negligible to the asymptotic variance of F̂ at larger sample sizes, which

is expected. In Table 2, we give the asymptotic mean squared error (AMSE)
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Table 2. Asymptotic mean squared error of (2n+1)1/2{F̂(t)−F (t)} at the points −2, −1,
0, 1, and 2 for the case of normally distributed errors. The results from each regression
θ1 and θ2 are given as rows within each sample size, with the first row corresponding to
θ1, and the second to θ2.

n
t

−2 −1 0 1 2

51 0.001 0.048 0.092 0.047 0.002

0.001 0.049 0.095 0.051 0.001

101 0.001 0.046 0.091 0.048 0.001

0.001 0.047 0.086 0.052 0.001

201 0.001 0.047 0.090 0.049 0.001

0.001 0.049 0.087 0.047 0.001

301 0.001 0.045 0.092 0.045 0.001

0.001 0.049 0.091 0.048 0.001

∞ 0.001 0.046 0.091 0.046 0.001

Table 3. Asymptotic integrated mean squared error of (2n + 1)1/2{F̂ − F}, by sample
size, for the case of normally distributed errors. The results from each regression θ1 and
θ2 are given as rows, with the first row corresponding to θ1, and the second to θ2.

51 101 201 301 ∞
0.193 0.191 0.195 0.188 0.188

0.208 0.196 0.196 0.193

Table 4. Simulated asymptotic bias and variance (in parentheses) of (2n+ 1)1/2{F̂(t)−
F (t)} at the points −2, −1, 0, 1, and 2 for the case of t-distributed errors. The results
from each regression θ1 and θ2 are given as rows within each sample size, with the first
row corresponding to θ1, and the second to θ2.

n
t

-2 -1 0 1 2

51 −0.005 (0.006) −0.011 (0.042) 0.025 (0.124) −0.008 (0.042) 0.006 (0.005)

−0.016 (0.004) −0.044 (0.037) 0.011 (0.122) 0.042 (0.037) 0.011 (0.005)

101 −0.004 (0.006) −0.015 (0.037) 0.003 (0.135) 0.008 (0.038) 0.006 (0.005)

−0.014 (0.005) −0.036 (0.037) −0.005 (0.138) 0.034 (0.039) 0.013 (0.005)

201 −0.005 (0.006) −0.016 (0.039) 0.004 (0.158) 0.018 (0.039) 0.008 (0.006)

−0.014 (0.005) −0.029 (0.034) −0.004 (0.133) 0.023 (0.035) 0.008 (0.006)

301 −0.004 (0.006) −0.013 (0.037) −0.012 (0.143) 0.015 (0.035) 0.004 (0.006)

−0.010 (0.005) −0.023 (0.036) 0.001 (0.129) 0.023 (0.036) 0.006 (0.006)

of F̂, which is calculated by multiplying the simulated mean squared error of

F̂ by the corresponding sample size. The figures corresponding to the sample
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Table 5. Asymptotic mean squared error of (2n + 1)1/2{F̂(t) − F (t)} at the points −2,
−1, 0, 1, and 2 for the case of t-distributed errors. The results from each regression θ1
and θ2 are given as rows within each sample size, with the first row corresponding to θ1,
and the second to θ2.

n
t

−2 −1 0 1 2

51 0.006 0.042 0.124 0.042 0.005

0.004 0.039 0.122 0.039 0.005

101 0.006 0.037 0.135 0.038 0.005

0.005 0.039 0.138 0.040 0.006

201 0.006 0.039 0.158 0.039 0.006

0.005 0.035 0.133 0.035 0.006

301 0.006 0.037 0.143 0.036 0.006

0.006 0.036 0.129 0.036 0.006

∞ 0.006 0.036 0.156 0.036 0.006

Table 6. Asymptotic integrated mean squared error of (2n + 1)1/2{F̂ − F} by sample
size for the case of t-distributed errors. The results from each regression θ1 and θ2 are
given as rows, with the first row corresponding to θ1, and the second to θ2.

51 101 201 301 ∞
0.233 0.227 0.232 0.222 0.228

0.223 0.228 0.216 0.223

size ∞ are calculated using the results of Theorem 2. Comparing the results in

Table 2, we find the theoretical prediction made in Theorem 2 concerning the

asymptotic pointwise precision of F̂ corresponds well with the simulated results.

Finally, turning our attention to Table 3, we give the asymptotic integrated mean

squared error (AIMSE) of F̂, which is calculated similarly to the AMSE of F̂, but

where we integrate with respect to t. These results also confirm that F̂ performs

well as an estimator of F , even at the smaller sample sizes 51 and 101. A possible

explanation for this observation is the use of the smooth bootstrap methodology

for choosing the regularization parameter in the estimate θ̂. Table 4, Table 5, and

Table 6 show the figures related to Table 1, Table 2, and Table 3, respectively,

when the model errors follow a t-distribution. The results are analogous to the

case of normally distributed errors.

The results concerning our indirect regression estimator are interesting. In

addition to finding an asymptotically nearly optimal regularization parameter

using the proposed bootstrap methodology, we also conducted a similar grid
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Figure 2. Box plots of log-transformed ratios of regularization parameters (bootstrap-
based selection to ISE-based selection) by log-transformed sample size. Plots on the
left correspond to normally distributed errors, and plots on the right correspond to t-
distributed errors. The plots on the top correspond to the regression θ1, and plots on
the bottom correspond to the regression θ2.

Table 7. Integrated mean squared error of the indirect regression estimator by sample
size for each regression θ1 and θ2 in the case of normally distributed errors. Figures cor-
responding to “Bootstrap” are IMSE estimates based on the proposed smooth bootstrap
methodology for selecting the regularization parameter, and the figures corresponding
to “Best” are the IMSE estimates corresponding to selecting the regularization param-
eter by minimizing the ISE. The results for each regression θ1 and θ2 are given as rows
within each regularization selection method, with the first row corresponding to θ1, and
the second to θ2.

Regularization 51 101 201 301

Bootstrap 0.168 0.095 0.056 0.041

0.741 0.596 0.343 0.245

Best 0.131 0.079 0.049 0.036

0.573 0.438 0.277 0.201
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Table 8. Integrated mean squared error of the indirect regression estimator by sample
size for each regression θ1 and θ2 in the case of t-distributed errors. Figures correspond-
ing to “Bootstrap” are the IMSE estimates based on the proposed smooth bootstrap
methodology for selecting the regularization parameter, and the figures corresponding
to “Best” are the IMSE estimates corresponding to selecting the regularization param-
eter by minimizing the ISE. The results for each regression θ1 and θ2 are given as rows
within each regularization selection method, with the first row corresponding to θ1, and
the second to θ2.

Regularization 51 101 201 301

Bootstrap 0.159 0.097 0.056 0.041

0.733 0.587 0.340 0.249

Best 0.125 0.081 0.049 0.037

0.569 0.434 0.273 0.205

search procedure choosing an optimal regularization parameter that minimizes

the integrated squared error (ISE) between the indirect regression estimator and

the regression function for each of θ1 and θ2. In general, this methodology is not

available in applications, but we expect it to produce the best indirect regression

estimate with respect to the IMSE of these estimators.

Figure 2 shows box plots of the log-transformed ratios of the nearly optimal

regularization parameter selected from the proposed bootstrap methodology to

the regularization parameter chosen from the ISE methodology, at each log-

transformed sample size. At the larger sample sizes, we can plainly see the boxes

are beginning to include zero. It appears that with increasing sample size, both

the bootstrap selection methodology and the ISE selection methodology choose

similar regularizations for each of θ1 and θ2, for both normally distributed and

t-distributed errors.

We also numerically measured the performance of the indirect regression

estimator by simulating the IMSE using both regularization techniques for each

regression θ1 and θ2 for both cases of normally distributed errors and t-distributed

errors. The results are given in Table 7 for the case of normally distributed errors,

and in Table 8 for the case of t-distributed errors. We can plainly see that the

IMSE of the estimators using each regularization method are decreasing to zero

as the sample size increases, and the IMSE values between the bootstrap-based

method and the ISE-based method appear to be very similar, even at the smaller

sample sizes 51 and 101. In summary, we find that the residual-based empirical

distribution function is performing well as an estimator of the error distribution

function, and that the proposed smooth bootstrap methodology for selecting the
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regularization parameter required for the indirect regression estimator provides

a useful and convenient tool for precise indirect regression function estimation.

4.1. Example: comparison between regularization methods for spec-

tral cutoff estimators

Consider the special case of indirect regression estimators formed using the

so-called spectral cutoff method. This means we consider the simpler spectral

smoothing kernel

Λ(k) = 1
[
− 1 ≤ k ≤ 1

]
, k ∈ Z.

Here, one seeks a regularization that essentially decides how many Fourier fre-

quencies to include in the indirect regression estimator, which follows from ob-

serving that (2.2) evaluates Λ at the product hnk, where the regularizing parame-

ter hn is small. Cavalier and Golubev (2006) investigate a penalized estimator of

the integrated mean squared error of indirect regression estimators obtained from

the spectral cutoff method called a risk hull; see (1.9)–(1.11) on pages 1656–1657.

The authors propose selecting a regularization that minimizes this quantity, and

call this approach to regularize the risk hull method. Note that the risk hull

method requires choosing a tuning parameter α that influences the strength of

the penalty. The authors suggest using α = 1.1, which we use as well.

In this example, we simulated a comparison between the risk hull method

and the proposed bootstrap regularization selection method from Section 3.2, for

both regressions θ1 and θ2. The distortion function ψ is specified in Section 4,

and the errors are again normally distributed with mean zero and scale 2/3. As

before, we considered sample sizes 51, 101, 201, and 301. We used the same pilot

sequences as in the previous example for the bootstrap selection method.

The results of our numerical study are summarized in the box plots displayed

in Figure 3. At smaller sample sizes 51 and 101, we can see that both approaches

choose similar regularizations; that is, both procedures suggest similar spectral

cuts. The larger sample sizes 201 and 301, however, show that the risk hull

method begins to favor regularizations that include fewer Fourier frequencies

than those of the bootstrap method. Consequently, for θ1, the simulated IMSE

values are 0.311, 0.286, 0.276, and 0.274 using the risk hull method, and 0.312,

0.279, 0.056, and 0.042 using the proposed bootstrap procedure, for each sample

size 51, 101, 201, and 301, respectively. Similarly, for θ2, the simulated IMSE

values are 2.354, 2.229, 2.100, and 2.049 using the risk hull method, and 0.737,

0.613, 0.539, and 0.209, respectively, using the proposed bootstrap procedure. We
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Figure 3. Box plots of log-transformed ratios of regularization parameters (bootstrap-
based selection to risk-hull-based selection) by log-transformed sample size. The box
plot on the left corresponds to the regression θ1, and the box plot on the right to the
regression θ2.

can plainly see the proposed bootstrap selection procedure compares favorably

with the risk hull method.

Unfortunately, using the risk hull method together with the spectral cutoff es-

timator produces unsatisfactory results for larger sample sizes. This phenomenon

can also be observed in Rochet (2013) (see Case 1 on page 491, and compare the

lines in the tables corresponding to x̂∗sco for the sample sizes 50 and 200; note

the lack of substantial decay in their performance metric, despite the increase

in sample size). Because the proposed bootstrap procedure is widely applica-

ble and has good finite-sample performance, we recommend it to practitioners

considering data-driven regularization selection procedures.

Supplementary Material

The online Supplementary Material contains the proofs of the technical re-

sults.
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