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Abstract: Although normal mixture models have received great attention and are

commonly used in different fields, they stand out for failing to have a finite maxi-

mum on the likelihood. In the univariate case, there are n solutions, corresponding

to n distinct data points, along a parameter boundary, each with an infinite spike

of the likelihood, and none making particular sense as a chosen solution. The mul-

tivariate case yields an even more complex likelihood surface. In this paper, we

show that there is a marginal likelihood that is bounded and quite close to the

full likelihood in information, as long as one is interested in the central part of the

parameter space, away from its problematic boundaries. Our main goal is to show

that the marginal likelihood solves the unboundedness problem in a manner com-

petitive with other methods that were specifically designed for the normal mixture.

To this end two algorithms have been developed. Their effectiveness is investigated

through a simulation study. Finally, an application to real data is illustrated.

Key words and phrases: EM algorithm, marginal likelihood, mixture models, Monte

Carlo likelihood.

1. Introduction and Background

Finite mixture models have played a central role in statistical modeling

since they were turned into flexible tools to address the departures from

the classical inferential assumption of normality by Pearson (1894). They

have received increasing interest and are widely used in different fields, such

as genetics, economics, marketing, engineering, and social sciences, among

many others. According to their use, finite mixture models can have differ-

ent interpretations. They can be used in a clustering or in a classification

context, as well as in a semiparametric or nonparametric framework. Their

success is mainly the result of their simplicity when being fitted and inter-

preted. Such models arise naturally in contexts where the assumption of

homogeneity is not reliable. Their mathematical structure implies that a

population is a convex combination of a finite number of sub-populations

represented by a finite number of densities.

https://doi.org/10.5705/ss.202016.0483
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The price to be paid for this flexibility is a challenging inference. Nor-

mal mixture models are the province of many likelihood anomalies, such

as the failure of seemingly standard hypothesis testing problems to have a

limiting chi-squared null distribution, and these models stand out for failing

to have a finite maximum on the likelihood. In the univariate case, there

are n solutions, corresponding to n distinct data points, along a parameter

boundary, each with an infinite spike to the likelihood, and none making

particular sense as a chosen solution: one can set µ1 equal to any obser-

vation, and let σ2
1 approach zero (Kiefer and Wolfowitz (1956)). In the

multivariate d-dimensional case, there is an even more complex likelihood

surface. The likelihood tends to infinity when the covariance matrix has one

eigenvector that is parallel to one of the observations, and the corresponding

eigenvalue goes to zero.

In the literature, it is known that there exists a sequence of roots of the

likelihood equation that is consistent and asymptotically efficient (Kiefer

(1978); Peters and Walker (1978)). Nevertheless, for a given sample, mul-

tiple local maxima may exist; hence, the other major maximum-likelihood

difficulty is determining when the correct one has been found. See, for

example, Hathaway (1985), and the references therein.

Various methods have been proposed to avoid the unboundedness of

the likelihood by constraining the parameter space. Hathaway (1985, 1986)

suggests running the EM algorithm (the typical optimization tool used to

maximize the likelihood of obtaining parameter estimates) by constraining

the ratio of the mixture component variances. Formally, in the univariate

mixture case with G components, this means that σh/σj ≥ c > 0, where

1 ≤ h 6= j ≤ G. Similar solutions can be found in the literature; see, for

example, Tanaka and Takemura (2006). However, the main issue is related

to the choice of c: if it is too large, we might exclude the true parameters,

and if it is not large enough, the maximum can occur at the boundary,

where the ratio of variances is equal to c (i.e., σh/σj is close to zerp). To

overcome this problem, constrained solutions based on the output of the

EM algorithm have been proposed; see Ingrassia and Rocci (2007, 2011),

and the references therein. Furthermore, other proposals use a penalty

term on the scale parameter to avoid infinite spikes (Ciuperca, Ridolfi and

Idier (2003); Chen and Tan (2009); Chen, Tan and Zhang (2008)). Once

again, this approach requires some subjective choice: the penalized likeli-

hood method works well with properly chosen penalty functions, but the
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choice of a penalty function in a finite sample is still a problem.

Furthermore, there exist solutions based on the conditional likelihood

(Policello II (1981)), profile likelihood (Yao (2010)), or doubly smoothed

maximum likelihood estimator (DS-MLE) (Seo and Lindsay (2010)). Al-

though the DS-MLE still requires a subjective choice, that is, the band-

width, it can be shown to be consistent with any fixed bandwidth. This

implies that the DS-MLE is robust to the choice of bandwidths, even in

small samples.

While not an exhaustive list, the works describe here indicate that all

of the approaches share the same underlying intuition: researchers find the

mixture likelihood quite acceptable for use, provided that they are looking

for a local maximum that lies away from the chaotic boundary. One might

conjecture that this likelihood is close to being quite stable, which is a fact

we exploit in this study.

We show that there is a marginal likelihood that is bounded and quite

close to the full likelihood in information, as long as one is interested in

the central part of the parameter space, away from its problematic bound-

aries. Our main goal is to show that the marginal likelihood solves the

unboundedness problem in a manner competitive with other methods that

were specifically designed for the normal mixture.

The remainder of the paper is organized as follows. We first briefly de-

scribe the intuition behind our proposal in Section 2. Then, we prove that

the invariant likelihood for a univariate mixture is bounded in Section 3.

In Sections 4 and 5, we introduce the calculations needed to obtain the

Monte Carlo likelihood and the EM-like algorithm to get the parameter es-

timates, respectively. In Sections 7 and 8, the effectiveness of the proposals

is investigated and proved through a comparative simulation study and an

application to a data set on the acidity index of lakes, respectively.

2. Classical Invariance and The Normal Model

The motivation for adopting a marginal likelihood approach can be

drawn from a classic likelihood analysis. In the standard N(µ, σ2) model

for a univariate random sample X1, . . . , Xn, we have the sufficient statistics

X̄ and S2 =
∑

(Xi − X̄)2. The marginal distribution for S2 is σ2χ2
(n−1).

This distribution can then be used to make inferences about σ2, free of the

parameter µ. This analysis can be constructed from first principles using a
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group invariance argument. If we consider data transformations of the form

x→ a+ x = y,

for arbitrary a ∈ R, then the new y sample has a N(µ+a, σ2) density. If we

need to make an inference about σ2 that is free of the choice of a, and hence

of the value of the parameter µ, we can focus our attention on the marginal

distribution of S2, which is the maximal invariant statistic (see Cox and

Hinkley (1979, Example 5.14)). However, one might ask if information

about the parameter of interest σ2 is lost when using the marginal distri-

bution of S2. The answer, in a Fisherian sense, is yes, in that the Fisher

information in S2 about the parameter σ2 is (n − 1)/2σ4, whereas the in-

formation in the full likelihood is n/2σ4. The missing information, 1/2σ4,

can be found in the conditional distribution of X̄, given S2, which here is

also the marginal distribution of X̄. At least on some intuitive grounds, we

might consider the remaining information about σ2 in X̄ to be irretrievable,

owing to the presence of the unknown µ. However, the relative information

about σ2 in S2 compared to the full likelihood is (n − 1)/n, and so the

marginal likelihood certainly has a large-sample justification.

The d-dimensional multivariate normal distribution N(µ,Σ) has a sim-

ilar analysis, where one may use the class of multivariate location transfor-

mations

x→ a + x = y.

Now, the maximal invariant is S2 =
∑n

i=1(Xi− X̄) (Xi− X̄)>, which has a

Wishart distribution with n− 1 degrees of freedom, depending only on the

parameter Σ.

2.1. The normal mixture likelihood

For the mixture framework, the previous argument can be extended

as follows. Here, we are concerned with the two-component multivariate

normal mixture density

ϕ(xi,θ) = pφ(xi;µ1,Σ1) + (1− p)φ(xi;µ2,Σ2), (2.1)

where the parameter space for θ = (p,µ1,µ2,Σ1,Σ2) is p ∈ (0, 1) , µg ∈ Rd,

and Σg is in the set of nonnegative definite matrices. This parameterization

has a labeling nonidentifiability, in that one can interchange component 1
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with component 2, and change p to (1−p), thereby achieving the same den-

sity. However, Equation (2.1) is otherwise a regular model, and the mapping

is locally identifiable in the parameter space. We consider a random sample

X1, . . . ,Xn from this density.

Let us define Ui = Xi−Xn for 1 ≤ i ≤ n−1. Because Ui = (Xi−a)−
(Xn − a) for any vector a, letting a = µ1 we notice that the distribution

of Ui must depend on the distribution of X1 − µ1, . . . ,Xn − µ1, which is

a sample from a mixture of normals with means 0 and δ = µ2 − µ1. We

conclude that the distribution of U = (U1, . . . ,Un−1) depends only on the

parameters τ = (p, δ,Σ1,Σ2). We therefore introduce the notation hτ (u)

for the density of U, and refer to hτ (u) as the marginal likelihood. Similarly,

we call fθ(x) and fθ(x|u) the full and conditional likelihoods, respectively,

when they are viewed as functions of θ. We may derive an expression for

hτ (u) by integrating out xn from the joint density of (U, Xn):

hτ (u) =

∫
fθ(u1 + x) · · · fθ(un−1 + x)fθ(x) dx. (2.2)

Under the change of variables t = x− xn, and recalling that xi = ui + xn,

we may rewrite Equation (2.2) as

hτ (u) =

∫
fθ(x1 + t) · · · fθ(xn−1 + t)fθ(xn + t) dt. (2.3)

Equation (2.3) re-expresses the marginal likelihood in terms of the complete

data, which is a computational trick we will use later in proving that the

marginal likelihood is bounded in the case of univariate data. The form

of Equation (2.3) also makes clear that the choice of Xn in the definition

Ui = Xi −Xn is arbitrary, made here simply for convenience of notation.

This study proposes a two-stage estimation algorithm. The first stage

estimates the parameters τ using a maximum likelihood estimation, which

we show is a well-behaved problem in the two-component unidimensional

case. This latter fact is one of the main contributions of this study because,

in general, the MLE is ill-behaved, theoretically, in this case. The second

stage estimates the parameter µ1, given our estimates of the τ parameters.

In the next section, we show that the likelihood for τ is bounded in the

important special case of univariate data.
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3. The Bounded Marginal Likelihood

In order to show that the marginal likelihood is bounded, we condition

on Z, the vector that indicates the group from which each observation is

drawn, and write

hτ (u) =
∑
z

hτ (u | z) Pr(Z = z). (3.1)

Each value of z effectively partitions the data into two sets, corresponding to

observations drawn from each component. Let n1 = n1(z) and n2 = n2(z)

be the sizes of groups 1 and 2, respectively. Given Z = z, define v1, . . . ,vn1

as a relabeling of the n1 observations among x1, . . . ,xn drawn from the first

component and, similarly, w1, . . . ,wn2 as the observations from the second

component. From Equation (2.3), we may write

hτ (u | z) =

∫ ∏
i:zi=1

f1(xi + t)
∏
i:zi=2

f2(xi + t)dt

=

∫
f1(v1 + t) · · · f1(vn1 + t)f2(w1 + t) · · · f2(wn2 + t)dt, (3.2)

where f1 and f2 are normal densities with parameters (µ1,Σ1) and (µ2,Σ2),

respectively. We consider whether the summands of Equation (3.1) are

bounded over the parameter space. In the one-dimensional case, we can

show that the answer is yes.

Proposition 1. Let f1 and f2 be normal densities with parameters (µ1,Σ1)

and (µ2,Σ2), respectively, and let δ = µ2 − µ1. Let X1, . . . ,Xn denote a

sample from a mixture density, placing probabilities p on f1 and 1 − p on

f2. Conditional on Z = z, let v1, . . . , vn1 denote the observations drawn

from f1, and w1, . . . ,wn2 denote those drawn from f2. Then, the marginal

likelihood for data ui = xi − xn, for 1 ≤ i ≤ n− 1, may be expressed as a

function of τ = (p, δ,Σ1,Σ2), as follows:

L(τ ) =
∑
z

pn1(1−p)n2

∫
f1(v1+t) · · · f1(vn1+t)f2(w1+t) · · · f2(wn2+t) dt.

(3.3)

Furthermore, in the univariate case, L(τ ) is bounded with probability one.

The first claim of Proposition 1 is merely a combination of Equa-
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tions (3.1) and (3.2), yet it is a nontrivial statement in the sense that

Expression (3.3), which clearly depends on µ1 and µ2, may depend on these

parameters only through δ. The second claim, on the boundedness in the

univariate case, relies on the following lemma, the proof of which is given

in Supplementary Material (S1).

Lemma 1. The integral in Equation (3.3) may be maximized over the pa-

rameter δ in closed form, and the resulting maximum may be rewritten as

K
[
(det Σ1)

n1−1(det Σ2)
n2−1 det(n1Σ2 + n2Σ1)

]−1/2
exp

{
−1

2
(S2

v + S2
w)

}
,

(3.4)

where K is a constant, not depending on any parameters, S2
v =

∑n1

i=1(vi −
v)>Σ−11 (vi − v), and S2

w =
∑n2

j=1(wi −w)>Σ−12 (wi −w).

In the univariate case, Expression (3.4) may be rewritten as

K

σn1−1
1 σn2−1

2 (n1σ2
2 + n2σ2

1)1/2
exp

{
− 1

2σ2
1

n1∑
i=1

(vi − v)2 − 1

2σ2
2

n2∑
j=1

(wj − w)2

}
.

(3.5)

The only way that Expression (3.5) can be unbounded as a function of the

parameters σ1 and σ2 is if one of the sums disappears. With probability one,

each sum will be nonzero, as long as it consists of at least two summands.

Thus, the only cases that must be examined specifically are n1 = 0 and

n1 = 1; because n2 = n − n1, the cases n1 = n and n1 = n − 1 may be

treated similarly. In addition, because σ1 disappears from the denominator

of (3.5) when n1 = 0 or n1 = 1, we conclude that (3.5) is bounded with

probability one.

To see why (3.4) can be unbounded for multivariate data, observe that

when n1 = 2, v1, v2, and v must be collinear, and so the vectors vi − v
in S2

v both point in the same direction. We may construct a covariance

matrix Σ1 with one of its eigenvectors orthogonal to this direction; thus,

the corresponding eigenvalue disappears entirely from the expression S2
v .

Because this eigenvalue is arbitrary, the value of det Σ1 can be made arbi-

trarily small, which means that (3.4) can be made arbitrarily large when

n1 = 2.
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4. Monte Carlo Calculation of The Invariant Likelihood

In order to obtain the parameter estimates, the marginal likelihood,

which cannot be explicitly calculated, is approximated as a Monte Carlo

likelihood (Geyer and Thompson (1992); Geyer (1994)). The approximation

is based on pseudodata obtained using simulated values for xn, and the

partition of the data into the two components via z. Given this aim, we

implement an innovative sampling importance scheme. Here, we obtain

an importance sample from a seed distribution by running B independent

Gibbs samplers.

One way to understand our approach is that our algorithm attempts to

exactly maximize an approximate likelihood based on the importance sam-

pling idea described below. In contrast, several existing stochastic EM algo-

rithms in the literature attempt to approximately maximize an exact like-

lihood. As summarized in Celeux, Chauveau and Diebolt (1995), the main

stochastic versions of EM are the SEM algorithm (Broniatowski, Celeux

and Diebolt (1983); Celeux and Diebolt (1985)), SAEM algorithm (Celeux

and Diebolt (1992)), and MCEM algorithm (Wei and Tanner (1990); Tan-

ner (1991)). All of these algorithms introduce a simulation step that uses

of pseudorandom draws at each iteration, although there are some differ-

ences between the SEM and MCEM. The SEM generates pseudo-complete

samples by drawing potential unobserved samples from their conditional

density, given the observed data. On the other hand, the MCEM replaces

the analytic computation of the conditional expectation of the log-likelihood

of the complete data, given the observations from a Monte Carlo approxi-

mation.

The main advantage of algorithms is that they eliminate the need for

a simulation step at each iteration of the EM algorithm; the seed distri-

bution generated initially is reused repeatedly. This saves computing time,

and mitigates the tendency of Gibbs samplers to produce highly dependent

observations.

We consider a general framework, in which U and T represent observed

and hidden variables, respectively. Later, we will consider the specific case

in which U is defined as in Section 2.1 and T = (Xn,Z1, . . . ,Zn), where

Xn and Zi are as defined in Sections 2.1 and 3, respectively. In impor-

tance sampling, the parameter vector τ0 is fixed, and samples are drawn
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independently from an importance density gimp;τ0 . We exploit the identity

Eg

[
hτ (U,T)

gimp;τ0(T | U)
| U = u

]
=

∫
hτ (u, t)

gimp;τ0(t | u)
gimp;τ0(t | u)dt = hτ (u)

(4.1)

to construct the Monte Carlo likelihood, given by

M(τ ) =
1

B

B∑
b=1

hτ (u, tb)

gimp;τ0(tb | u)
, (4.2)

where t1, . . . , tB is a sample from gimp;τ0(t | u).

Regardless of how the importance density gimp;τ0(t | u) is chosen, the law

of large numbers implies that M(τ )
p−→ hτ (u) for all values of τ , assum-

ing the expectation in Equation (4.1) exists. However, there are simple

cases of Monte Carlo likelihoods where this convergence is so slow that it

essentially never occurs in practice, particularly when τ is far away from

τ0 (e.g., Hummel, Hunter and Handcock (2012, Sec. 3)). Thus, a sensible

choice of gimp;τ0(t | u) is important, and to reduce the variance of the sum-

mands in Equation (4.2), we want this conditional density to be close to

hτ0(t | u). The strategy we use to construct this importance density is

elaborate, though it is not demanding computationally, and is very accu-

rate. Furthermore, our proposed method, unlike methods such as the Monte

Carlo EM, requires obtaining the importance density just once, before the

estimation step.

We start by generating an initial estimate of τ = (p, δ, σ1, σ2) via a

k-means clustering solution with two components. Then, we obtain sample

estimates of p, δ = µ2−µ1, and the two variances. There are various means

by which we might improve this initial τ estimate, which we denote as τ0,

but we use a simple method for the analyses presented later. We then sim-

ulate a discrete seed distribution, which is a finite collection of realizations

of hidden variables obtained after running B replicates of a Gibbs sampler

for R steps, with randomly drawn initial values for each replicate. The real-

izations of the hidden variables t<1>
b , t<2>

b , . . . , t<R>
b are composed of z<r>

ib ,

indicating which group observation i belongs to, for 1 ≤ i ≤ n, and the

value of x<r>
nb . For 1 ≤ b ≤ B, t<R>

b = (x<R>
nb , z<R>

1b , . . . , z<R>
nb ) is obtained

as the Rth step in a Markov chain, the limiting distribution of which is

given by hτ0(t | u).
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Given our initial parameter values τ0 = (p01, δ0, σ01, σ02) and a replicate

number b, the Gibbs sampler we use to approximate the target density be-

gins by choosing a normally distributed random starting value x<0>
nb . Then,

at the the rth iteration, for 1 ≤ r ≤ R, we define a distribution kτ0(t |
x<r−1>
nb ,u) from which we sample t<r>

b = (x<r>
nb , z<r>

1b , . . . , z<r>
nb ), condi-

tional on the observed data u and the value x<r−1>
nb . This kτ0(t | x<r−1>

nb ,u)

distribution, which we call the Gibbs kernel, is implicitly defined by the

method for sampling t<r>
b , which is as follows:

• Sample z<r>
ib1 as a Bernoulli random variable, with

p(z<r>
ib1 = 1) =

p01φ(x<r−1>
n + ui, µ01, σ

2
01)∑2

j=1 p0jφ(x<r−1>
n + ui, µ0j, σ2

0j)
,

for i = 1, . . . , n− 1, and

p(z<r>
nb1 = 1 | x<r−1>

n ,u) =
p01φ(x<r−1>

n , µ01, σ
02
1 )∑2

j=1 p0jφ(x<r−1>
n , µ0j, σ2

0j)
,

where p02 = 1− p01, µ01 = 0, µ02 = δ0, and we let z<r>
ib2 = 1− z<r>

ib1 .

• Sample x<r>
n from N(c, d), where

d =

(
n1

σ2
01

+
n2

σ2
02

)−1
,

c = d

(
µ01

σ2
01

n1 +
µ02

σ2
02

n2 −
n∑

i=1

ui

[
z<r>
ib1

σ2
01

+
z<r>
ib2

σ2
02

])
.

Because the empirical distribution consisting of the seed values t<R>
1 , . . . , t<R>

B

is discrete, we propose creating from it a kernel density estimator that will

serve as our seed distribution.

To this end, we let x∗nb = x<R>
nb , and define

gimp;τ0(t | u) =
1

B

B∑
b=1

kτ0(t | x∗nb,u),

where kτ0(·) is the Gibbs kernel defined above. We then run a stratified

importance sampler (Owen and Zhou (2000)), as follows. For 1 ≤ b ≤ B, we

draw tb = (xnb, z1b, . . . , znb) using the Gibbs sampling kernel kτ0(t | x?nb,u).



INVARIANT SOLUTION TO THE MIXTURE 1245

In the next section, we introduce an algorithm to maximize the simulated

likelihood M(τ ) defined in Equation (4.2) with respect to the invariant

parameters τ = {δ, σ1, σ2, p}.

5. An EM Algorithm

Because logM(τ ) has the “log-of-sums” form discussed by Hunter, Ku-

ruppumullage Don and Lindsay (2018), we may use their method to con-

struct an iterative EM algorithm to help find a maximizer. With a denoting

the iteration number of our algorithm, define

w<a>
b =

hτ<a>(u, tb)

gimp;τ0(tb | u)

[
B∑
j=1

hτ<a>(u, tj)

gimp;τ0(tj | u)

]−1
and

Q(τ | τ<a>) =
B∑
b=1

w<a>
b log hτ (u, tb).

As explained by Hunter, Kuruppumullage Don and Lindsay (2018), this

definition ensures that Q(τ | τ<a>) − Q(τ<a> | τ<a>) is a minorizer of

logM(τ ) − logM(τ<a>). Thus, we maximize Q(τ | τ<a>) to get τ<a+1>,

which guarantees the familiar ascent property of an EM algorithm, namely,

M(τ<a+1>) ≥M(τ<a>).

In the E-step, we update the importance weights w<a>
b ; the zb are

always the same, because the simulated partitions are kept fixed. This

is the main difference from a standard EM algorithm. In the M-step, we

maximize the previous surrogate function to obtain the estimates for the

invariant model parameters. Letting nbg = #{i : zbi = g}, for g = 1, 2, we

obtain

p̂<a+1> =
B∑
b=1

w<a>
b

ngb

n
,

δ̂<a+1> =
B∑
b=1

w<a>
b

[∑
i:zbi=2(ui + xnb)

nb2

−
∑

i:zbi=1(ui + xnb)

nb1

]
,

σ̂2<t+1>
g =

B∑
b=1

w<a>
b

∑
i:zbi=g(ui + xnb − δ̂<a>I{g = 2})2

nbg

.
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The two steps are repeated until the increase in the simulated likelihood

between two consecutive steps is less than ε = 10−6.

6. An Alternative DS-MLE Approach

An additional novel estimation algorithm combines the importance sam-

pling idea with a straightforward maximum likelihood estimation by select-

ing multiple samples of xn. In effect, this creates an ensemble of B synthetic

data sets when these values of xnb, for 1 ≤ b ≤ B, are added to the fixed

and known u1, . . . , un−1. Because this method is based on the maximum

likelihood using different samples, we refer to it as DS-MLE.

We first run 1,000 k-means partitions on the original full data x1, . . . , xn
using random starting points, keeping the one that gives the highest value

of the original full-data likelihood, based on the sample estimates of the

parameters p0, µ01, µ02, σ
2
01, and σ2

02. We then sample B independent

values Xn1, . . . , XnB, where Xnb ∼ N(c, d), with

d =

(
n1

σ2
01

+
n2

σ2
02

)−1
,

c = d

(
µ01

σ2
01

n1 +
µ02

σ2
02

n2 −
n∑

i=1

ui

[
zi1
σ2
01

+
zi2
σ2
02

])
.

Given theB synthetic data sets consisting of the values u1+xnb, . . . , un−1
+ xnb, xnb, we may apply a standard EM algorithm to each of them. The

final estimates are the means of the estimates obtained over the B runs.

We obtain our estimates of δ as the difference of the estimates between µ2

and µ1.

7. Simulation Study

In this section, we investigate the effectiveness of the proposed EM-

like Monte Carlo (MC) algorithm using a simulation study. The proposed

algorithm is compared to the constrained EM algorithm introduced by In-

grassia and Rocci (2007), doubly smoothed (DS) estimator proposed by

Seo and Lindsay (2010), with tuning values h = 0.01 and h = 0.1, DS-MLE

algorithm proposed in Section 6, and an unconstrained EM algorithm for

the full likelihood, initialized using the final estimates of our main proposal

(MC and Full).
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7.1. Asymptotic standard errors

To derive the standard errors for the parameter estimates, we use the

sandwich information matrix of Godambe (1960), G = (J−1V J−1), where

J is minus the expectation of the second derivative of the log-likelihood,

and V is the variance of the first derivative of the log likelihood (the score

vector). When the model is correctly specified, J−1V = I and G−1 = J is

the Fisher information matrix. Furthermore, as shown in Sung and Geyer

(2007), G is also the asymptotic variance when the Monte Carlo sample

size B is very large. On the other hand, we expect higher variance for the

estimates when B is small, because in that case, the variability due to the

stochastic method itself is nonnegligible. The G matrix can be used to

find the standard errors of the estimates in this section and in Section 8.

In the case of the simulation studies described in Section 7.2, we com-

pare the asymptotically derived standard errors with the sample standard

deviations of multiple estimates to assess the efficacy of the asymptotic

approximations.

7.2. Simulation results

We simulated R = 500 samples of sizes n = 100 and n = 500 from a

two-component mixture, with two sets of parameter values:

1. Model I: p = 0.3, µ1 = 0, σ2
1 = 1, µ2 = 3, and σ2

2 = 0.25;

2. Model II: p = 0.5, µ1 = 0, σ2
1 = 1, µ2 = 1, and σ2

2 = 1.

For each sample, we generate simulated values for xn by applying either the

algorithm in Section 4 or the algorithm in Section 6.

The constrained EM and the DS algorithms were initialized using a

random partition. All algorithms were stopped when the increase in the

log-likelihood was less than 10−6. For algorithms that estimate the invari-

ant parameters δ = µ2 − µ1, σ
2
1, σ2

2, and p, the estimates of µ1 and µ2

are obtained via a maximum likelihood estimation using a standard EM

algorithm, after fixing the invariant parameters. This is a straightforward

mixture problem involving only one unknown parameter. The results of

these simulation studies for n = 500 are displayed in Figures 1 and 2; the

remainders are provided in the Supplementary Material (S2).

Figures 1 and 2 and the results in the Supplementary Material (S2)

show all algorithms exhibit smaller biases and mean square errors under
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N=500. True p=0.3

N=500. True 𝝁𝟏=0

N=500. True 𝜹=3

N=500. True 𝝈𝟏𝟐=1

N=500. True 𝝈𝟐𝟐 =0.25

MC- B=100            MC -B=100 &Full           MC- B=500            MC -B=500 &Full Constr Full                 DS - h=0.01                 DS- h =0.1                    DS-MLE    

MC- B=100            MC -B=100 &Full           MC- B=500            MC -B=500 &Full Constr Full                 DS - h=0.01                 DS- h =0.1                    DS-MLE    

MC- B=100            MC -B=100 &Full           MC- B=500            MC -B=500 &Full Constr Full                 DS - h=0.01                 DS- h =0.1                    DS-MLE    

MC- B=100            MC -B=100 &Full           MC- B=500            MC -B=500 &Full Constr Full                 DS - h=0.01                 DS- h =0.1                    DS-MLE    

MC- B=100            MC -B=100 &Full           MC- B=500            MC -B=500 &Full Constr Full                 DS - h=0.01                 DS- h =0.1                    DS-MLE    
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Figure 1. Box plots of 500 parameter estimates, each resulting from a sample of size
n = 500 from Model I. The competitors are our main proposal, labeled MC, using
both B = 100 and B = 500; the unconstrained EM algorithm initialized with estimates
produced by MC, labeled MC and Full, again using both B = 100 and B = 500; the
constrained EM algorithm of Ingrassia and Rocci (2007), labeled Constr Full; the doubly
smoothed algorithm of Seo and Lindsay (2010), labeled DS, using both h = 0.01 and
h = 0.1; and our alternative approach from Section 6, labeled DS-MLE.

Model I than they do under Model II. Although the proposed algorithm,

labeled MC, performs well, the constrained EM algorithm appears to work

better. This is not entirely surprising, because there is no simulation error

or information loss. On the other hand, the MC algorithm followed by the

full EM algorithm seems to improve the performance. In fact the good

initialization of the EM algorithm—the parameter estimates of the MC

algorithm—prevents the local maximum problem, as well as the problem of

an unbounded likelihood, because the parameter estimates lie in the middle

of the parameter space. The DS-MLE approach shows the poorest perfor-

mance for Model I, although the median estimates are still relatively close

to the true parameter values, but it works very well for Model II. The DS

algorithm seems to work quite well, although its parameter estimates show

high mean square errors. Moreover, as the tuning parameter h increases,

that is, as the parameter estimates are farther from the boundary of the

parameter space, the bias, and therefore the mean squared error, increases

significantly.
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N=500. True p=0.5

N=500. True 𝝁𝟏=0

N=500. True 𝜹=1

N=500. True 𝝈𝟏𝟐=1

N=500. True 𝝈𝟐𝟐 =1

MC- B=100            MC -B=100 & Full           MC- B=500       MC -B=500 & Full            Constr Full                 DS - h=0.01                 DS- h =0.1                    DS-MLE    

MC- B=100            MC -B=100 & Full           MC- B=500     MC -B=500 & Full            Constr Full                 DS - h=0.01                 DS- h =0.1                    DS-MLE    

MC- B=100            MC -B=100 & Full           MC- B=500        MC -B=500 & Full            Constr Full                 DS - h=0.01                 DS- h =0.1                    DS-MLE    

MC- B=100            MC -B=100 & Full           MC- B=500         MC -B=500 & Full            Constr Full                 DS - h=0.01                 DS- h =0.1                    DS-MLE    

MC- B=100            MC -B=100 & Full           MC- B=500       MC -B=500 & Full            Constr Full                 DS - h=0.01                 DS- h =0.1                    DS-MLE    
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Figure 2. Box plots of 500 parameter estimates, each resulting from a sample of size
n = 500 from Model II. The algorithm labels are explained in Figure 1.

Comparing the sample standard deviations with the standard errors

estimated using the asymptotic method described in Section 7.1, we see in

the case of Model I that the sandwich formula performs quite comparably

to the empirical standard deviation, except in certain cases. In these cases,

our MC method occasionally produces a strong outlier, inflating the sam-

ple standard deviation. On the other hand, the doubly smoothed method

appears to produce asymptotic standard errors that are consistently too

small. Under Model II, in which there is a significant overlap between the

mixture components, the asymptotic formula tends to underestimate the

sample standard deviation more consistently and more dramatically, for all

of the methods we tested, than for Model I.

8. Acidity Index of Lakes

In this section, we apply our proposal to a data set on an acidity in-

dex measured in a sample of 155 lakes in the Northeastern United States

(Crawford et al. (1992)). Previously, this data set has been modeled by a

mixture of Gaussian distributions on the log scale, with a number of com-

ponents from two to five (e.g., Richardson and Green (1997); McLachlan

and Peel (2000)). The authors reported the most plausible solution among

all local maxima, removing infinite spikes and spurious maxima. Here,
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we choose the two-component normal mixture model to simplify our main

point, as in Seo and Lindsay (2010). We compare the performance of our

proposal with the approaches proposed by Ingrassia and Rocci (2007), Seo

and Lindsay (2010), the algorithm proposed in Section 6, and the uncon-

strained EM algorithm initialized using the best solution of our proposal.

Table 1 shows the local maximizers of the usual log-likelihood, based on 100

randomly generated partitions. Under our proposal, the full set of parame-

ters is obtained by combining the marginal likelihood with the conditional

likelihood; that is, given the invariant parameter estimates, we obtain the

mean for the reference component, set equal to zero. For the best solution

under the above-mentioned approaches, the asymptotic standard errors are

estimated. All methods produce parameter estimates that appear quite ac-

curate in terms of precision; that is, their standard error estimates are fairly

small. However, as we saw in Section 7.2, there may be reason to doubt the

standard errors in the case of the doubly smoothed estimates.

The constrained EM algorithm works well, reducing the number of local

maxima. This is also true for the DS-MLE algorithm presented in Section 6,

and the unconstrained EM algorithms initialized with the best solutions of

our proposal. All of these methods reach the same local maximum. For the

approach of Seo and Lindsay (2010), as expected, a lower h (0.01) produces

a higher number of local maxima. Indeed, the doubly smoothed method

with small h is similar to the unconstrained case, in which the likelihood is

known to have spikes to infinity.

9. Concluding Remarks

This study provides a solution for the unbounded likelihood issue in a

normal mixture problem. Currently, the boundedness has only been proved

for the univariate two-component case, though with further theoretical de-

velopment, perhaps these ideas hold promise for more general cases. For

instance, when the multivariate invariant likelihood may be written as the

product of the univariate invariant likelihoods, an extension to the mul-

tivariate cases is straightforward. In order to decompose the multivariate

density as a product of univariate densities, we restrict the covariance ma-

trices Σg to be diagonal. This particular model belongs to a wider class,

called parsimonious Gaussian mixture models, introduced by Celeux and

Govaert (1995).
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Table 1. Local maximizers from the constrained EM algorithm, doubly smoothed log-
likelihood, and our proposal. Asymptotic standard errors for the best solutions are
reported in parentheses.

Constrained EM algorithm (Ingrassia and Rocci (2007))
µ1 µ2 σ2

1 σ2
2 p Log-Lik

4.2506 5.8916 0.0678 0.7180 0.4793 -187.2345
4.3301 6.2491 0.1388 0.2701 0.5962 -184.6447
(0.0415) (0.0720) (0.0340) (0.0457) (0.0408)
Doubly smoothed likelihood (Seo and Lindsay (2010)) with h = 0.01
µ1 µ2 σ2

1 σ2
2 p Log-Lik

5.1431 5.0555 1.0457 1.1025 0.4506 -226.5162
5.9807 4.2635 0.0834 0.6119 0.4990 -191.1817
5.9817 4.2637 0.0837 0.6106 0.4987 -191.1815
4.2629 5.9620 0.0780 0.6422 0.4972 -191.1669
4.2589 5.9363 0.0740 0.6727 0.4887 -191.1640
4.3315 6.2542 0.1391 0.2670 0.5941 -187.9188
(0.0416) (0.0719) (0.0340) (0.0450) (0.0408)
Doubly smoothed likelihood (Seo and Lindsay (2010)) with h = 0.1
µ1 µ2 σ2

1 σ2
2 p Log-Lik

5.1060 5.1051 1.1768 1.1775 0.5352 -232.5730
5.1607 5.0589 1.1417 1.2135 0.5412 -232.5552
5.1786 5.0433 1.1313 1.2209 0.5385 -232.5408
6.0485 4.2506 0.1963 0.5638 0.4700 -212.6224
4.3475 6.2858 0.2513 0.3316 0.6008 -210.7553
(0.0436) (0.0700) (0.2791) (0.1402) (0.0416)

Our MC method with B = 500
µ1 µ2 σ2

1 σ2
2 p Log-Lik

4.9213 5.0896 1.3838 0.3147 0.7100 -238.9258
4.6522 5.4254 0.8937 1.2140 0.4096 -224.7499
4.5808 5.5108 0.8444 1.1755 0.4286 -224.1096
4.3570 6.3050 0.1734 0.2146 0.6233 -185.2983
(0.0438) (0.0681) (0.0447) (0.0332) (0.0400)

Full EM initialized with the best MC solution
µ1 µ2 σ2

1 σ2
2 p Log-Lik

4.3302 6.2493 0.1389 0.2699 0.5962 -184.6447
(0.0416) (0.0720) (0.0341) (0.0456) (0.0408)

Alternative DS MLE of Section 6 with B = 10
µ1 µ2 σ2

1 σ2
2 p Log-Lik

4.3302 6.2494 0.1390 0.2698 0.5963 -184.6447
(0.0416) (0.0720) (0.0341) (0.0456) (0.0408)

Alternative DS MLE of Section 6 with B = 100
µ1 µ2 σ2

1 σ2
2 p Log-Lik

4.3302 6.2492 0.1389 0.2700 0.5962 -184.6447
(0.0416) (0.0720) (0.0341) (0.0457) (0.0408)
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It may be possible to investigate a large group of transformations, the

so-called affine transformations, generated by x→ a + Bx = y, where B is

an arbitrary nonsingular matrix. The corresponding transformation of the

parameters gives

τ → (p, a + Bµ1, a+ Bµ2,BΣ1B
T ,BΣ2B

T ).

It follows that, in this case, a set of maximally invariant statistics is

(S−1/2(x1 − xn), . . . ,S−1/2(xn−1 − xn)).

This larger group reduces the active parameters still further. If we take a

fixed τ0, and apply this family of transformations to it, we get a collection of

parameter values called the orbit of τ0, Orb(τ0). The orbits are the contours

of the maximal invariant parameter. The maximal invariant statistics have

the same invariant-statistics-based likelihood for every τ ∈ Orb(τ0). For

example, the transformation x → Σ
−1/2
1 (x − µ1) transforms observations

from the first component to the standard normal, N(0, I), while the second

component becomes N(Σ
−1/2
1 (µ2 − µ1),Σ

−1/2
1 Σ2Σ

−1/2
1 ). We can fit the

invariant likelihood based on this parametrization, recognizing that we must

use additional equations to solve directly for µ1 and Σ1. It might be possible

to show that the invariant likelihood is bounded for d > 1 by constrained

solutions fulfilling det(Σ
−1/2
1 Σ2Σ

−1/2
1 ) ≥ 1; imposing this constraint also

solves the labeling nonidentifiability issue.

Finally, note that the algorithms proposed here can be adapted easily

to the multivariate case, despite the problem of the unbounded likelihood.

Supplementary Material

The online Supplementary Material includes the proof of Lemma 1 (S1)

and additional results from the simulation studies (S2).
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