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Abstract: We study a flexible model to address the lack of fit in conventional func-

tional linear regression models. This model, called the sparse functional additive

model, is used to characterize the relationship between a functional predictor and a

scalar response of interest. The effect of the functional predictor is represented in a

nonparametric additive form, where the arguments are the scaled functional prin-

cipal component scores. Component selection and smoothing are considered when

fitting the model in order to reduce the variability and enhance the prediction ac-

curacy, while providing an adequate fit. To achieve these goals, we propose using

the adaptive group LASSO method to select relevant components and smoothing

splines and, thus, obtain a smoother estimate of those relevant components. Simu-

lation studies show that the proposed estimation method compares favorably with

conventional methods in terms of prediction accuracy and component selection.

Furthermore, the advantages of our estimation method are demonstrated using two

real-data examples.

Key words and phrases: Functional data analysis, functional linear model, func-

tional principal component analysis, group LASSO, smoothing spline.

1. Introduction

Functional data analysis has become an important tool for dealing with

data collected over multiple time points, spatial locations, or other continua. A

fundamental problem in functional data analysis is how to model the relationship

between a scalar response of interest and a functional predictor. For instance,

the Tecator data (see Section 5.1) measure 240 meat samples, each of which has

a spectrum of absorbance and contains water, fat, and protein. Researchers have

investigated how to use the spectrum of absorbance, which can be treated as

a functional predictor, to predict one of the three contents. A functional linear

regression (FLR) is a conventional and interpretable model for predicting a scalar

response from a functional predictor. It has many interesting applications. For

instance, Ainsworth, Routledge and Cao (2011) applied an FLR to explore the

effect of river flow on the decline of sockeye salmon. Luo et al. (2013) applied an
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FLR to investigate the time-varying intensity of ward admission and its effect on

to emergency department access block.

In an FLR, the relationship between a scalar response and a functional pre-

dictor is modeled in a linear form. Hence, the key to fitting an FLR is to estimate

the coefficient function of the functional predictor. There has been extensive re-

search to address this problem. For example, Müller and Stadtmüller (2005)

represented the coefficient function in terms of Fourier basis functions or the

eigenfunctions of the estimated covariance function of the functional predictor.

Then, the coefficients of the Fourier basis functions are obtained by solving a

functional estimating equation. Ramsay and Silverman (2005) suggested using

spline basis functions to represent the coefficient function. Then, they solve a

regularized regression problem, in which the roughness of the spline representa-

tion is penalized to obtain a smooth estimate of the coefficient function. Lin et al.

(2017) proposed a local sparse estimator for the coefficient function to enhance

the interpretability of FLRs. Liu, Wang and Cao (2017) added a random effect

on the coefficient function when repeated measurements are available on multiple

subjects. A comprehensive introduction to FLRs can be found in Horváth and

Kokoszka (2012) and Morris (2015).

Although the aforementioned studies have proposed various estimation meth-

ods that can be used to fit an FLR model, and have established some appealing

properties of the corresponding estimators, in practice, applications of FLRs can

be restricted, owing to its simple linear form. Similarly to the multiple linear

model, which in some cases may not adequately describe the relationship between

a scalar response and scalar covariates, an FLR may suffer from inadequate flex-

ibility in terms of modelling the relationship between a scalar response and a

functional predictor. This phenomenon has been noted by many researchers.

For instance, Yao and Müller (2010) extended the FLR model to the case when

the scalar response depends on a polynomial of the functional predictor, focusing

mainly on the quadratic case. Chen et al. (2011) used a nonparametric link to

connect the scalar response and the functional linear form. A class of flexible

functional nonlinear regression models has been proposed by Müller, Wu and

Yao (2013), who use continuously additive models to characterize the relation-

ship between a functional predictor and a scalar response. Nonlinear and/or

nonparametric functional regression models can somewhat address the issue of

an inadequate fit caused by an FLR (see Chen et al. (2011), Müller, Wu and Yao

(2013), Müller and Yao (2008)). However, these models have other disadvan-

tages such as over-flexibility and a lack of stability (Zhu, Yao and Zhang (2014)).
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Reiss et al. (2017) summarized some of main approaches used to regress a scalar

response on a functional predictor. We propose a functional regression model

that achieves a satisfactory tradeoff between flexibility and simplicity.

Zhu, Yao and Zhang (2014) proposed an extended functional additive model,

in which the scalar response of interest depends on a transformation of the leading

functional principal component (FPC) scores. They assumed that some additive

components were vanishing, and that the nonvanishing components were smooth

functions, for the sake of simplicity and interpretability, while retaining flexibility.

To achieve this goal, they adopted the regularization scheme of the component

selection and smoothing operator (COSSO) proposed by Lin and Zhang (2006),

which can select and smooth components simultaneously. This model achieves

a better tradeoff between flexibility and simplicity than many other functional

regression models do. However, the estimation procedure seems to suffer from

several drawbacks. First, only estimation consistency is guaranteed for the pro-

posed estimator. Whether selection consistency holds for this estimator remains

an open question. Another drawback is associated with computational com-

plexity. As noted by Zhang and Lin (2006), when a full basis is employed, the

complexity of the algorithm is O(n3), where n is the sample size. To reduce

the computational burden, Zhang and Lin (2006) suggested using a subset basis

algorithm instead, which was computationally much more efficient than the full

basis algorithm. Zhu, Yao and Zhang (2014) seemed to ignore this computational

issue when implementing COSSO to fit the proposed model. The computational

complexity is demonstrated in simulation studies.

To overcome the drawbacks of the method proposed by Zhu, Yao and Zhang

(2014), we propose a method for estimating extended functional additive models.

In contrast to representing nonparametric additive components in the framework

of RKHS (Zhu, Yao and Zhang (2014)), we use B-spline basis functions to rep-

resent these components, which are easier to understand and implement. Then,

selecting nonzero components is equivalent to selecting the nonzero coefficients of

the B-spline basis functions. The group LASSO method (Yuan and Lin (2006))

has been shown to perform well when selecting grouped variables for accurate

prediction, in both theory and application. Because an additive component cor-

responds to a vector of coefficients, which can be treated as a group of variables,

we employ the group LASSO method to select nonzero vectors of coefficients.

The adaptive group LASSO method is then applied to allow for variation in the

shrinkages of the vectors of the coefficients. This modification yields a more ac-

curate estimate of the coefficient vectors, which then leads to a better estimate
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for the additive components. This method enables us to achieve our goal of

obtaining a parsimonious model via component selection.

Nevertheless, the estimated nonzero components can be wiggly, because we

represent the additive components using a large number of B-spline basis func-

tions. This may impair the predictive performance, as shown in the simulation

studies in Section 4. Thus, we suggest refining the selected components using

smoothing splines. This extra smoothing step improves the prediction accuracy

of the estimator obtained from the adaptive group LASSO, as shown in our

simulation studies.

This study makes three main contributions to the literature. First, compared

with traditional FLR models, our proposed model provides a better tradeoff be-

tween flexibility and simplicity when modeling the effect of a functional predictor.

By selecting and smoothing nonzero components, our proposed method obtains

an estimator that has better prediction accuracy. Second, unlike the COSSO reg-

ularization scheme adopted in Zhu, Yao and Zhang (2014), we employ a group

LASSO to select components, and use the smoothing spline method to smooth

nonzero components. As a result, our proposed estimation method is easy to

understand and implement. Last, but not least, we provide both theoretical and

empirical examples of the selection consistency and estimation consistency of

our proposed estimator; in contrast, Zhu, Yao and Zhang (2014) provided only

a theoretical proof of the estimation consistency of their estimator.

The remainder of this paper is organized as follows. Section 2 introduces

a sparse functional additive model, and our method for estimating the additive

components in the model. Section 3 establishes the selection consistency and

the estimation consistency of our proposed estimator. The finite-sample perfor-

mance of the estimator is investigated empirically in Section 4, where we conduct

simulation studies to compare our proposed estimator with other conventional

methods. In Section 5, our method is demonstrated by analyzing two real-data

examples. Section 6 concludes the paper. The procedures used to estimate the

FPC scores, proofs of the main results in Section 3, and additional empirical

studies are provided in the online Supplementary Material.

2. Model and Estimation Method

2.1. Sparse functional additive model

Suppose that {Xi(t), yi}ni=1 are independent and identically distributed (i.i.d.)

observations from {X(t), Y }, where X(t) is a random function, and Y is a scalar
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random variable. We assume X(t) is a square integrable stochastic process over a

compact interval I = [0, T ]; that is, E {
∫
I X

2(t)dt} <∞. Letm(t) andG(s, t) de-

note the mean function and covariance function of X(t), respectively. According

to Mercer’s theorem, G(s, t) can be represented as G(s, t) =
∑∞

k=1 λkφk(s)φk(t),

where λk is a nonnegative eigenvalue, and φk(t) is the corresponding eigenfunc-

tion. For the sake of identifiability, we postulate that λ1 ≥ λ2 ≥ · · · ≥ 0. Ad-

ditionally, {φk}∞k=1 is assumed to be a complete orthonormal basis of the space

L2(I), the collection of all square integrable functions on I. Then, the stochastic

process X(t) admits the Karhunen-Loève expansion:

X(t) = m(t) +

∞∑
k=1

ξkφk(t), (2.1)

where ξk =
∫
I(X(t) −m(t))φk(t)dt, for k = 1, . . ., is called the kth FPC score.

The FPC score satisfies E (ξkξk′) = λk if k = k′, and is zero otherwise.

In an FLR, Y is treated as the response and X(t) is the functional predictor.

Furthermore, the relationship between Y and X(t) is modeled in a linear form:

yi =

∫
I
Xi(t)b(t)dt+ εi,

where εi denotes a random error with mean zero and variance σ2ε . Given the

representation of X(t) in (2.1), we have yi = a +
∑∞

k=1 bkξik + εi, where a =∫
Im(t)b(t)dt, ξik denotes the kth FPC score of Xi(t), and bk =

∫
I φk(t)b(t)dt,

for k ≥ 1. To address the curse of dimensionality, a truncated model is usually

adopted, such that Y depends only on the first d FPC scores. In other words,

we get a truncated linear model: yi = a +
∑d

j=1bjξij + εi. In practice, d is

chosen as the smallest number of FPCs that can explain over 99.9% of the total

variability of the functional predictor X(t). As noted by Zhu, Yao and Zhang

(2014), this choice can, to some extent, circumvent neglecting those FPC scores

that play a negligible role in capturing the variability of the functional predictor,

but that are relevant to predicting the response. This truncated model is slightly

restrictive, because an explicit parametric form is assumed between the response

and the leading FPC scores. The linearity assumption is likely to be violated in

most practical scenarios.

Based on the work of Hastie and Tibshirani (1986), and the fact that the

ξjs are mutually uncorrelated, a nonparametric functional additive model was

proposed by Müller and Yao (2008) to describe the relationship between the
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response and the first d FPC scores,

yi = a+

d∑
j=1

fj(ξij) + εi, (2.2)

where we call fj the jth component in the nonparametric functional additive

model.

FPC scores usually cannot be observed directly. Therefore, we first need

to estimate the FPC scores from the observed functional data, which may be

subject to measurement errors. We assume that Wij = Xi(tij) + eij , where

Wij denotes the observation of the process Xi(t), made at time point tij , for

j = 1, . . . , Ni, i = 1, . . . , n. Furthermore, eij denotes a measurement error,

and is assumed to be independent of Xi(t). The functional principal component

analysis (FPCA) is implemented to estimate the FPC scores, denoted by ξ̂ij .

The details of this procedure can be found in the Supplementary Material.

We first scale the FPC scores to [0, 1] using a transformation function F . One

possible strategy is to apply the cumulative distribution function (cdf) F (z|λj)
of the Normal(0, λj) on ξj , where λj is the eigenvalue of the covariance function

G(s, t), and λj = V ar(ξj). We define ζj as the jth scaled FPC score: ζj =

F (ξj |λj), for j = 1, . . . , d. Then, the estimated scaled FPC scores are given

as ζ̂ij = F (ξ̂ij |λ̂j), for j = 1, . . . , d, i = 1, . . . , n. Assumption B in Section 3

provides conditions on the transformation function F that are more general. We

still use fj for the jth component in the nonparametric functional additive model

when ξj is replaced by ζj .

The nonparametric functional additive model (2.2) can now be expressed as

yi = a+

d∑
j=1

fj(ζij) + εi. (2.3)

To make the model identifiable, we assume that E {fj(ζj)} = 0, for j = 1, . . . , d.

Models with a parsimonious structure are preferable, in practice. Thus, we as-

sume that some components, fj are vanishing, and that the remainder of the

components are nonzero and smooth. Model (2.3) is called a sparse functional

additive model in this article.

B-spline functions, owing to their nice properties (De Boor (2001)), are

widely used to estimate unknown functions (see Stone (1985, 1986); Huang,

Horowitz and Wei (2010), etc). In this study, we employ B-spline functions to es-
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timate the additive components in Model (2.3). We begin with a brief overview

of B-splines. For more information, see De Boor (2001). Let 0 = τ0 < τ1 <

· · · < τLn
< τLn+1 = 1 be the breakpoints that separate the interval [0, 1] into

Ln+ 1 subintervals. We assume that Ln = O(nα), where 0 < α < 0.5, and define

δn = max0≤m≤Ln
|τm+1 − τm| = O(n−α). Let c1 be a constant, independent of

n, such that δn < c1 min0≤m≤Ln
|τm+1 − τm|. Let Sn be the space of polynomial

splines of order l, which is one more than the degree of polynomials, on [0, 1]

consisting of functions s satisfying the following: (i) s is a polynomial of order l

at each subinterval [τm, τm+1], for m = 0, . . . , Ln; and (ii) for 0 ≤ l? ≤ l − 2, the

l?th-order derivative of s is continuous on [0, 1]. Then, there exist mn = Ln + l

normalized B-spline basis functions {Bk, 1 ≤ k ≤ mn}, bounded by zero and one

on [0, 1], such that any f ∈ Sn can be written as

fj(x) =

mn∑
k=1

βjkBk(x), j = 1, 2, . . . , d, (2.4)

where βj = (βj1, . . . , βjmn
)′ is the spline coefficient vector. Now, selecting

nonzero components fj(·) for Model (2.3) amounts to selecting nonzero βj .

2.2. Group LASSO

Accounting for the fact that E {fj(ζj)} = 0, for j = 1, . . . , d, we define

ψjk(x) = Bk(x)−(1/n)
∑n

i=1Bk(ζ̂ij), for k = 1, . . . ,mn, j = 1, . . . , d. For brevity,

ψjk(x) is denoted by ψk(x), without causing any confusion. Thus,
∑n

i=1ψk(ζ̂ij) =

0, for j = 1, . . . , d. The estimated intercept in Model (2.3) is given as ȳ =
1
n

∑n
i=1yi. Let Zij = (ψ1(ζ̂ij), . . . , ψmn

(ζ̂ij))
T , Zj = (Z1j , . . . ,Znj)

T , and Z =

(Z1, . . . ,Zd). Similarly, define β = (βT1 , . . . ,β
T
d )T , where βj = (βj1, . . . , βjmn

)T ,

and y = (y1 − ȳ, . . . , yn − ȳ)T . Nonzero βj in Model (2.3) can be selected

and estimated using the group LASSO (Yuan and Lin (2006)), in which the

corresponding estimate β̃ minimizes

D1(β) = (y −Zβ)T (y −Zβ) + λ1

d∑
j=1

||βj ||2. (2.5)

In (2.5), the positive tuning parameter λ1 determines the magnitude of the

shrinkage, and || · ||2 denotes the Euclidean norm of a vector in Rmn . If β̃j =

(β̃j1, . . . , β̃jmn
)T , then the corresponding estimate of fj is denoted by f̃j , which

is equal to
∑mn

k=1 β̃jkψk(x). Cross-validation is employed to choose an “optimal”

λ1, which is chosen to minimize the cross-validation error.
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2.3. Adaptive group LASSO

The group LASSO method penalizes each βj equally in (2.5), which may

not be an optimal treatment. Thus, to account for different impacts on ζj , we

propose an adaptive group LASSO method, which is similar in spirit to the

adaptive LASSO method proposed by Zou (2006). More explicitly, we introduce

a weight vector (w1, . . . , wd), which allows each βj to have its own shrinkage

value. Given β̃, estimated using the group LASSO, for j = 1, . . . , d, wj is set

as ||β̃j ||−12 if ||β̃j ||2 > 0, and ∞ otherwise. Then, the adaptive group LASSO

estimate of β, denoted by β̂, is obtained by minimizing

D2(β) = (y −Zβ)T (y −Zβ) + λ2

d∑
j=1

wj ||βj ||2, (2.6)

where λ2 denotes a penalty parameter that can be determined by cross-validation.

Then, the corresponding estimate of fj(x), denoted by f̂j(x), can be represented

in terms of ψj(x) = (ψj1(x), . . . , ψjmn
(x))T ; that is, f̂j(x) = β̂Tj ψj(x), for j =

1, . . . , d. If β̂j = 0 for some j, then the estimate f̂j is also zero.

2.4. Smoothing spline method

When a large number of B-spline basis functions are employed to estimate

fj , then the adaptive group LASSO estimate may be wiggly, in which case,

further smoothing of the nonzero estimates obtained from the adaptive group

LASSO is required. This concern is also discussed in Wu et al. (2014). To

allow for different roughness penalties for the nonzero components, we propose a

smoothing spline method. The weight is defined as wj = ||β̂j ||−12 , where j ∈ S,

and S = {j : β̂j 6= 0} is the set of nonzero components. In particular, the updated

estimate of βj is obtained from the smoothing spline method by minimizing

D3(β) =

y −∑
j∈S

Zjβj

T y −∑
j∈S

Zjβj

+λ3
∑
j∈S

wj

∫ 1

0
{f ′′

j (ζj)}2dζj , (2.7)

where λ3 denotes the smoothing parameter. The roughness penalty term∫ 1
0 {f

′′

j (ζj)}2dζj = βTj Qjβj , where Qj is an mn × mn penalty matrix, with

pqth element Qpq
j =

∫ 1
0 B

′′

p (ζj)B
′′

q (ζj)dζj . When the second derivative of fj(ζj)

does not exist, the penalty matrix Qj can be replaced by the difference ma-

trix introduced by Eilers and Marx (1996). Minimizing (2.7) is equivalent to
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a classical smoothing spline problem, except that there is a weight vector in

this problem. Let
∑

j∈S Zjβj = ZSβ, where ZS = (Zi1 , . . . ,Zi|S|) ∈ Rn×mn|S|,

i1, . . . , i|S| are all elements of S, and |S| denotes the cardinality of the set S.

Let Q = diag(wi1Qi1 , . . . , wi|S|Qi|S|). Then, the estimate of β, still denoted by

β̂, is given as β̂ = (ZT
SZS + λ3Q)−1ZT

S y. The corresponding estimate of fj is

f̂j = β̂Tj ψj(x), for j ∈ S.

The smoothing parameter λ3 can be determined by the generalized cross-

validation (GCV) measure. For a given λ3, the corresponding measure can be

expressed as

GCV(λ3) =
n · SSE

(n− df(λ3))2
,

where SSE = (y−ZSβ̂)T (y−ZSβ̂) and df(λ3) = trace(ZS(ZT
SZS+λ3Q)−1ZT

S ).

The optimal smoothing parameter is chosen to minimize the GCV measure.

We refer to the complete estimating procedure as the components selection and

smoothing in a sparse functional additive model (CSS-FAM).

Remark: Note that Model 2.3 and the corresponding estimation scheme

presented above only account for the effect of a single functional predictor on

a scalar response. Examples show that incorporating scalar predictors is likely

to improve the prediction accuracy in practice (Sang, Lockhart and Cao (2018);

Wong, Li and Zhu (2018)). Therefore, when predicting a scalar response is

the main goal, it would be desirable to incorporate both scalar predictors and

multiple functional predictors into the current model structure using the adaptive

group LASSO and smoothing spline for estimation. Sang, Lockhart and Cao

(2018) described how to extend such a framework to allow for scalar covariates

and multiple functional predictors.

3. Theoretical Properties

To ensure that the estimated scaled FPC scores, ζ̂, are consistent estimators

of the true scaled FPC scores, we need to impose regularity conditions on the

design of the functional predictor X(t). The following conditions follow Zhu, Yao

and Zhang (2014). As stated in Section 2.1, {tij , j = 1, . . . , Ni; i = 1, . . . , n} ⊂ I
denote the time points when the functional predictor Xi(t) is observed. We as-

sume that ti0 = 0 and tiNi
= T for each Xi(t). Let Iτ = [−τ, T + τ ], for some

τ > 0, and let hi and K(·) denote the bandwidth and the kernel function, respec-

tively, used in smoothing the ith trajectory. Note that the same kernel function is

employed in the local linear smoother for each trajectory when estimating FPC
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scores. The following regularity conditions guarantee that the estimated FPC

scores and eigenvalues of the covariance function of X(t) converge in probability

to the corresponding population values.

Assumption A

(A1) X(t) has a continuous second derivative on Id with probability 1, and for

k = 0, 2,
∫

E {X(k)(t)}4dt <∞. The measurement errors eij of Xi(t) satisfy

E (e4ij) <∞ and are i.id.

(A2) We define Tn as the lower bound of the number of observations for each

trajectory Xi(t). As n → ∞, Tn → ∞. Let 4i denote the largest time

difference between two consecutive observations for each trajectory Xi(t);

that is, 4i = max{tij − ti,j−1 : j = 1, . . . , Ni}. The maximal value of these

satisfies maxi4i = O(T−1n ).

(A3) There is a sequence bn → 0, such that c1bn ≤ mini hi ≤ maxi hi ≤ c2bn,

for some constants c2 ≥ c1 > 0, as n → ∞. In addition, bn and Tn satisfy

(Tnbn)−1 + b4n + T−2n = O(n−1).

(A4) The kernel function K(·) has compact support and satisfies |K(s)−K(t)| ≤
C|s− t| for s, t in its domain and some positive constant C.

For Model (2.3), let A1 and A0 denote the set of nonvanishing and vanishing

components, respectively; that is, A1 = {j : fj 6= 0, j = 1, . . . , d} and A0 = {j :

fj ≡ 0, 1 ≤ j ≤ d}. For the transformation function F (x|λ), with a cdf with

variance λ, we make the following assumptions.

Assumption B

(B1) The transformation function F (x|λ) is differentiable at x and λ. Further-

more, there exist a positive constant C and a negative constant γ, such that

∂F (x|λ)/∂x ≤ Cλγ and ∂F (x|λ)/∂λ ≤ Cλγ |x|.

(B2) The cdf of each scaled score ζj is absolutely continuous, and there exist

positive constants C1 and C2, such that the probability density function of

ζj , gj , satisfies C1 ≤ gj(x) ≤ C2, for x ∈ [0, 1] and j ∈ A1.

Assumption (B1) is from Zhu, Yao and Zhang (2014). Together with As-

sumptions (A1)-(A4), it guarantees that ζ̂j is a consistent estimator of ζj , for

1 ≤ j ≤ d. Assumption (B2) is a standard assumption in nonparametric additive

models, according to Stone (1985).
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Define ||f ||2 = {
∫ 1
0 f

2(x)dx}1/2 whenever the integral is finite. Let L > 0, r

be a nonnegative integer, and ν ∈ (0, 1] such that ρ = r + ν > 0.5. Let F be

the class of functions h on [0, 1] with the rth derivatives that exist and satisfy

the Hölder condition with exponent ν: |h(r)(s) − h(r)(t)| ≤ L|s − t|ν , for any

0 ≤ s, t ≤ 1. Other standard assumptions for additive nonparametric models

(see Huang, Horowitz and Wei (2010)) include:

Assumption C

(C1) minj∈A1
||fj || ≥ cf , for some cf > 0.

(C2) The random variables ε1, . . . , εn are i.i.d. with mean zero and variance σ2ε .

Furthermore, the tail probability satisfies P (|ε1| > x) ≤ K exp(−Cx2), for

∀x ≥ 0 and some constants C and K.

(C3) E {fj(ζj)} = 0 and fj ∈ F , for j ∈ A1.

The following proposition explains why it is reasonable to employ B-spline

functions to approximate each nonparametric component fj in Model (2.3). To

guarantee that B-spline functions in Sn can provide a satisfactory approximation

of functions in F , we assume that l, the order of the polynomial functions in

Sn, satisfies l > max{r, 1}. Write the centered version of Sn as

S 0
nj =

{
fnj : fnj(x) =

mn∑
k=1

βjkψk(x), (βj1, . . . , βjmn
) ∈ Rmn

}
, j = 1, . . . , d,

where ψk is a centered spline basis functions, as defined in Section 2.2.

Proposition 1. Suppose that f ∈ F and E f(ζj) = 0. Then, under Assumptions

A and B, there exists an fnj ∈ S 0
nj, such that

1

n

n∑
i=1

{fnj(ζ̂ij)− f(ζ̂ij)}2 = Op(m
−2ρ
n + n−1)

if mn = O(nα) with 0 < α < 0.5.

Let ψ(x) = (ψ1(x), . . . , ψmn
(x))T for x ∈ [0, 1]. Proposition 1 implies that,

uniformly over j ∈ {1, . . . , d}, there exists βj ∈ Rmn , such that (1/n)
∑n

i=1{βTj
ψ(ζ̂ij) − f(ζ̂ij)}2 = Op(m

−2ρ
n + n−1) under Assumptions A and B, provided

mn = O(nα). Furthermore, we can take βj = 0 for j ∈ A0. Denote {j : β̃j 6= 0}
and {j : β̃j = 0} as Ã1 and Ã0, respectively. Theorem 1 establishes the selection
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consistency and estimation consistency of β̃j obtained from the group LASSO

step.

Theorem 1. Suppose that Assumptions A, B, and C hold and λ1 ≥ C
√
n log(mn)

for some sufficiently large constant C. Then:

(i) If mn →∞ as n→∞ with rate satisfying mn = o(n1/6), and (λ21m
2
n)/n2 →

0 as n → ∞, then all nonzero βj, for j ∈ A1, are selected with probability

converging to one.

(ii) If mn = o(n1/6), then
∑d

j=1||β̃j−βj ||22 = Op
(
m2
n logmn/n

)
+Op

(
m2
nλ

2
1/n

2
)

+Op

(
mn/n+ 1/m2ρ−1

n

)
.

Theorem 2 further illustrates that the estimated functions obtained from the

group LASSO step, f̃j , enjoy selection consistency and estimation consistency.

Theorem 2. Suppose that Assumptions A, B, and C hold and λ1 ≥ C
√
n log(mn)

for some sufficiently large constant C. Then:

(i) If mn →∞ as n→∞ with rate satisfying mn = o(n1/6), and (λ21mn)/n2 →
0 as n→∞, then in the group LASSO step, all the nonzero additive com-

ponents fj, for j ∈ A1, are selected with probability converging to one.

(ii) If mn = o(n1/6), then ||f̃j−fj ||22 = Op (mn logmn/n)+Op

(
mn/n+ 1/m2ρ

n

)
+

Op
(
mnλ

2
1/n

2 +mn/n
)
, for j ∈ A1 ∪ Ã1.

For two (positive) sequences {an} and {bn}, if an/bn is bounded away from

0 and ∞, then denote this as an ∼ bn. The following corollary is derived directly

from Theorem 2.

Corollary 1. Suppose that Assumptions A, B, and C hold. If mn ∼ n1/(2ρ+1)

and λ1 ∼
√
n log(mn), then:

(i) If ρ > 5/2, then in the group LASSO step, all nonzero additive components

fj, for j ∈ A1, are selected with probability converging to one.

(ii) If ρ > 5/2, then ||f̃j − fj ||22 = Op(n
−2ρ/(2ρ+1) logmn), for j ∈ A1 ∪ Ã1.

Theorem 3 states that the adaptive group LASSO yields an estimate that

is also consistent in both selection and estimation. Furthermore, it illustrates

that this estimate compares favorably with that given by the group LASSO with

respect to estimation accuracy.
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Theorem 3. Suppose that Assumptions A, B, and C hold and mn ∼ n1/(2ρ+1),

where ρ > 5/2. If the tuning parameters satisfy λ1 ∼
√
n log(mn), λ2 ≤ O(n

1

2 ),

λ2/n
(8ρ+3)/(8ρ+4) = o(1), and n1/(4ρ+2)

√
log(mn)/λ2 = o(1), then we have the

following

(i) With probability approaching one, the nonzero components {fj , j ∈ A1} are

selected and ||f̂j ||2 = 0, for j ∈ A0.

(ii)
∑

j∈A1
||f̂j − fj ||22 = Op(n

−2ρ/(2ρ+1)).

4. Simulation Studies

In this section, we use simulated examples to illustrate the properties of

our proposed estimator. We also compare our method with several conventional

methods commonly used in practice.

We simulate the data as follows. In each simulation replicate, we generate

n curves, and the observations are made at m = 200 equally spaced points in

[0, 10]. In our simulation studies, we set n = 100 or 500. To accommodate

measurement errors, the observation at tj (j = 1, . . . ,m) is generated as Wij =

Xi(tj) + eij , where {Xi(t)}ni=1 are i.i.d. samples of a stochastic process X(t),

and eij are i.i.d. normals with mean zero and variance 0.1. For k = 1, . . . , 20,

let λk = 31.5 × 0.6k denote the kth eigenvalue of the covariance function of

X(t). The corresponding kth eigenfunction is the kth Fourier basis function,

denoted by φk(t). Then, Xi(t) = m(t) +
∑20

k=1 ξikφk(t), where m(t) = t + sin t

denotes the mean function of X(t), and {ξik}20k=1 are independently sampled

from N(0, λk). The scaled score ζik is defined as the uniform score of ξik; that

is, ζik = Φ(ξik/
√
λk), for k = 1, . . . , 20, i = 1, . . . , n, where Φ denotes the cdf of

a standard normal distribution. The response variable is generated from Model

(2.3): yi = a + f1(ζi1) + f2(ζi2) + f4(ζi4) + εi. We set the true intercept to

a = 1.2, and the true components to f1(x) = x exp(x) − 1, f2(x) = cos(2πx)

and f4(x) = 3 (x− (1/4))2 − 7/16, for x ∈ [0, 1]. The random errors εi are

independently sampled from a normal distribution with mean zero and variance

0.67. The signal-to-noise ratio is defined as Var {f1(ζ1)+f2(ζ2)+f4(ζ4)}/Var (ε);

we set this ratio to be approximately two. We estimate the model by fitting n

randomly generated training observations, and evaluate its performance on 200

randomly generated test observations. The simulation is implemented for 100

simulation replicates. The simulation results for n = 200 and 300 are presented

in the Supplementary Material.

In addition to employing the proposed method CSS-FAM, we fit the data us-
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ing three conventional models: multivariate adaptive regression splines (MARS)

(Friedman, Hastie and Tibshirani (2001)), two extended functional additive mod-

els (FAM) proposed by Müller and Yao (2008), and the component selection and

estimation for the functional additive model (CSE-FAM) proposed by Zhu, Yao

and Zhang (2014). More specifically, MARS is fitted using the function earth

in the R package earth, and the variables that are included in the final model

are examined by the function evimp. In the first extended FAM, denoted by

FAM, the response variable y is fitted with a multiple linear regression, where

the covariates are f1(ζ̂1), f2(ζ̂2), and f4(ζ̂4). In other words, FAM assumes to

know the true model structure based on three true covariates f1(ζ̂1), f2(ζ̂2), and

f4(ζ̂4). The second extended FAM, denoted by S-FAM, uses a saturated model

to incorporate the first d FPC scores, such that they explain over 99.9% of the

total variability in the smoothed sample curves. The value of d is 15, 16, or 17 in

all simulation replicates. We employ the function gam in the R package mgcv

to fit this model, in which the arguments of the additive components are ζ̂j , for

j = 1, . . . , d. Then p-values of all terms in the model are available from the func-

tion summary.gam. Only the significant nonparametric components (p-value

< 0.05) are retained when computing the true positive (TP) rate and the false

positive (FP) rate. We also consider an alternative method for estimating Model

(2.3), a group LASSO and an adaptive group LASSO, denoted by AGL-FAM.

Table 1 summarizes the comparison between these six methods based on

1, 000 simulation replicates. The results suggest that, compared with CSE-FAM,

CSS-FAM has similar performance in prediction when the sample size n = 100

or 500. Both outperform the other three methods, except FAM, in terms of

prediction accuracy, and are slightly inferior to FAM, which assumes the true

components are known. This suggests that the extra adaptive smoothing spline

step can increase the prediction accuracy when an adaptive group LASSO yields

a wiggly estimate. In terms of the quality of the estimations of the nonparametric

components, CSS-FAM can rival CSE-FAM as well, because both yield estimates

that are reasonably close to the true nonparametric components. In addition,

the residual sum of squares (RSS) for each component estimated using CSS-FAM

is much smaller than that using AGL-FAM, indicating that the smoothing spline

enables us to obtain a smoother and more accurate estimate of the nonparametric

components.

Table 1 also compares these methods from the perspective of variable se-

lection, where the true positive (TP) rate and the false positive (FP) rate are

employed for assessment. Combined with Table S1 in the Supplementary Ma-
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Table 1. Summary statistics for the six methods. MSPE refers to the mean squared
prediction error on the test data; the residual sum of squares (RSS) for each estimated

component f̂j is defined as: RSS(f̂j) =
∫ 1

0
(f̂j(x)−fj(x))2dx; TP% and FP% stand for the

true positive and false positive rates, as a percentage, respectively. The point estimate for
each measure is averaged over 100 simulation replicates, and the corresponding estimated
standard error is given in parentheses.

Statistics n
Methods

MARS FAM S-FAM CSE-FAM AGL-FAM CSS-FAM

MSPE 100 1.15 (0.25) 0.92 ( 0.17) 1.15 ( 0.21) 1.00 ( 0.19) 1.25 (0.23 ) 1.01 ( 0.20 )

500 0.78 (0.09) 0.73 ( 0.08) 0.77 ( 0.09) 0.74 ( 0.08) 0.80 (0.09 ) 0.74 ( 0.08 )

RSS(f̂1) 100 - 2.6 ( 4.9 ) 3.6 ( 4.7 ) 2.6 ( 4.1 ) 13.4 (6.9 ) 3.8 ( 5.7 )

(×10−2) 500 - 0.4 ( 0.5 ) 0.6 ( 0.6 ) 0.5 ( 0.4 ) 2.5 (0.9 ) 0.6 ( 0.4 )

RSS(f̂2) 100 - 6.8 (10.5 ) 11.2 (10.0 ) 18.1 (13.6 ) 12.8 (6.8 ) 8.1 (13.8 )

(×10−2) 500 - 0.5 ( 0.7 ) 1.9 ( 1.3 ) 2.9 ( 1.5 ) 3.1 (1.4 ) 1.9 ( 1.3 )

RSS(f̂4) 100 - 6.7 (10.3 ) 4.0 ( 3.3 ) 4.6 ( 5.7 ) 14.3 (7.2 ) 5.9 (11.2 )

(×10−2) 500 - 0.7 ( 1.1 ) 0.7 ( 0.5 ) 0.5 ( 0.4 ) 2.3 (1.0 ) 0.5 ( 0.7 )

TP% 100 99.1 (0.05) - 98.2 ( 0.08) 95.7 ( 0.12) 94.7 (0.17 ) 94.7 ( 0.10 )

500 100 (0.00) - 100 ( 0.0 ) 100 ( 0.0 ) 100 (0.0 ) 100 ( 0.0 )

FP% 100 20.4 (0.12) - 13.7 ( 0.11) 3.8 ( 0.07) 0.9 (0.03 ) 0.9 ( 0.03 )

500 29.0 (0.14) - 8.9 ( 0.08) 3.0 ( 0.07) < 0.01 (0.003) <0.01 ( 0.003)

Time 100 0.01 (0.03) < 0.01 0.39 ( 0.21) 2.87 ( 0.23) 0.48 (0.04 ) 2.40 ( 0.10 )

(seconds) 500 0.02 (0.06) < 0.01 2.88 ( 2.28) 117.2 ( 5.91) 3.57 (0.27 ) 11.4 ( 2.77 )

terial, we find that although CSS-FAM and AGL-FAM perform slightly worse

than the other models in terms of correctly selecting nonzero variables for a rel-

atively small sample (n = 100 or 200), this tiny gap vanishes when the sample

size increases (n = 300 or larger). Furthermore, CSS-FAM and AGL-FAM domi-

nate the other methods in not selecting irrelevant components, regardless of how

large or small the sample size is. The other methods mistakenly select irrelevant

variables far more often than CSS-FAM or AGL-FAM does, especially when the

sample size is relatively small.

The computational time for each method is recorded in Table 1 as well.

Obviously, CSE-FAM is the most computationally intensive method if a full

basis is employed. This is a serious issue in implementations, particularly when

the sample size is large, as mentioned in Section 1. In comparison, the proposed

method, CSS-FAM, can still be implemented within 12 seconds, even when the

training data set consists of 500 curves.

Figure S1 in the Supplementary Material illustrates the estimation details
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for one randomly selected simulation replicate when the number of curves is

n = 500. After estimating the scaled FPC score, we fit a group LASSO on the

training data, as shown in (2.5). The top, left panel in Figure S1 describes how

the five-fold cross-validation error changes with λ1. The optimal λ1 is chosen

to minimize this. The middle panel explains how to choose the optimal λ2 for

the adaptive group LASSO step in (2.6), based on five-fold cross validation. The

top, right panel shows how to choose the optimal smoothing parameter (λ3) by

minimizing GCV in the smoothing spline step. The bottom three panels in Figure

S1 illustrate the effects of the extra smoothing spline step on the estimation of

the nonparametric components after using adaptive group LASSO. The adaptive

group LASSO method may lead to an excessively wiggly estimate for each nonzero

nonparametric component. Smoothing splines can control this roughness and,

hence, yield a smoother and more accurate estimate.

5. Applications

In this section, we fit the sparse functional additive model (2.3) using our

proposed method (CSS-FAM), together with several conventional models consid-

ered in the simulation studies, to analyze two real data sets. An application to air

pollution data is introduced in the Supplementary Material. In addition to the

models considered in the simulation, we fit a multiple linear model to investigate

whether a functional linear model can adequately characterize the relationship

between the scalar response and the functional predictor in these two examples.

The covariates in the multiple linear model are the first d FPC scores. We choose

the truncation level d in the same way as for Model (2.2). This multiple linear

model is actually a special case of Model (2.2): each additive component takes

a linear form. The LASSO (Tibshirani (1996)) is implemented when fitting the

mulitple linear model in these two examples to obtain a more parsimonious model

and to reduce the variability. We refer to this method as the LAF. In the air

pollution data, the trajectories of the functional predictor for some subjects are

sparsely observed. In contrast, in the Tecator data, the functional predictor is

regularly spaced and densely observed across all subjects. In each example, we

randomly divide the whole data set into a training set and a test set. The training

set is used to fit each model, and the test set is used for evaluation. All models

are compared with respect to the mean squared prediction error.
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Table 2. Mean squared prediction errors (MSPEs) on the test data for six methods.

Methods MARS LAF S-FAM CSE-FAM AGL-FAM CSS-FAM
MSPE 0.99 0.66 0.56 0.55 0.92 0.51

5.1. Tecator data

The Tecator data are recorded for 240 meat samples on a Tecator Infratec

Food and Feed Analyzer working in the wavelength range 850-1050 nm using

the near infrared transmission (NIT) principle. Each record contains of a 100-

channel spectrum of absorbance, and the percentages of three components of the

meat: moisture (water), fat, and protein. The spectrum records the negative

base 10 logarithm of the transmittance measured by the spectrometer. The

percentages of the three meat components are determined by analytic chemistry.

As demonstrated by a large body of research (see Vila, Wagner and Neveu (2000),

Goldsmith and Scheipl (2014), Zhu, Yao and Zhang (2014)), the spectrum of

absorbance is highly predictive of the percentage of these three meat components.

Figure S2 in the Supplementary Material shows the trajectories of the spectrum

of absorbance of the 240 meat samples. Here, we examine the effect of the spectral

trajectories of the meat sample on the protein content using the sparse functional

additive model (2.3).

The protein content, denoted by Y , is the response variable of primary in-

terest; the functional predictor X(t) denotes the spectrum of absorbance. An

FPCA is performed to estimate the FPC scores, and then to obtain the scaled

FPC scores, denoted by ζ̂ = (ζ̂1, . . . , ζ̂d). Zhu, Yao and Zhang (2014) suggested

that the first d = 20 should be retained in order to achieve satisfactory prediction

accuracy, even though the first 10 FPCs explain more than 99.9% of the total

variability in the smoothed sample curves. To compare the performance of the

various methods in terms of their prediction accuracy, the 240 meat samples are

divided into a training sample and a test sample. According to the original de-

scription of the data set (http://lib.stat.cmu.edu/datasets/tecator), the

240 meat samples are divided into three categories: a training set of 172 meat

samples, a test set of 43 meat samples, and 25 samples that are used for extrapo-

lation, and should be ignored. We, however, randomly choose 187 meat samples

to train the model; the test set comprises the remaining 53 meat samples.

The six models are compared with respect to their prediction accuracy in

Table 2. Clearly, CSS-FAM outperforms the other methods in terms of predic-

tion. In particular, the difference between CSS-FAM and LAF implies that a

http://lib.stat.cmu.edu/datasets/tecator
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linear model cannot adequately characterize the relationship between the pro-

tein content and the spectrum of absorbance of the meat samples. Nevertheless,

CSS-FAM achieves a better tradeoff between flexibility and simplicity than other

methods do. Additionally, the poor performance of AGL-CSS, especially when

compared with CSS-FAM, suggests that the extra smoothing spline step in the

proposed algorithm enhances the prediction accuracy considerably.

In AGL-FAM, 10 cubic B-spline basis functions are employed to represent

the nonparametric components in the sparse functional additive model (2.3).

A five-fold cross-validation suggests that λ1 = 0.002 is an optimal choice of

the penalty parameter in the group LASSO step, and λ2 = 0.011 minimizes

the five-fold cross-validation error in the adaptive LASSO step. As a result, 14

nonvanishing components, {f̂1, . . . , f̂9, f̂11, f̂16, f̂17, f̂19, f̂20}, are selected from the

20 components. This finding is slightly inconsistent with the conclusion drawn

in Zhu, Yao and Zhang (2014), who claim that {f̂1, . . . , f̂8, f̂10, f̂13, f̂16, f̂17} are

nonvanishing components. To refine these estimated components, a smoothing

spline is employed and the optimal choice of smoothing parameter, λ3 = 0.001,

is chosen to minimize the GCV measure.

6. Conclusion

Compared with the traditional FLR, the sparse functional additive model

(2.3) proposed in this article provides a more flexible description of the relation-

ship between a scalar response and a functional predictor. To achieve sparseness,

we employ the group LASSO penalty to select and estimate nonzero components

in the nonparametric additive model, thereby reducing variability and enhancing

interpretability.

The estimation procedure consists of several important techniques. An

FPCA is employed to estimate the FPC scores and eigenvalues of the covari-

ance function of the functional predictor. Then, we use B-spline basis functions

to represent the nonparametric additive components in the sparse functional ad-

ditive model (2.3). The use of the group LASSO penalty enables us to select and

estimate the nonzero components. To obtain a better estimate of the coefficient

vectors, we use the adaptive group LASSO to allow the shrinkages to vary by

component. Note that the estimated components given by the adaptive LASSO

may not be smooth, because a large number of B-spline basis functions are used

to represent them. Thus, we propose using smoothing splines to further refine the

estimated nonzero components obtained from the group LASSO step. Simulation
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studies demonstrate that this smoothing step improves both the estimation of

the additive components and the prediction of the response.

We justify theoretically that our proposed estimator enjoys both selection

consistency and estimation consistency. These consistency results are also demon-

strated by simulation studies. Two real-data applications show that the proposed

model, together with the estimating method, provides an appealing tool for pre-

dicting a scalar response from a functional predictor.

Even though we regress a scalar response on a functional covariate only, the

methodology can be extended to accommodate other scenarios. For example, this

framework can be extended to explore the relationship between a scalar response,

whose distribution belongs to the exponential family, and a functional predictor.

In addition, in this work, the truncation level d, such that the first d FPCs explain

over 99.9% of total variability in the functional predictor, is assumed to be fixed.

From a theoretical perspective, it is worthwhile investigating the properties of

the corresponding estimator when d is allowed to increase with the sample size;

this is left to future work.

Supplementary Material

The online Supplementary Materials describes the procedure used to esti-

mate FPC scores in Section 2.1, and provides proofs of the theoretical results

in Section 3. Additional simulation results appear in Section 4 and, in Sec-

tion 5 we present an example in which we apply the proposed model. The R

code for our real-data analysis and the simulation studies can be downloaded at

https://github.com/caojiguo/fam.
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