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Appendix A: Technical Assumptions

The following assumptions, which are largely borrowed from work such as Robbins et al.

(2016), are imposed on the predictor sequences {x̃t}, {s̃t}, and, {ṽt} and error sequence {εt}:

Assumption 1. The sequence {ṽt} satisfies a functional central limit theorem.

Assumption 2. If qx > 0, the functions f1 through fqx are continuous and differentiable

over the set K of admissible changepoints. It is also imposed that f 2
j > 0 over the set K for

j = 1, . . . , px.

Assumption 3. Let χ̃t = (x̃′t, s̃
′
t, ṽ
′
t)
′. The matrix n−1

∑n
t=1 χ̃tχ̃

′
t is invertible for each

n ≥ px+ps+pv with probability 1 in that it has a probability limit with a minimum eigenvalue

that is bounded away from zero.

Assumption 4. The regression errors {εt} are independent of the process {ṽt} and satisfy

εt =
∞∑
j=0

ψjZt−j, (A.1)

where {Zt} is a sequence of mean zero independent and identically distributed (IID) random

innovations that have a variance denoted by σ2 and a finite (2 + η)th moment for some
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η > 0. Also, the causal coefficients {ψj} have a geometrically decaying structure that obeys

|ψj| ≤ ωr−j for all j ≥ 0 and some finite ω and r > 1.

Appendix B: The Limit of Nx,k

Define strict functional form versions of x̃t and xt as f̃(z) = (f1(z), . . . , fpx(z))′ and

f(z) = (f1(z), . . . , fqx(z))′, respectively, for z ∈ [0, 1]. Also, let

G(z) =

∫ z

0

f(u)f(u)′du, G∗(z) =

∫ z

0

f̃(u)f(u)′du

and G̃(z) =

∫ z

0

f̃(u)f̃(u)′du.

Likewise, let

Γ(z) =

∫ z

0

f(u)dW (u) and Γ̃(z) =

∫ z

0

f̃(u)dW (u),

where {W (z)}z∈[0,1] is a Wiener process. Define

Ω(z) = G(z)−G∗(z)′G̃(1)−1G∗(z) and Λ(z) = Γ(z)−G∗(z)′G̃(1)−1Γ̃(1).

Robbins et al. (2016) prove that

(nτ 2)−1V̂ar(Nx,bnzc)⇒ Ω(z) and (nτ 2)−1/2Nx,bnzc ⇒ Λ(z), (A.2)

as n→∞ for z ∈ K. The result in (9) follows directly from the above.

Appendix C: Specific Representations for st
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The form of the ARMA residuals-based statistic L̂∗s,k can be simplified if seasonal compo-

nent st obeys one of a pair of commonly used representations. First, consider that st takes

the harmonic form

st = (s′j1,t, . . . , s
′
jρ,t)

′ where sj,t = (cos(2πjt/T ), sin(2πjt/T ))′ (A.3)

for j ∈ (j1, . . . , jρ) ⊆ (1, . . . , T/2) and ρ ≤ ps/2. Further, assume that any terms contained

within s∗t are among those in (s′1,t, . . . , s
′
T/2,t)

′ which are not in st. If {st} and {s∗t} follow this

representation, the matrix DT has a diagonal form; specifically, DT = Iqs/2 where Id is an

identity matrix in d dimensions. Consider a second situation where seasonality is modeled

exhaustively (i.e., each season is allocated its own mean term through the use of dummy

variables). In this case, it holds that qs = T − 1 so long as xt contains an intercept term.

Further, write st = (s1,t, . . . , sT−1,t)
′ and let

sj,t =


1− T−1, if (t− j)/T an integer,

−T−1, otherwise.

(A.4)

This equation defines an indicator variable that has been centered so as to satisfy the re-

quirement that
∑T

t=1 st = 0. Since st exhaustively models the periodicity, s∗t is empty. In

this case, DT = Iqs − T−1J, where J is a qs × qs matrix of ones. Under either of the above

formulations for st, the quantity L̂k can be further simplified by replacing R∗s,k with the

process Rs,k due to the following (a proof of which is provided in the supplement.).

Corollary A.1. Given the conditions of Theorem 3, assume that {st} obeys (A.3) or (A.4).
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Let Rs,k =
∑k

t=1 stẐt and

L̂s,k =
R′s,k(DT )−1Rs,k

σ̂2k(1− k
n
)

.

It follows that

L̂s,k − L̂∗s,k = op(1, k).

Appendix D: Nonstationary Stochastic Covariates

In the main text, we assumed that {ṽt} is stationary with zero mean. Now, we generalize

to circumstances where {ṽt} has nonzero mean; specifically, consider that {ṽt} is generated

via

ṽt = ξ′at + ũt,

where {ũt} (which is decomposed as ũt = (u′t, (u
∗
t )
′)′ in the same manner as the other

regressor vectors introduced in Sections 1 and 2) is stationary with zero mean, {at} is a

vector of known deterministic design points, and ξ is a matrix of constants.

Assume that predictor sequence given by {at} is contained within the predictors in

{(x′t, s′t)′}. It follows that the OLS residuals take on the same values when {ṽt} is used

as a predictor as they do when {ũt} is used in its place when fitting the regression (this is

the case for residuals calculated under both the null and alternative hypotheses). Therefore,

the sequences {F̂k} and {F̂ ∗k }, defined in (6) and (21), respectively, are unchanged if {ũt}

were used in place of {ṽt}, and the limit laws given in Theorems 1 and 2 still hold.

However, one must filter a nonstationary mean sequence out of {vt} prior to calculating

{R∗v,k}, as defined in (24). Let {ût} denote residuals from a regression of {vt} on {at} and
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let ξ̂q denote a
√
n-consistent estimator of ξq, where ξq gives the first qv rows of ξ. Define

R†v,k =
k∑
t=1

ûtẐt −
k

n

n∑
t=1

ûtẐt.

If R∗v,k is replaced with R†v,k in the calculation of L̂, the convergence illustrated in Theorem

3 will hold. If at contains terms exogenous to (x′t, s
′
t)
′, we recommend homogenizing {ṽt}

prior fitting any regressions (and therefore prior to calculating test statistics). In this case,

the limit theory outlined above applies; formal proof of these claims is omitted for brevity.

Appendix E: Additional Simulations The motivation for use of the F̂ ∗ statistic is that

it does not impose a parametric model on the error structure. Therefore, we examine the

performance of the L̂ statistic when the serial correlation in {εt} is not correctly modeled.

Specifically, we generate {εt} using various values of θ while fixing φ = 0 (this implies the er-

Figure A.1: Simulated size (left) and power (right) of the F̂ ∗ and misspecified L̂ tests for a nominal significance
level of 0.05 when alternative model H1a is considered and when the error sequence {εt} is generated from
an MA(1) model with parameter θ with n = 1000. Results are shown for various choices of θ, where
δx = δs = δv = 0.107 for power comparisons. Results for size are based on 100,000 independently simulated
datasets for each value of θ, whereas 25,000 datasets are generated for power calculations
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rors are sampled from a MA(1) model). Then, when the L̂ statistic is calculated, an AR(par)

model, with par selected using the AIC criterion, is fit to the regression residuals. The size of

the F̂ ∗ and the misspecified L̂ tests are approximated under alternative H1a, and then the

power for this alternative is calculated while fixing δx = δs = δv = 0.107. Results are shown

in Figure A.1. The findings indicate that the L̂ statistic still outperforms the F̂ ∗ statistic

(with regards to both size and power), even when the error model is incorrectly specified. It

is expected that power for both tests will decrease as θ increases (Robbins et al., 2011a).

Appendix F: Proofs

Theorem 1. As is stipulated by the conditions of Theorem 1, this proof assumes IID regres-

sion errors (i.e., εt = Zt and thus τ 2 = σ2). To begin, let

Xt = (x1, . . . ,xt,0, . . . ,0)′ and X̃t = (x̃1, . . . , x̃t,0, . . . ,0)′,

which are matrices of dimension n× qx and n× px, respectively, the last n− t rows of which

contain zeros. Similarly, define

St = (s1, . . . , st,0, . . . ,0)′ and S̃t = (s̃1, . . . , s̃t,0, . . . ,0)′,

and

Vt = (v1, . . . ,vt,0, . . . ,0)′ and Ṽt = (ṽ1, . . . , ṽt,0, . . . ,0)′.

Further, let Mt = (Xt,St,Vt) and M̃t = (X̃t, S̃t, Ṽt). Note that Mn is the full design matrix

under H0. The null hypothesis OLS estimator of ∆ = (∆′x,∆
′
s,∆

′
v)
′, when a changepoint
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is assumed to occur at time k with k/n ∈ K, is ∆̂k = −C−1k Nk where

Ck = M′
k(I−Pn)Mk, (A.5)

and

Nk = M′
k(I−Pn)Y, (A.6)

with Y = (Y1, . . . , Yn)′. In the above, Pn = M̃n(M̃′
nM̃n)−1M̃′

n is the projection matrix

under the null hypothesis. Conditional on Ṽn, it holds that Var(∆̂k) = τ 2C−1k .

Note that

n−1M′
kMk =


n−1X′kXk 0 0

0 n−1S′kSk 0

0 0 n−1V′kVk

+ op(1, k).

Lemmas A.1 and A.2 of Robbins et al. (2016) are used to show that the off-diagonal blocks

of the above matrix are zero asymptotically. Similarly,

(n−1M̃′
nM̃n)−1 =


(n−1X̃′nX̃n)−1 0 0

0 (n−1S̃′nS̃n)−1 0

0 0 (n−1Ṽ′nṼn)−1

+Op(n−1/2).
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Likewise, we now see

n−1M′
kM̃n = n−1


X′kX̃n X′kS̃n X′kṼn

S′kX̃n S′kS̃n S′kṼn

V′kX̃n V′kS̃n V′kṼn



=


n−1X′kX̃n 0 0

0 n−1S′kS̃n 0

0 0 n−1V′kṼn

+ op(1, k).

Continuing, we see

M′
kM̃n(M̃′

nM̃n)−1 =


X′kX̃n(X̃′nX̃n)−1 0 0

0 S′kS̃n(S̃′nS̃n)−1 0

0 0 V′kṼn(Ṽ′nṼn)−1

+ op(1, k). (A.7)

Hence,

n−1Ck =


n−1Cx,k 0 0

0 n−1Cs,k 0

0 0 n−1Cv,k

+ op(1, k), (A.8)

where

Cx,k = X′kXk −X′kX̃n(X̃′nX̃n)−1X̃′nXk, (A.9)

with

Cs,k = S′kSk − S′kS̃n(S̃′nS̃n)−1S̃′nSk, (A.10)
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and

Cv,k = V′kVk −V′kṼn(Ṽ′nṼn)−1Ṽ′nVk,

for Ck is defined in (A.5).

Shifting the focus to the process {Nk}, we first note that

Nk =


Nx,k

Ns,k

Nv,k

 =


X′kε−X′kM̃n(M̃′

nM̃n)−1M̃′
nε

S′kε− S′kM̃n(M̃′
nM̃n)−1M̃′

nε

V′kε−V′kM̃n(M̃′
nM̃n)−1M̃′

nε

 ,

for Nk as defined in (A.6) and for ε = (ε1, . . . , εn). Recall that Nx,k, Ns,k, and Nv,k were

defined in (8). Using Var(Nk) = τ 2Ck and (A.8), it holds that these three processes are

asymptotically uncorrelated. Applying the result of (A.7), we see

n−1/2


Nx,k

Ns,k

Nv,k

 = n−1/2


X′kε−X′kX̃n(X̃′nX̃n)−1X̃′nε

S′kε− S′kS̃n(S̃′nS̃n)−1S̃′nε

V′kε−V′kṼn(Ṽ′nṼn)−1Ṽ′nε

+ op(1, k). (A.11)

The processes {Cx,k} and {Nx,k} were studied in the proof of Lemma 2.1 in Robbins et al.

(2016); the focus now turns to {Cs,k} and {Ns,k}.

Let DT =
∑T

j=1 sjs
′
j/T with D∗T =

∑T
j=1 s̃js

′
j/T and D̃T =

∑T
j=1 s̃j s̃

′
j/T . Consequentially,

n−1S̃′nS̃n = D̃T +O(n−1),
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and

n−1S′kS̃n = (k/n)D∗T +O(n−1, k), with n−1S′kSk = (k/n)DT +O(n−1, k).

To derive (10), note that

n−1Cs,bnzc ⇒ zDT − z2(D∗T )′(D̃T )−1D∗T ,

= zDT − z2
(

Ips 0

)
D∗T ,

= z(1− z)DT .

The second line follows from the fact that D∗T equals the first qs columns of D̃T , and similarly

the third line uses the observation that the first qs rows of D∗T equal DT . Likewise,

Ns,k = S′kε− (k/n)(D̃∗T )′(D̃T )−1S̃′nε+ op(
√
n, k)

= S′kε− (k/n)

(
Iqs 0

)−1
S̃′nε+ op(

√
n, k)

= S′kε− (k/n)S′nε+ op(
√
n, k),

which illustrates (12).

Recall that ei =
∑iT

t=T (i−1)+1 stεt and note that S′kε =
∑m∗

i=1 ei, where it is assumed that

n = Tm and k = Tm∗. Note further that Var(ei) = τ 2TDT . It follows that

(T/n)1/2Ns,k =
1√
m

m∗∑
i=1

ei −
k

n

(
1√
m

m∑
i=1

ei

)
+ op(1, k),

This formula, in combination with (10), yields (14).

Similar approaches are taken to extract the limit behavior of Cv,k and Nv,k. Define
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Σ̃v = E [ṽtṽ
′
t] , let Σ∗v denote the first qv columns of Σ̃v and let Σv denote the first qv rows

of Σ∗v. Furthermore,

n−1Ṽ′nṼn → Σ̃v, n−1V′bnzcṼn ⇒ zΣ∗v, and n−1V′bnzcVbnzc ⇒ zΣv.

Formulas (11) and (13) are derived using arguments akin to those that provide (10) and

(12). Specifically,

n−1Cv,bnzc ⇒ z(1− z)Σv

and

Nv,k = V′kε− (k/n)V′nε+ op(
√
n, k).

Note that the sequence {vtεt} is devoid of autocorrelation and observes Var(vtεt) = τ 2Σv.

Therefore, the identity in (15) is now evident.

From (A.8) and (A.11), it follows that

F̂k =
N′x,kC

−1
x,kNx,k

τ̂ 2
+

N′s,k(DT )−1Ns,k

τ̂ 2k(1− k
n
)

+
N′v,k(Σ̂v)

−1Nv,k

τ̂ 2k(1− k
n
)

+ op(1, k),

where F̂k is defined in (6). The limit behavior of the term involving Nx,k follows from (A.2),

and the limit behavior of the term involving Ns,k follows from (10) and (12). Likewise, the

limit distribution of the term involving Nv,k follows from (11) and (13). The block-diagonal

form of Var(Nk) = τ 2Ck as n → ∞, which is evident in (A.8), implies pairwise asymptotic

independence of Nx,k, Ns,k and Nv,k. To establish (asymptotic) process independence, cal-

culations similar to those which yield the form of Ck can be used to establish that Nx,k and

Ns,k′ , for example, are asymptotically uncorrelated for k 6= k′.



12 MICHAEL ROBBINS

Lemma 1. Let {bt} and {b̃t} be sequences of vectors that satisfy

k∑
t=1

btε̂t−i =
k∑
t=1

btεt−i −
k∑
t=1

bt+ib̃t

(
n∑
t=1

b̃tb̃
′
t

)−1 n∑
t=1

b̃tεt + op(
√
n, k), (A.12)

where {ε̂t} is the sequence of OLS residuals generated using (5) and where {εt} is the sequence

of regression errors generated from the white noise ARMA errors {Zt} in accordance with

(22). Assume further that

1

n

bnzc∑
t=1

bt+ib̃
′
t ⇒ zΓb(i) and

1

n

n∑
t=1

b̃tb̃
′
t → Γ̃b(0) (A.13)

for some sequence of deterministic matrices {Γb(i)} with arbitrary i ≥ 0 and for some matrix

Γ̃b(0). It follows that

k∑
t=1

btε̂t−i −
k

n

n∑
t=1

btε̂t−i =
k∑
t=1

btεt−i − (k/n)Γb(i)[Γ̃b(0)]−1
n∑
t=1

b̃tεt

−k
n

(
n∑
t=1

btεt−i − Γb(i)[Γ̃b(0)]−1
n∑
t=1

b̃tεt

)
+ op(

√
n, k)

=
k∑
t=1

btεt−i −
k

n

n∑
t=1

btεt−i + op(
√
n, k). (A.14)

Let the sequence {πj}∞j=0 denote the coefficients from the expansion of (1 − φ1z − · · · −

φpz
p)/(1 + θ1z+ · · ·+ θqz

q), and let {π̂j}∞j=0 represent the versions of these coefficients when

calculated using the φ̂j and θ̂j. Hence,

Zt =
∞∑
j=0

πjεt−j and Ẑt =
∞∑
j=0

π̂j ε̂t−j, (A.15)
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and

k∑
t=1

btẐt −
k

n

n∑
t=1

btẐt =
∞∑
j=0

π̂j

(
k∑
t=1

btε̂t−j −
k

n

n∑
t=1

btε̂t−j

)

=
∞∑
j=0

πj

(
k∑
t=1

btεt−j −
k

n

n∑
t=1

btεt−j

)
+ op(

√
n, k). (A.16)

The last line in the above uses (A.14) and the facts that the elements of {πt} decay at an

exponential rate while {π̂t} converges to {πt} at an even quicker rate. It follows that

k∑
t=1

btẐt −
k

n

n∑
t=1

btẐt =
k∑
t=1

btZt −
k

n

n∑
t=1

btZt + op(
√
n, k).

Note that (A.7) and, therefore, (A.11) hold in the event that Mk is substituted with

an analogous version that has the row of Mk that corresponds to (x′t, s
′
t,v
′
t) replaced with

(x′t+i, s
′
t+i,v

′
t+i) for t = 1, . . . , k and for i ≥ 0. Using this observation as well as the fact that

{n−1/2
∑k

t=1 btε̂t−i} and {n−1/2
∑k

t=1 bt+iε̂t} are asymptotically equivalent, we see that {st}

and {s̃t} obey (A.12), as do {vt} and {ṽt}. Lastly, it holds that these predictor sequences

obey (A.13), which yields the lemma’s main result.

Theorem 3. It is first illustrated that the processes {Rx,k}, {Rs,k} and {Rv,k} are asymptot-

ically uncorrelated. In light of (23), (A.11), and Lemma 1, it is sufficient to show that the

following three processes are asymptotically uncorrelated:

{
1√
n

k∑
t=1

xtεt

}
,

{
1√
n

k∑
t=1

stZt

}
, and

{
1√
n

k∑
t=1

vtZt

}
,

for 1 ≤ k ≤ n, where {εt} is generated from {Zt} via the causal representation in (A.1).

Calculations show that
∑k

t=1 xtεt =
∑k

t=1 ytZt where yt =
∑k

j=t ψj−txj.
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The proof of Theorem 1 illustrates that the latter two processes of the three processes

above are uncorrelated in large samples. Further calculations show that the remaining pair-

wise covariances of these processes are diven by n−1
∑k

t=1 yts
′
t and n−1

∑k
t=1 ytv

′
t. Further-

more,
k∑
t=1

yts
′
t =

k−1∑
j=0

ψj

k∑
t=1

xt+js
′
t and

k∑
t=1

ytv
′
t =

k−1∑
j=0

ψj

k∑
t=1

xt+jv
′
t.

Using the geometrically decaying structure of {ψj} in addition to Lemmas A.1 and A.2

of Robbins et al. (2016), it holds that n−1
∑k

t=1 yts
′
t = O(n−1, k) and n−1

∑k
t=1 ytv

′
t =

Op(n−1/2, k). This, in combination with (23), Lemma 1 and (25), illustrates the result in the

theorem.

Corollary 1. Let bt denote one of xt, st or vt and correspondingly let ∆b denote either ∆x,

∆s or ∆v. In the event that ∆b 6= 0 and that the changepoint occurs at time c, we see

k∑
t=1

btε̂t−i =

min{k,c}∑
t=1

bt+ib
′
t −

k∑
t=1

bt+ib̃t

(
n∑
t=1

b̃tb̃
′
t

)−1 c∑
t=1

btb
′
t

∆b

+
k∑
t=1

btεt−i −
k∑
t=1

bt+ib̃t

(
n∑
t=1

b̃tb̃
′
t

)−1 n∑
t=1

b̃tεt + op(
√
n, k), (A.17)

which expands upon (A.12).

Our focus now turns to bt = xt. Let

Ak =

par∑
i=0

φ̂∗i

k∑
t=1

f

(
t

n

)
ε̂t −

qma∑
j=0

θ̂∗j

k∑
t=1

f

(
t

n

)
Ẑt,

where f(t/n) denotes an arbitrary element of xt and where φ̂∗i = −φ̂i and θ̂∗j = θ̂j for

i = 1, . . . , par and j = 1, . . . , qma with φ̂∗0 = θ̂∗0 = 1. Following the proof of Lemma 2.2 of
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Robbins et al. (2016), it holds that

Ak +
1

n

par∑
i=0

iφ̂∗i

k∑
t=1

ḟ(ξti)ε̂t −
1

n

qma∑
j=0

jθ̂∗j

k∑
t=1

ḟ(ξtj)Ẑt = op(n
1/ν , k),

for some ν ≥ 2 where ·f(z) is the first derivative of f(z). Let

Bc(k) =

min{k,c}∑
t=1

xtx
′
t −

k∑
t=1

xtx̃t

(
n∑
t=1

x̃tx̃
′
t

)−1 c∑
t=1

xtx
′
t

∆x,

and note that n−1Bc(k) = Op(1, k). Using this and calculations that illustrate (A.17), we

can show that n−1
∑k

t=1 ḟ(ξti)ε̂t = Op(1, k) when ∆x 6= 0. Similarly, n−1
∑k

t=1 ḟ(ξtj)Ẑt =

Op(1, k), which follows from the application of (A.15). Consequentially,

Ak = op(n
1/ν , k). (A.18)

Using (A.17), (A.18), and the fact that n−1Bc(k) = Op(1, k), we see that n−1/2Rx,k diverges

at rate of n1/2 if ∆x 6= 0, which proves that limn→∞ P (L̂x,k > cα) = 1 for any constant cα.

To illustrate consistency of arg maxk L̂x,k as an estimator of the changepoint time, note

that (Bc(k))′C−1x,kBc(k) is maximized when k = c by Lemma A.2 of Bai (1997). This, (A.18),

and Lemma A.4 of Bai (1997) show that arg maxk L̂x,k
P−→ κ, where c/n→ κ.

Next, we focus on the case where bt = st or bt = vt. Formula (A.17) and calculations

akin to those which provide (A.14) imply

k∑
t=1

btε̂t−i −
k

n

n∑
t=1

btε̂t−i = nmin

{
k

n
,
c

n

}(
1−max

{
k

n
,
c

n

})
Γb(i)∆b

k∑
t=1

btεt−i −
k

n

n∑
t=1

btεt−i + op(
√
n, k).
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So long as {π̂j} are reasonable approximations under the alternative hypothesis, we mimic

(A.16) to yield

k∑
t=1

btẐt −
k

n

n∑
t=1

btẐt = nmin

{
k

n
,
c

n

}(
1−max

{
k

n
,
c

n

}) ∞∑
j=0

πjΓb(j)∆b

+
k∑
t=1

btZt −
k

n

n∑
t=1

btZt + op(
√
n, k).

Therefore, n−1/2R∗s,k diverges at rate of n1/2 if ∆s 6= 0. Note that min{k, c}(n−max{k, c})

is maximized when k = c. Furthermore, from Lemma A.4 of Bai (1997), it holds that

arg maxk L̂s,k
P−→ κ, where c/n→ κ. Analogous results hold for R∗v,k and arg maxk L̂v,k.

Corollary A.1. We first assume that the seasonal terms obey the harmonic representation

in (A.3). Basic trigonometric identities can be used to establish that DT = Iqs/2. This

result in combination with the observation that
∑n

t=1 stẐt = Op(1) establishes the finding of

Corollary A.1. To illustrate the latter formula, we establish that
∑n

t=1 stε̂t−i = Op(1) for all

i ≥ 0; the invertibility expansions used in (A.16) can then be applied in order to show that∑n
t=1 stẐt = Op(1).

Define

Hj,i =

 cos(2πji/T ) − sin(2πji/T )

sin(2πji/T ) cos(2πji/T )

 ,
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and let Hi denote a block-diagonal matrix of dimension ps × ps written as

Hi =



Hj1,i 0 · · · 0

0 Hj2,i · · · 0

...
...

. . .
...

0 0 · · · HjJ ,i


.

The matrix Hi can be used to establish a recursion between the st. Specifically,

Hist = st+i. (A.19)

Further, note that Hi = 2
∑T

t=1 st+is
′
t/T . Define

Ns,n(i) :=
n∑
t=1

st+iε̂t = S′n,iε− S′n,iM̃n(M̃′
nM̃n)−1M̃nε

= S′n,iε− S′n,iS̃n(S̃′nS̃n)−1S̃nε+Op(1),

where Sn,i = (s1+i, . . . , sn+i)
′, for t = 1, . . . , n.

It follows that

S̃′nS̃n/n = Ips/2 +O(n−1), and S′n,iS̃n/n =

(
Hi/2 0

)
+O(n−1).

Continuing,

Ns,n(i) =
n∑
t=1

st+iεt −Hi

n∑
t=1

stεt +Op(1)

= 0 +Op(1), (A.20)
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which is derived using the recursion in (A.19). The above also implies that
∑n

t=1 stε̂t−i =

Op(1).

Next, assume that st satisfies the formulation in (A.4). Then, it holds that

S′n,iSn(S′nSn)−1 = H∗i +O(n−1),

where H∗i is defined as follows. First,

H∗1 =

 −1′ −1

IT−2 0

 ,

where 1 is a vector of ones. Next, H∗2 is defined by permuting the rows of H1 so that the

bottom row of H∗2 equals the top row of H∗1 and the remaining rows of H∗1 are each shifted

down. In general, define H∗i by permuting the rows of H∗i−1 in a similar manner. A recursion

analogous to (A.19) can be established: H∗i st = st+i. Therefore, (A.20) is again satisfied, and

the proof is completed.

Appendix G: Parameter Estimates for Data Examples

OLS parameter estimates under both the null and alternative are provided in Table A.1 for

the Mauna Loa data example and in Table A.2 for the Barrow, AK data example. (Notation

in the tables is in line with the notation provided in the article. That is, α’s govern trend,

β’s govern seasonality, γ’s govern covariates, and ∆’s quantify changes. For example, ∆̂s,1,1

is the post-changepoint change in the parameter β̂1,1.)
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Table A.1: Parameter estimates for the Mauna Loa data analysis

Coef. Estimate

H0

α̂1 315.086
α̂2 34.833
α̂3 62.580
α̂4 1.763
α̂5 1.664
α̂6 -15.103

β̂1,1 2.552

β̂2,1 -0.653

β̂1,2 0.022

β̂2,2 -0.057

β̂1,3 1.120

β̂2,3 -0.413

β̂1,4 -0.086

β̂2,4 0.044
γ̂1 -0.015

H1c*

α̂1 315.088
α̂2 34.819
α̂3 62.586
α̂4 1.793
α̂5 1.628
α̂6 -15.098

β̂1,1 2.424

β̂2,1 -0.614

β̂1,2 0.018

β̂2,2 -0.049

β̂1,3 0.890

β̂2,3 -0.335

β̂1,4 -0.096

β̂2,4 0.086
γ̂1 -0.014

∆̂s,1,1 0.186

∆̂s,2,1 -0.058

∆̂s,1,2 0.006

∆̂s,2,2 -0.012

∆̂s,1,3 0.336

∆̂s,2,3 -0.113

∆̂s,1,4 0.014

∆̂s,2,4 -0.061
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Table A.2: Parameter estimates for the Barrow, AK data analysis

Coef. Estimate

H0

α̂1 -13.003
α̂2 2.072

β̂1 -8.151

β̂2 -17.113

β̂3 -22.994

β̂4 -25.149

β̂5 -26.663

β̂6 -25.111

β̂7 -17.225

β̂8 -6.285

β̂9 1.796

β̂10 4.885

β̂11 4.095
γ̂1 -0.017

H1b

α̂1 -12.263
α̂2 -0.169

β̂1 -7.731

β̂2 -16.982

β̂3 -23.250

β̂4 -25.322

β̂5 -27.109

β̂6 -25.276

β̂7 -17.045

β̂8 -6.445

β̂9 1.806

β̂10 5.030

β̂11 4.340
γ̂1 -0.017

∆̂x,1 -4.616

∆̂x,2 7.312

∆̂s,1 -0.787

∆̂s,2 -0.259

∆̂s,3 0.442

∆̂s,4 0.302

∆̂s,5 0.788

∆̂s,6 0.282

∆̂s,7 -0.354

∆̂s,8 0.266

∆̂s,9 -0.050

∆̂s,10 -0.256

∆̂s,11 -0.443

∆̂v,1 -0.007
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