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Appendix A: Technical Assumptions
The following assumptions, which are largely borrowed from work such as Robbins et al.

(2016), are imposed on the predictor sequences {X;}, {s:}, and, {v;} and error sequence {¢;}:
Assumption 1. The sequence {v;} satisfies a functional central limit theorem.

Assumption 2. If ¢, > 0, the functions f, through f,, are continuous and differentiable
over the set K of admissible changepoints. It is also imposed that fj2 > 0 over the set K for

J=1. e

> S

Assumption 3. Let x, = (X},8},V})'. The matriz n=*> 1 X;X; is invertible for each
N > Pg+Ps+ Py with probability 1 in that it has a probability limit with a minimum eigenvalue

that is bounded away from zero.

Assumption 4. The regression errors {€;} are independent of the process {v;} and satisfy

€& = Z%’Zt—j? (A1)
=0

where {Z;} is a sequence of mean zero independent and identically distributed (IID) random

innovations that have a variance denoted by o* and a finite (2 + n)™ moment for some
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n > 0. Also, the causal coefficients {1;} have a geometrically decaying structure that obeys

10| < wr™ for all j > 0 and some finite w and r > 1.

Appendix B: The Limit of Ny

Define strict functional form versions of X; and x; as f(z) = ( fi(2), ., [ (2))

f(z) = (fi(2),..., f.(2)), respectively, for z € [0, 1]. Also, let

G(z) = / P fw)du,  G(z) = / " F(w) f ) du

and  G(2) = /0 ) F(u) du.

Likewise, let

I‘(z):/ozf(u)dW(u) and f@):/oz}(u)dW(u),

where {W(2)}.cpo1) is a Wiener process. Define

Q(z) = G(2) — G*(2)G(1)'G*(2) and A(z) =T(z) — G*(z)G(1)"'T(1).

Robbins et al. (2016) prove that
(n7?)"WVar(Ny ) = Q(2)  and  (n72)7V2N, |, = A(2),

as n — oo for z € K. The result in (9) follows directly from the above.

Appendix C: Specific Representations for s,

/

and

(A.2)
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The form of the ARMA residuals-based statistic E;‘k can be simplified if seasonal compo-
nent s; obeys one of a pair of commonly used representations. First, consider that s; takes
the harmonic form

st = (s, ..., ;) where s;, = (cos(2mjt/T),sin(2njt/T)) (A.3)

]P7

for j € (j1,...,7,) € (1,...,7/2) and p < ps/2. Further, assume that any terms contained
within s} are among those in (s}, ..., %, ,)" which are not in s;. If {s;} and {s} follow this
representation, the matrix Dy has a diagonal form; specifically, Dy = I, /2 where I; is an
identity matrix in d dimensions. Consider a second situation where seasonality is modeled
exhaustively (i.e., each season is allocated its own mean term through the use of dummy
variables). In this case, it holds that ¢, = 7' — 1 so long as x; contains an intercept term.
Further, write s; = (s14,...,s7-1+)" and let

1—T71 if (t—7)/T an integer,
Sjt = (A4)

—T-'  otherwise.
This equation defines an indicator variable that has been centered so as to satisfy the re-
quirement that ZtT:l s; = 0. Since s, exhaustively models the periodicity, s; is empty. In
this case, Dy = I,, — T~'J, where J is a g5 X ¢; matrix of ones. Under either of the above
formulations for s;, the quantity Ly can be further simplified by replacing R, with the

process Ry due to the following (a proof of which is provided in the supplement.).

Corollary A.1. Given the conditions of Theorem 3, assume that {s;} obeys (A.3) or (A.4).
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Let Ry = Zle s:7; and
~ R;k(DT)_lRS,k
YT ek(1 - k)

It follows that

-~

Lox — Ly = 0,(1, k).

)

Appendix D: Nonstationary Stochastic Covariates

In the main text, we assumed that {v,} is stationary with zero mean. Now, we generalize
to circumstances where {v;} has nonzero mean; specifically, consider that {v;} is generated
via

v, =E&a, + 1,

" in the same manner as the other

where {u;} (which is decomposed as u, = (u}, (u})’)
regressor vectors introduced in Sections 1 and 2) is stationary with zero mean, {a;} is a

vector of known deterministic design points, and £ is a matrix of constants.

Assume that predictor sequence given by {a;} is contained within the predictors in
{(x},s};)'}. It follows that the OLS residuals take on the same values when {v;} is used
as a predictor as they do when {u;} is used in its place when fitting the regression (this is
the case for residuals calculated under both the null and alternative hypotheses). Therefore,
the sequences {F},} and {F;}, defined in (6) and (21), respectively, are unchanged if {1}

were used in place of {v,}, and the limit laws given in Theorems 1 and 2 still hold.

However, one must filter a nonstationary mean sequence out of {v;} prior to calculating

{R} .}, as defined in (24). Let {U;} denote residuals from a regression of {v;} on {a;} and
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let Eq denote a /n-consistent estimator of £, where £, gives the first ¢, rows of §. Define

k n
.k .
R/ :EjﬁZ——EjﬁZ.
v,k - t 4t nt:l t 4t

If Ry, is replaced with Ri’k in the calculation of E, the convergence illustrated in Theorem
3 will hold. If a; contains terms exogenous to (x},s;)’, we recommend homogenizing {v;}
prior fitting any regressions (and therefore prior to calculating test statistics). In this case,

the limit theory outlined above applies; formal proof of these claims is omitted for brevity.

Appendix E: Additional Simulations The motivation for use of the [* statistic is that
it does not impose a parametric model on the error structure. Therefore, we examine the
performance of the L statistic when the serial correlation in {&:} is not correctly modeled.

Specifically, we generate {¢,} using various values of 6 while fixing ¢ = 0 (this implies the er-

Figure A.1: Simulated size (left) and power (right) of the F* and misspecified L tests for a nominal significance
level of 0.05 when alternative model Hla is considered and when the error sequence {e;} is generated from
an MA(1) model with parameter § with n = 1000. Results are shown for various choices of 6, where
0, = 05 = §, = 0.107 for power comparisons. Results for size are based on 100,000 independently simulated
datasets for each value of 8, whereas 25,000 datasets are generated for power calculations
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rors are sampled from a MA(1) model). Then, when the L statistic is calculated, an AR (pa,)
model, with p,, selected using the AIC criterion, is fit to the regression residuals. The size of
the F* and the misspecified L tests are approximated under alternative Hla, and then the
power for this alternative is calculated while fixing d, = 6, = 6, = 0.107. Results are shown
in Figure A.1. The findings indicate that the L statistic still outperforms the F* statistic
(with regards to both size and power), even when the error model is incorrectly specified. It

is expected that power for both tests will decrease as @ increases (Robbins et al., 2011a).

Appendix F: Proofs

Theorem 1. As is stipulated by the conditions of Theorem 1, this proof assumes IID regres-

sion errors (i.e., ¢, = Z; and thus 72 = 02). To begin, let

Xt:(Xh...,Xt,O,...,O)/ and }zt:(il,...,it,ﬂ,...,O)’,

which are matrices of dimension n x ¢, and n X p,, respectively, the last n — ¢ rows of which

contain zeros. Similarly, define

S; = (s1,...,8,0,...,0) and S;=(S1,...,5,0,...,0),

and

Vt:(Vl,...,Vt,(),...,O)/ and {/t: ({’/17...,615,0,...70)/.

Further, let M, = (X;, S;, V,) and M, = (X;, S;, V;). Note that M, is the full design matrix

under Hy. The null hypothesis OLS estimator of A = (A, A’ A’Y when a changepoint
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is assumed to occur at time k with k/n € K| is Ak = —C,;lNk where

Cir = M(I—-P,)My, (A.5)
and

N, =M, (I-P,)Y, (A.6)

with Y = (V1,...,Y,). In the above, P, = MH(M;MH)*M; is the projection matrix

under the null hypothesis. Conditional on V,,, it holds that Var(A) = 2C; .

Note that
n~ X} X, 0 0
n” MM, = 0  n'S.S, 0 +0,(1, k).
0 0 n‘lVﬁch

Lemmas A.1 and A.2 of Robbins et al. (2016) are used to show that the off-diagonal blocks

of the above matrix are zero asymptotically. Similarly,

(n1X! X,,)! 0 0
(n'M,M,)"! = 0 (n18.8,)" 0 + O, (n71?),

0 0 (V' V)
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Likewise, we now see

n'MIM, = n'| gX, s/S, SV,

n X)X, 0 0
= 0 n=1s.S 0 + 0p(L, k).
0 0 nl'V,V
Continuing, we see
X} X, (X! X,,) ™ 0 0
M} M, (M, M,) ! = 0 S5,(5.8,)! 0 +0p(1,k). (A7)
0 0 V,V,(V,V,)!
Hence,
n_leJg 0 0
n_lck = 0 n‘lcs,k 0 +Op(17k>7 (A 8)
0 0 nilc‘,’k
where
Cux = XX, — X4.X,, (X! X,,) X! X, (A.9)
with

C.s = S,Sk — S;5,(S.S,) 'S’ Sy, (A.10)
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and

Cyx = ViV — ViV, (VIV,) "'V V).,

for Cy is defined in (A.5).

Shifting the focus to the process {INy}, we first note that

Ny X/ e — XM, (M, M,) M, e
Np=| No | =] SLe—S,M,(M,M,) 'Me |
N, 1 Vie— VM, (M. M,) 'M.e

for Ny, as defined in (A.6) and for € = (ey,...,¢€,). Recall that Ny, Ngy, and Ny, were
defined in (8). Using Var(N;) = 72C; and (A.8), it holds that these three processes are

asymptotically uncorrelated. Applying the result of (A.7), we see

Ny Xle — X, X, (X, X,,) 1 X e
n-1/2 Ns,k — /2 S;E . Skgn(sv;gn)ilgile + Op(L k) (A.ll)
N, Vie— ViV, (V.V,) Ve

The processes {Cyx} and {Ny} were studied in the proof of Lemma 2.1 in Robbins et al.

(2016); the focus now turns to {Cs} and {Ngy}.

~~/

Let DT:Z] 1 8;8;/T with D7, *Zj 1S; j/TandDT—ZJ 1 8;8;/T. Consequentially,

n'S'S, =Dy + O(n™),
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and
n~'S;S, = (k/n)Di+ O(n~' k), with n'S,S, = (k/n)Dr+ O(n~'k).
To derive (10), note that

n'Cqp: = 2Dp—22(DL)(Dg) 'Di,

= zDT—ZQ(IpS 0>D},

= 2(1—2)Dr.

The second line follows from the fact that D7. equals the first ¢, columns of f)T, and similarly

the third line uses the observation that the first ¢, rows of D}, equal Dp. Likewise,

Now = She— (k/n)(D5)(Dr) 'Se + 0,(vi, k)
= Sie- (/) (1, 0) SetoWan

= Sie— (k/n)S, e+ 0p(v/n, k),

which illustrates (12).

Recall that e; = Zt T(i—1)+1 St€t and note that Sje = Z e;, where it is assumed that

=1

n =Tm and k = Tm*. Note further that Var(e;) = 72T Dr. It follows that

m*

(T/n)°N, , — Z ( N Ze) +0,(1, k),

=1

This formula, in combination with (10), yields (14).

Similar approaches are taken to extract the limit behavior of C, ; and Ny ;. Define
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3, = E[v,v}], let ¥ denote the first ¢, columns of 3, and let 3, denote the first Gy TOWS

of ¥7. Furthermore,
n'V'V, - 3, n_lV'mJ{/n =25, and 07V, Vi = 2%,

Formulas (11) and (13) are derived using arguments akin to those that provide (10) and
(12). Specifically,

n_ICMmJ =z2(1-2)%,

and

N, = Vie— (k/n)V.e+ o,(v/n, k).

Note that the sequence {v¢;} is devoid of autocorrelation and observes Var(v;e;) = 72%,,.

Therefore, the identity in (15) is now evident.

From (A.8) and (A.11), it follows that

~ _N;,kC;iNx,k N, (Dp) "Ny N/v,k(iv)_le

k
- E o,(1,k),
¢ 72 k(1 - E) ara—r b

where F}, is defined in (6). The limit behavior of the term involving Ny ;. follows from (A.2),
and the limit behavior of the term involving N, follows from (10) and (12). Likewise, the
limit distribution of the term involving Ny j follows from (11) and (13). The block-diagonal
form of Var(IN;) = 72C}, as n — oo, which is evident in (A.8), implies pairwise asymptotic
independence of Ny, Ngx and N, ;. To establish (asymptotic) process independence, cal-
culations similar to those which yield the form of Cj can be used to establish that Ny ; and

N, v, for example, are asymptotically uncorrelated for k # k' [
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Lemma 1. Let {b;} and {b;} be sequences of vectors that satisfy

k k k n -1 5
D biéi=> b — > biby (Z btbg> > “bier + 0p(v/n, k), (A.12)
t=1 t=1 t=1 t=1 t=1

where {€} is the sequence of OLS residuals generated using (5) and where {¢;} is the sequence
of regression errors generated from the white noise ARMA errors {Z;} in accordance with

(22). Assume further that

[nz] n
1 ~ _ I~~~
- > “byib) = 2Ty(i)  and - tz b:b, — T,(0) (A.13)

t=1

for some sequence of deterministic matrices {I';(7)} with arbitrary ¢ > 0 and for some matrix

I',(0). It follows that

k n
. k .
;tht—i—E;btet—i = thﬁt i — (k/n)Ty (i) thﬁt
. bier—i — Ty()[TH(0)] 'S b K
HPSSERL D DY RRACE

k n
k
- b — b —1 ,k’ . A14
tzl t€¢ n tzl 1€ + 0;,,(\/5 ) ( )

Let the sequence {m;}32, denote the coefficients from the expansion of (1 — ¢12 — -+ —
op2P) /(1 + 012+ - +0,27), and let {7;}32, represent the versions of these coefficients when

calculated using the ¢2j and éj. Hence,

Zy=)Y me_; and  Z, =Y Fié ;. (A.15)
j=0 =0
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and

k n 00 k n
Z tht - % Z tht - Z 7ATJ <Z btgt—j - % Z btét—j>
t=1 t=1 7=0 t=1 t=1
00 k n
= Z T <Z bt€t—j — % Z btet—j> + Op<\/ﬁ, k?) <A16)
7=0 t=1 t=1

The last line in the above uses (A.14) and the facts that the elements of {m;} decay at an

exponential rate while {7;} converges to {m;} at an even quicker rate. It follows that

k n k n
. k N k
tg_l b, Z; — i tE_l b, Z; = tE_l b, Z; — o ;_1 b.Z, + Op(\/ﬁa k).

Note that (A.7) and, therefore, (A.11) hold in the event that M, is substituted with
an analogous version that has the row of My, that corresponds to (x},s}, v;) replaced with
(X} s St Vi) for t = 1,... k and for 7 > 0. Using this observation as well as the fact that
(n=23F bié i} and {n" Y2328 byé,} are asymptotically equivalent, we see that {s;}
and {s;} obey (A.12), as do {v;} and {v;}. Lastly, it holds that these predictor sequences

obey (A.13), which yields the lemma’s main result. O

Theorem 3. 1t is first illustrated that the processes {Rxx}, {Rsx} and {Ry x} are asymptot-
ically uncorrelated. In light of (23), (A.11), and Lemma 1, it is sufficient to show that the

following three processes are asymptotically uncorrelated:

k k k
1 1 1
— Xi€ o — s¢Zy o, and — Vil
for 1 < k < n, where {¢} is generated from {Z;} via the causal representation in (A.1).

Calculations show that Zle X6 = Zle y:Z; where y; = Z;‘f:t VX
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The proof of Theorem 1 illustrates that the latter two processes of the three processes
above are uncorrelated in large samples. Further calculations show that the remaining pair-
wise covariances of these processes are diven by n™! Zle y:s, and n! Zle y:v;. Further-

more,
k k—1 k k k—1 k
YIRS STD ST ERTIIND SATES S et
t=1 j=0 =1 t=1 j=0  t=1

Using the geometrically decaying structure of {¢;} in addition to Lemmas A.1 and A.2

of Robbins et al. (2016), it holds that n~ 'Y} yis; = O(n ' k) and n= ' S2F y,v) =

O,(n~Y2 k). This, in combination with (23), Lemma 1 and (25), illustrates the result in the

theorem. O

Corollary 1. Let b, denote one of x;, s; or v, and correspondingly let A, denote either A,

A or A,. In the event that A, # 0 and that the changepoint occurs at time ¢, we see

min{k,c}

k k n -1 ¢
D biéei = | D bub, =) buib (Z btbg> > bibi| A,
t=1 t=1 t=1 t=1 t=1
k k N noo_ -1 5 N
+ Z btet—i — Z bt-i—ibt (Z btb;> Z tht + OP(\/E, k), (Al?)
t=1 t=1 t=1 t=1

which expands upon (A.12).

Our focus now turns to b, = x;. Let
Par R ¢ gma R k ¢ )
Ay, = : ¢iZf<E)€t—j209j;f<ﬁ>Zt7

where f(t/n) denotes an arbitrary element of x, and where ¢! = —¢; and éj = 6, for

1 =1,...,pa and j = 1,..., gma With ngSS = éS = 1. Following the proof of Lemma 2.2 of
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Robbins et al. (2016), it holds that

Par k gma k

At o30S e = > 003 F6) 2 = oylnt’ ),
i=0 t=1 j=0 t=1

for some v > 2 where - f(z) is the first derivative of f(z). Let

min{k,c} k n -1 ¢
/ =~ =~ =/ /
B.(k) = E XX, — E XXy XX, g XX, | Ay,
t=1 t=1 t=1

t=1
and note that n™'B.(k) = O,(1,k). Using this and calculations that illustrate (A.17), we

can show that n=" 3% f(€:)é = O,(1,k) when A, # 0. Similarly, n=' S5, f(£;)Z, =

O,(1, k), which follows from the application of (A.15). Consequentially,
Ay = 0,(nY" k). (A.18)

Using (A.17), (A.18), and the fact that n™'B.(k) = O,(1, k), we see that n=Y/?R,; diverges

~

at rate of n'/2 if A, # 0, which proves that lim,, ., P(Lyxs > ¢o) = 1 for any constant c,.

To illustrate consistency of arg max; Ex,k as an estimator of the changepoint time, note
that (B.(k))'Cy Be(k) is maximized when k = ¢ by Lemma A.2 of Bai (1997). This, (A.18),

and Lemma A.4 of Bai (1997) show that arg max, Ex,k 5 k, where c/n — K.

Next, we focus on the case where b, = s, or b; = v;. Formula (A.17) and calculations

akin to those which provide (A.14) imply
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So long as {7} are reasonable approximations under the alternative hypothesis, we mimic

(A.16) to yield

k n 0o
R k . _ k c k ¢ .
thZt_EthZt = nmln{g,g} (1—maX{E7E})Z7Tij(‘])Ab
t=1 t=1 7=0
k k’ n
+ ; b.Z, — o ; b Z; + Op(\/a k).

Therefore, n~ /2Ry, diverges at rate of n'/2 if A, # 0. Note that min{k, c}(n — max{k, c})
is maximized when k& = ¢. Furthermore, from Lemma A.4 of Bai (1997), it holds that

A~ 7) A~
argmaxy, Ly, — &, where ¢/n — k. Analogous results hold for Ry ; and arg max;, Ly .

Corollary A.1. We first assume that the seasonal terms obey the harmonic representation
in (A.3). Basic trigonometric identities can be used to establish that Dy = I, /2. This
result in combination with the observation that > , 8,2y = O,(1) establishes the finding of
Corollary A.1. To illustrate the latter formula, we establish that Y ;| s:6_; = O,(1) for all

i > 0; the invertibility expansions used in (A.16) can then be applied in order to show that

> StZt = 0,(1).

Define

cos(2mji/T) —sin(2mji/T)
Hj,i = )
sin(2mji/T)  cos(2mji/T)
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and let H; denote a block-diagonal matrix of dimension p, X p, written as
H;,;, 0 0
0 Hj, 0
Hi -
0 0 H;,,
The matrix H; can be used to establish a recursion between the s;. Specifically,
Hist = St44- (Alg)
Further, note that H; = 237, s,,;s,/T. Define
Non(i) =Y siitr = Spe— S, M, (M,M,)'M,e
t=1
= S €—9.5.(5,S,)7"S,e + O, (1),
where S, ; = (Si44y-.-,Snqi), fort =1,... n.
It follows that
S.S./n=1,/2+0n™"), and S,S,/n= ( H,/2 0 ) + 0.
Continuing,
Non(i) = Z Sii€r — H; Z seer + Op(1)
t=1 t=1
= 0+ 0,(1), (A.20)
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which is derived using the recursion in (A.19). The above also implies that Y ;' | s:6; =

Op(1).

Next, assume that s; satisfies the formulation in (A.4). Then, it holds that

S;M.S,L(S;LSH)_1 =H;+0(n™"),

where HY is defined as follows. First,

where 1 is a vector of ones. Next, Hj is defined by permuting the rows of H; so that the
bottom row of Hj equals the top row of H} and the remaining rows of Hj are each shifted
down. In general, define H} by permuting the rows of H ; in a similar manner. A recursion
analogous to (A.19) can be established: Hs; = s;,,. Therefore, (A.20) is again satisfied, and

the proof is completed. O

Appendix G: Parameter Estimates for Data Examples

OLS parameter estimates under both the null and alternative are provided in Table A.1 for
the Mauna Loa data example and in Table A.2 for the Barrow, AK data example. (Notation
in the tables is in line with the notation provided in the article. That is, a’s govern trend,

B’s govern seasonality, 7’s govern covariates, and A’s quantify changes. For example, A, 11

is the post-changepoint change in the parameter 31’1.)
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Table A.1: Parameter estimates for the Mauna Loa data analysis

Coef. Estimate

a1 315.086
by 34.833
G 62.580
Gy 1.763
G 1.664
G -15.103
Bia 2.552
HO 3, -0.653
51,2 0.022
32,2 -0.057
B3 1.120
BQ,S -0.413
5174 -0.086
P24 0.044
o -0.015
a1 315.088
Gy 34.819
b 62.586
ay 1.793
G 1.628
G -15.098
B 2.424
B2 -0.614
B2 0.018
5272 -0.049
Hiex s 0.890
Ba,3 -0.335
51,4 -0.096
Bo.4 0.086
o -0.014
Agia 0.186
As2i -0.058
A1 0.006
A,z -0.012
Aors 0.336
A,z -0.113
N 0.014

Asos -0.061
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Table A.2: Parameter estimates for the Barrow, AK data analysis

Coef. Estimate

é1 -13.003
Gia 2.072
B -8.151
s -17.113
B3 -22.994
By -25.149
HO s -26.663
Be -25.111
Br -17.225
Bs -6.285
By 1.796
510 4.885
Bi1 4.095
on -0.017
a1 -12.263
Gia -0.169
B -7.731
s -16.982
s -23.250
By -25.322
Bs -27.109
Be -25.276
Br -17.045
Bs -6.445
By 1.806
510 5.030
Hi1b Bll 4.340
on -0.017
Apq 4.616
Ay 7.312
Asq -0.787
A, -0.259
Ags 0.442
Agu 0.302
Ass 0.788
A 0.282
Aur -0.354
Ags 0.266
Aso -0.050
A 10 -0.256
£5,11 -0.443

~

N -0.007
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