SUPPLEMENT: A FULLY FLEXIBLE CHANGEPOINT TEST FOR REGRESSION MODELS WITH STATIONARY ERRORS

Michael W. Robbins
RAND Corporation

Appendix A: Technical Assumptions

The following assumptions, which are largely borrowed from work such as Robbins et al. (2016), are imposed on the predictor sequences $\left\{\widetilde{\mathbf{x}}_{t}\right\},\left\{\widetilde{\mathbf{s}}_{t}\right\}$, and, $\left\{\widetilde{\mathbf{v}}_{t}\right\}$ and error sequence $\left\{\epsilon_{t}\right\}$:

Assumption 1. The sequence $\left\{\widetilde{\mathbf{v}}_{t}\right\}$ satisfies a functional central limit theorem.

Assumption 2. If $q_{x}>0$, the functions f_{1} through $f_{q_{x}}$ are continuous and differentiable over the set K of admissible changepoints. It is also imposed that $f_{j}^{2}>0$ over the set K for $j=1, \ldots, p_{x}$.

Assumption 3. Let $\widetilde{\boldsymbol{\chi}}_{t}=\left(\widetilde{\mathbf{x}}_{t}^{\prime}, \widetilde{\mathbf{s}}_{t}^{\prime}, \widetilde{\mathbf{v}}_{t}^{\prime}\right)^{\prime}$. The matrix $n^{-1} \sum_{t=1}^{n} \widetilde{\boldsymbol{\chi}}_{t} \widetilde{\boldsymbol{\chi}}_{t}^{\prime}$ is invertible for each $n \geq p_{x}+p_{s}+p_{v}$ with probability 1 in that it has a probability limit with a minimum eigenvalue that is bounded away from zero.

Assumption 4. The regression errors $\left\{\epsilon_{t}\right\}$ are independent of the process $\left\{\widetilde{\mathbf{v}}_{t}\right\}$ and satisfy

$$
\begin{equation*}
\epsilon_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j} \tag{A.1}
\end{equation*}
$$

where $\left\{Z_{t}\right\}$ is a sequence of mean zero independent and identically distributed (IID) random innovations that have a variance denoted by σ^{2} and a finite $(2+\eta)^{\text {th }}$ moment for some
$\eta>0$. Also, the causal coefficients $\left\{\psi_{j}\right\}$ have a geometrically decaying structure that obeys $\left|\psi_{j}\right| \leq \omega r^{-j}$ for all $j \geq 0$ and some finite ω and $r>1$.

Appendix B: The Limit of $\mathbf{N}_{\mathrm{x}, k}$

Define strict functional form versions of $\widetilde{\mathbf{x}}_{t}$ and \mathbf{x}_{t} as $\widetilde{\boldsymbol{f}}(z)=\left(f_{1}(z), \ldots, f_{p_{x}}(z)\right)^{\prime}$ and $\boldsymbol{f}(z)=\left(f_{1}(z), \ldots, f_{q_{x}}(z)\right)^{\prime}$, respectively, for $z \in[0,1]$. Also, let

$$
\begin{gathered}
\mathbf{G}(z)=\int_{0}^{z} \boldsymbol{f}(u) \boldsymbol{f}(u)^{\prime} d u, \quad \mathbf{G}^{*}(z)=\int_{0}^{z} \widetilde{\boldsymbol{f}}(u) \boldsymbol{f}(u)^{\prime} d u \\
\text { and } \widetilde{\mathbf{G}}(z)=\int_{0}^{z} \widetilde{\boldsymbol{f}}(u) \widetilde{\boldsymbol{f}}(u)^{\prime} d u .
\end{gathered}
$$

Likewise, let

$$
\boldsymbol{\Gamma}(z)=\int_{0}^{z} \boldsymbol{f}(u) d W(u) \quad \text { and } \quad \widetilde{\boldsymbol{\Gamma}}(z)=\int_{0}^{z} \widetilde{\boldsymbol{f}}(u) d W(u),
$$

where $\{W(z)\}_{z \in[0,1]}$ is a Wiener process. Define

$$
\boldsymbol{\Omega}(z)=\mathbf{G}(z)-\mathbf{G}^{*}(z)^{\prime} \widetilde{\mathbf{G}}(1)^{-1} \mathbf{G}^{*}(z) \quad \text { and } \quad \boldsymbol{\Lambda}(z)=\boldsymbol{\Gamma}(z)-\mathbf{G}^{*}(z)^{\prime} \widetilde{\mathbf{G}}(1)^{-1} \widetilde{\boldsymbol{\Gamma}}(1)
$$

Robbins et al. (2016) prove that

$$
\begin{equation*}
\left(n \tau^{2}\right)^{-1} \widehat{\operatorname{Var}}\left(\mathbf{N}_{\mathrm{x},\lfloor n z\rfloor}\right) \Rightarrow \boldsymbol{\Omega}(z) \quad \text { and } \quad\left(n \tau^{2}\right)^{-1 / 2} \mathbf{N}_{\mathrm{x},\lfloor n z\rfloor} \Rightarrow \boldsymbol{\Lambda}(z) \tag{A.2}
\end{equation*}
$$

as $n \rightarrow \infty$ for $z \in K$. The result in (9) follows directly from the above.

Appendix C: Specific Representations for s_{t}

The form of the ARMA residuals-based statistic $\widehat{L}_{\mathrm{s}, k}^{*}$ can be simplified if seasonal component \mathbf{s}_{t} obeys one of a pair of commonly used representations. First, consider that \mathbf{s}_{t} takes the harmonic form

$$
\begin{equation*}
\mathbf{s}_{t}=\left(\mathbf{s}_{j_{1}, t}^{\prime}, \ldots, \mathbf{s}_{j_{\rho}, t}^{\prime}\right)^{\prime} \quad \text { where } \quad \mathbf{s}_{j, t}=(\cos (2 \pi j t / T), \sin (2 \pi j t / T))^{\prime} \tag{A.3}
\end{equation*}
$$

for $j \in\left(j_{1}, \ldots, j_{\rho}\right) \subseteq(1, \ldots, T / 2)$ and $\rho \leq p_{s} / 2$. Further, assume that any terms contained within \mathbf{s}_{t}^{*} are among those in $\left(\mathbf{s}_{1, t}^{\prime}, \ldots, \mathbf{s}_{T / 2, t}^{\prime}\right)^{\prime}$ which are not in \mathbf{s}_{t}. If $\left\{\mathbf{s}_{t}\right\}$ and $\left\{\mathbf{s}_{t}^{*}\right\}$ follow this representation, the matrix \mathbf{D}_{T} has a diagonal form; specifically, $\mathbf{D}_{T}=\mathbf{I}_{q_{s}} / 2$ where \mathbf{I}_{d} is an identity matrix in d dimensions. Consider a second situation where seasonality is modeled exhaustively (i.e., each season is allocated its own mean term through the use of dummy variables). In this case, it holds that $q_{s}=T-1$ so long as \mathbf{x}_{t} contains an intercept term. Further, write $\mathbf{s}_{t}=\left(s_{1, t}, \ldots, s_{T-1, t}\right)^{\prime}$ and let

$$
s_{j, t}= \begin{cases}1-T^{-1}, & \text { if }(t-j) / T \text { an integer } \tag{A.4}\\ -T^{-1}, & \text { otherwise }\end{cases}
$$

This equation defines an indicator variable that has been centered so as to satisfy the requirement that $\sum_{t=1}^{T} \mathbf{s}_{t}=\mathbf{0}$. Since \mathbf{s}_{t} exhaustively models the periodicity, \mathbf{s}_{t}^{*} is empty. In this case, $\mathbf{D}_{T}=\mathbf{I}_{q_{s}}-T^{-1} \mathbf{J}$, where \mathbf{J} is a $q_{s} \times q_{s}$ matrix of ones. Under either of the above formulations for \mathbf{s}_{t}, the quantity \widehat{L}_{k} can be further simplified by replacing $\mathbf{R}_{\mathrm{s}, k}^{*}$ with the process $\mathbf{R}_{\mathrm{s}, k}$ due to the following (a proof of which is provided in the supplement.).

Corollary A.1. Given the conditions of Theorem 3, assume that $\left\{\mathbf{s}_{t}\right\}$ obeys (A.3) or (A.4).

Let $\mathbf{R}_{\mathrm{s}, k}=\sum_{t=1}^{k} \mathbf{s}_{t} \hat{Z}_{t}$ and

$$
\widehat{L}_{\mathrm{s}, k}=\frac{\mathbf{R}_{\mathrm{s}, k}^{\prime}\left(\mathbf{D}_{T}\right)^{-1} \mathbf{R}_{\mathrm{s}, k}}{\hat{\sigma}^{2} k\left(1-\frac{k}{n}\right)}
$$

It follows that

$$
\widehat{L}_{\mathrm{s}, k}-\widehat{L}_{\mathrm{s}, k}^{*}=o_{p}(1, k)
$$

Appendix D: Nonstationary Stochastic Covariates

In the main text, we assumed that $\left\{\widetilde{\mathbf{v}}_{t}\right\}$ is stationary with zero mean. Now, we generalize to circumstances where $\left\{\widetilde{\mathbf{v}}_{t}\right\}$ has nonzero mean; specifically, consider that $\left\{\widetilde{\mathbf{v}}_{t}\right\}$ is generated via

$$
\widetilde{\mathbf{v}}_{t}=\boldsymbol{\xi}^{\prime} \boldsymbol{a}_{t}+\widetilde{\mathbf{u}}_{t}
$$

where $\left\{\widetilde{\mathbf{u}}_{t}\right\}$ (which is decomposed as $\widetilde{\mathbf{u}}_{t}=\left(\mathbf{u}_{t}^{\prime},\left(\mathbf{u}_{t}^{*}\right)^{\prime}\right)^{\prime}$ in the same manner as the other regressor vectors introduced in Sections 1 and 2) is stationary with zero mean, $\left\{\boldsymbol{a}_{t}\right\}$ is a vector of known deterministic design points, and $\boldsymbol{\xi}$ is a matrix of constants.

Assume that predictor sequence given by $\left\{\boldsymbol{a}_{t}\right\}$ is contained within the predictors in $\left\{\left(\mathrm{x}_{t}^{\prime}, \mathrm{s}_{t}^{\prime}\right)^{\prime}\right\}$. It follows that the OLS residuals take on the same values when $\left\{\widetilde{\mathbf{v}}_{t}\right\}$ is used as a predictor as they do when $\left\{\widetilde{\mathbf{u}}_{t}\right\}$ is used in its place when fitting the regression (this is the case for residuals calculated under both the null and alternative hypotheses). Therefore, the sequences $\left\{\widehat{F}_{k}\right\}$ and $\left\{\widehat{F}_{k}^{*}\right\}$, defined in (6) and (21), respectively, are unchanged if $\left\{\widetilde{\mathbf{u}}_{t}\right\}$ were used in place of $\left\{\widetilde{\mathbf{v}}_{t}\right\}$, and the limit laws given in Theorems 1 and 2 still hold.

However, one must filter a nonstationary mean sequence out of $\left\{\mathbf{v}_{t}\right\}$ prior to calculating $\left\{\mathbf{R}_{\mathrm{v}, k}^{*}\right\}$, as defined in (24). Let $\left\{\widehat{\mathbf{u}}_{t}\right\}$ denote residuals from a regression of $\left\{\mathbf{v}_{t}\right\}$ on $\left\{\boldsymbol{a}_{t}\right\}$ and
let $\widehat{\boldsymbol{\xi}}_{q}$ denote a \sqrt{n}-consistent estimator of $\boldsymbol{\xi}_{q}$, where $\boldsymbol{\xi}_{q}$ gives the first q_{v} rows of $\boldsymbol{\xi}$. Define

$$
\mathbf{R}_{\mathrm{v}, k}^{\dagger}=\sum_{t=1}^{k} \widehat{\mathbf{u}}_{t} \hat{Z}_{t}-\frac{k}{n} \sum_{t=1}^{n} \widehat{\mathbf{u}}_{t} \hat{Z}_{t}
$$

If $\mathbf{R}_{\mathrm{v}, k}^{*}$ is replaced with $\mathbf{R}_{\mathrm{v}, k}^{\dagger}$ in the calculation of \widehat{L}, the convergence illustrated in Theorem 3 will hold. If \boldsymbol{a}_{t} contains terms exogenous to $\left(\mathbf{x}_{t}^{\prime}, \mathbf{s}_{t}^{\prime}\right)^{\prime}$, we recommend homogenizing $\left\{\widetilde{\mathbf{v}}_{t}\right\}$ prior fitting any regressions (and therefore prior to calculating test statistics). In this case, the limit theory outlined above applies; formal proof of these claims is omitted for brevity.

Appendix E: Additional Simulations The motivation for use of the \widehat{F}^{*} statistic is that it does not impose a parametric model on the error structure. Therefore, we examine the performance of the \widehat{L} statistic when the serial correlation in $\left\{\epsilon_{t}\right\}$ is not correctly modeled. Specifically, we generate $\left\{\epsilon_{t}\right\}$ using various values of θ while fixing $\phi=0$ (this implies the er-

Figure A.1: Simulated size (left) and power (right) of the \widehat{F}^{*} and misspecified \widehat{L} tests for a nominal significance level of 0.05 when alternative model H 1 a is considered and when the error sequence $\left\{\epsilon_{t}\right\}$ is generated from an MA(1) model with parameter θ with $n=1000$. Results are shown for various choices of θ, where $\delta_{x}=\delta_{s}=\delta_{v}=0.107$ for power comparisons. Results for size are based on 100,000 independently simulated datasets for each value of θ, whereas 25,000 datasets are generated for power calculations

rors are sampled from a MA(1) model). Then, when the \widehat{L} statistic is calculated, an $\operatorname{AR}\left(p_{\text {ar }}\right)$ model, with $p_{\text {ar }}$ selected using the AIC criterion, is fit to the regression residuals. The size of the \widehat{F}^{*} and the misspecified \widehat{L} tests are approximated under alternative H1a, and then the power for this alternative is calculated while fixing $\delta_{x}=\delta_{s}=\delta_{v}=0.107$. Results are shown in Figure A.1. The findings indicate that the \widehat{L} statistic still outperforms the \widehat{F}^{*} statistic (with regards to both size and power), even when the error model is incorrectly specified. It is expected that power for both tests will decrease as θ increases (Robbins et al., 2011a).

Appendix F: Proofs

Theorem 1. As is stipulated by the conditions of Theorem 1, this proof assumes IID regression errors (i.e., $\epsilon_{t}=Z_{t}$ and thus $\tau^{2}=\sigma^{2}$). To begin, let

$$
\mathbf{X}_{t}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{t}, \mathbf{0}, \ldots, \mathbf{0}\right)^{\prime} \quad \text { and } \quad \widetilde{\mathbf{X}}_{t}=\left(\widetilde{\mathbf{x}}_{1}, \ldots, \widetilde{\mathbf{x}}_{t}, \mathbf{0}, \ldots, \mathbf{0}\right)^{\prime}
$$

which are matrices of dimension $n \times q_{x}$ and $n \times p_{x}$, respectively, the last $n-t$ rows of which contain zeros. Similarly, define

$$
\mathbf{S}_{t}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{t}, \mathbf{0}, \ldots, \mathbf{0}\right)^{\prime} \quad \text { and } \quad \widetilde{\mathbf{S}}_{t}=\left(\widetilde{\mathbf{s}}_{1}, \ldots, \widetilde{\mathbf{s}}_{t}, \mathbf{0}, \ldots, \mathbf{0}\right)^{\prime}
$$

and

$$
\mathbf{V}_{t}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{t}, \mathbf{0}, \ldots, \mathbf{0}\right)^{\prime} \quad \text { and } \quad \widetilde{\mathbf{V}}_{t}=\left(\widetilde{\mathbf{v}}_{1}, \ldots, \widetilde{\mathbf{v}}_{t}, \mathbf{0}, \ldots, \mathbf{0}\right)^{\prime}
$$

Further, let $\mathbf{M}_{t}=\left(\mathbf{X}_{t}, \mathbf{S}_{t}, \mathbf{V}_{t}\right)$ and $\widetilde{\mathbf{M}}_{t}=\left(\widetilde{\mathbf{X}}_{t}, \widetilde{\mathbf{S}}_{t}, \widetilde{\mathbf{V}}_{t}\right)$. Note that \mathbf{M}_{n} is the full design matrix under \mathcal{H}_{0}. The null hypothesis OLS estimator of $\boldsymbol{\Delta}=\left(\boldsymbol{\Delta}_{x}^{\prime}, \boldsymbol{\Delta}_{s}^{\prime}, \boldsymbol{\Delta}_{v}^{\prime}\right)^{\prime}$, when a changepoint
is assumed to occur at time k with $k / n \in K$, is $\widehat{\boldsymbol{\Delta}}_{k}=-\mathbf{C}_{k}^{-1} \mathbf{N}_{k}$ where

$$
\begin{equation*}
\mathbf{C}_{k}=\mathbf{M}_{k}^{\prime}\left(\mathbf{I}-\mathbf{P}_{n}\right) \mathbf{M}_{k}, \tag{A.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{N}_{k}=\mathbf{M}_{k}^{\prime}\left(\mathbf{I}-\mathbf{P}_{n}\right) \mathbf{Y} \tag{A.6}
\end{equation*}
$$

with $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$. In the above, $\mathbf{P}_{n}=\widetilde{\mathbf{M}}_{n}\left(\widetilde{\mathbf{M}}_{n}^{\prime} \widetilde{\mathbf{M}}_{n}\right)^{-1} \widetilde{\mathbf{M}}_{n}^{\prime}$ is the projection matrix under the null hypothesis. Conditional on $\widetilde{\mathbf{V}}_{n}$, it holds that $\operatorname{Var}\left(\widehat{\boldsymbol{\Delta}}_{k}\right)=\tau^{2} \mathbf{C}_{k}^{-1}$.

Note that

$$
n^{-1} \mathbf{M}_{k}^{\prime} \mathbf{M}_{k}=\left(\begin{array}{ccc}
n^{-1} \mathbf{X}_{k}^{\prime} \mathbf{X}_{k} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & n^{-1} \mathbf{S}_{k}^{\prime} \mathbf{S}_{k} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & n^{-1} \mathbf{V}_{k}^{\prime} \mathbf{V}_{k}
\end{array}\right)+o_{p}(1, k)
$$

Lemmas A. 1 and A. 2 of Robbins et al. (2016) are used to show that the off-diagonal blocks of the above matrix are zero asymptotically. Similarly,

$$
\left(n^{-1} \widetilde{\mathbf{M}}_{n}^{\prime} \widetilde{\mathbf{M}}_{n}\right)^{-1}=\left(\begin{array}{ccc}
\left(n^{-1} \widetilde{\mathbf{X}}_{n}^{\prime} \widetilde{\mathbf{X}}_{n}\right)^{-1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \left(n^{-1} \widetilde{\mathbf{S}}_{n}^{\prime} \widetilde{\mathbf{S}}_{n}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \left(n^{-1} \widetilde{\mathbf{V}}_{n}^{\prime} \widetilde{\mathbf{V}}_{n}\right)^{-1}
\end{array}\right)+\mathcal{O}_{p}\left(n^{-1 / 2}\right)
$$

Likewise, we now see

$$
\begin{aligned}
n^{-1} \mathbf{M}_{k}^{\prime} \widetilde{\mathbf{M}}_{n}= & n^{-1}\left(\begin{array}{ccc}
\mathbf{X}_{k}^{\prime} \widetilde{\mathbf{X}}_{n} & \mathbf{X}_{k}^{\prime} \widetilde{\mathbf{S}}_{n} & \mathbf{X}_{k}^{\prime} \widetilde{\mathbf{V}}_{n} \\
\mathbf{S}_{k}^{\prime} \widetilde{\mathbf{X}}_{n} & \mathbf{S}_{k}^{\prime} \widetilde{\mathbf{S}}_{n} & \mathbf{S}_{k}^{\prime} \widetilde{\mathbf{V}}_{n} \\
\mathbf{V}_{k}^{\prime} \widetilde{\mathbf{X}}_{n} & \mathbf{V}_{k}^{\prime} \widetilde{\mathbf{S}}_{n} & \mathbf{V}_{k}^{\prime} \widetilde{\mathbf{V}}_{n}
\end{array}\right) \\
= & \left(\begin{array}{ccc}
n^{-1} \mathbf{X}_{k}^{\prime} \widetilde{\mathbf{X}}_{n} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & n^{-1} \mathbf{S}_{k}^{\prime} \widetilde{\mathbf{S}}_{n} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & n^{-1} \mathbf{V}_{k}^{\prime} \widetilde{\mathbf{V}}_{n}
\end{array}\right)+o_{p}(1, k) .
\end{aligned}
$$

Continuing, we see

$$
\mathbf{M}_{k}^{\prime} \widetilde{\mathbf{M}}_{n}\left(\widetilde{\mathbf{M}}_{n}^{\prime} \widetilde{\mathbf{M}}_{n}\right)^{-1}=\left(\begin{array}{ccc}
\mathbf{X}_{k}^{\prime} \widetilde{\mathbf{X}}_{n}\left(\widetilde{\mathbf{X}}_{n}^{\prime} \widetilde{\mathbf{X}}_{n}\right)^{-1} & \mathbf{0} & \mathbf{0} \tag{A.7}\\
\mathbf{0} & \mathbf{S}_{k}^{\prime} \widetilde{\mathbf{S}}_{n}\left(\widetilde{\mathbf{S}}_{n}^{\prime} \widetilde{\mathbf{S}}_{n}\right)^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{V}_{k}^{\prime} \widetilde{\mathbf{V}}_{n}\left(\widetilde{\mathbf{V}}_{n}^{\prime} \widetilde{\mathbf{V}}_{n}\right)^{-1}
\end{array}\right)+o_{p}(1, k)
$$

Hence,

$$
n^{-1} \mathbf{C}_{k}=\left(\begin{array}{ccc}
n^{-1} \mathbf{C}_{\mathrm{x}, k} & \mathbf{0} & \mathbf{0} \tag{A.8}\\
\mathbf{0} & n^{-1} \mathbf{C}_{\mathrm{s}, k} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & n^{-1} \mathbf{C}_{\mathrm{v}, k}
\end{array}\right)+o_{p}(1, k),
$$

where

$$
\begin{equation*}
\mathbf{C}_{\mathbf{x}, k}=\mathbf{X}_{k}^{\prime} \mathbf{X}_{k}-\mathbf{X}_{k}^{\prime} \widetilde{\mathbf{X}}_{n}\left(\widetilde{\mathbf{X}}_{n}^{\prime} \widetilde{\mathbf{X}}_{n}\right)^{-1} \widetilde{\mathbf{X}}_{n}^{\prime} \mathbf{X}_{k}, \tag{A.9}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{C}_{\mathbf{s}, k}=\mathbf{S}_{k}^{\prime} \mathbf{S}_{k}-\mathbf{S}_{k}^{\prime} \widetilde{\mathbf{S}}_{n}\left(\widetilde{\mathbf{S}}_{n}^{\prime} \widetilde{\mathbf{S}}_{n}\right)^{-1} \widetilde{\mathbf{S}}_{n}^{\prime} \mathbf{S}_{k} \tag{A.10}
\end{equation*}
$$

and

$$
\mathbf{C}_{\mathbf{v}, k}=\mathbf{V}_{k}^{\prime} \mathbf{V}_{k}-\mathbf{V}_{k}^{\prime} \tilde{\mathbf{V}}_{n}\left(\tilde{\mathbf{V}}_{n}^{\prime} \tilde{\mathbf{V}}_{n}\right)^{-1} \tilde{\mathbf{V}}_{n}^{\prime} \mathbf{V}_{k},
$$

for \mathbf{C}_{k} is defined in (A.5).

Shifting the focus to the process $\left\{\mathbf{N}_{k}\right\}$, we first note that

$$
\mathbf{N}_{k}=\left(\begin{array}{c}
\mathbf{N}_{\mathrm{x}, k} \\
\mathbf{N}_{\mathrm{s}, k} \\
\mathbf{N}_{\mathrm{v}, k}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{X}_{k}^{\prime} \boldsymbol{\epsilon}-\mathbf{X}_{k}^{\prime} \widetilde{\mathbf{M}}_{n}\left(\widetilde{\mathbf{M}}_{n}^{\prime} \widetilde{\mathbf{M}}_{n}\right)^{-1} \widetilde{\mathbf{M}}_{n}^{\prime} \boldsymbol{\epsilon} \\
\mathbf{S}_{k}^{\prime} \boldsymbol{\epsilon}-\mathbf{S}_{k}^{\prime} \widetilde{\mathbf{M}}_{n}\left(\widetilde{\mathbf{M}}_{n}^{\prime} \widetilde{\mathbf{M}}_{n}\right)^{-1} \widetilde{\mathbf{M}}_{n}^{\prime} \boldsymbol{\epsilon} \\
\mathbf{V}_{k}^{\prime} \boldsymbol{\epsilon}-\mathbf{V}_{k}^{\prime} \widetilde{\mathbf{M}}_{n}\left(\widetilde{\mathbf{M}}_{n}^{\prime} \widetilde{\mathbf{M}}_{n}\right)^{-1} \widetilde{\mathbf{M}}_{n}^{\prime} \boldsymbol{\epsilon}
\end{array}\right)
$$

for \mathbf{N}_{k} as defined in (A.6) and for $\boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$. Recall that $\mathbf{N}_{\mathbf{x}, k}, \mathbf{N}_{\mathrm{s}, k}$, and $\mathbf{N}_{\mathrm{v}, k}$ were defined in (8). Using $\operatorname{Var}\left(\mathbf{N}_{k}\right)=\tau^{2} \mathbf{C}_{k}$ and (A.8), it holds that these three processes are asymptotically uncorrelated. Applying the result of (A.7), we see

$$
n^{-1 / 2}\left(\begin{array}{c}
\mathbf{N}_{\mathrm{x}, k} \tag{A.11}\\
\mathbf{N}_{\mathrm{s}, k} \\
\mathbf{N}_{\mathrm{v}, k}
\end{array}\right)=n^{-1 / 2}\left(\begin{array}{c}
\mathbf{X}_{k}^{\prime} \boldsymbol{\epsilon}-\mathbf{X}_{k}^{\prime} \widetilde{\mathbf{X}}_{n}\left(\widetilde{\mathbf{X}}_{n}^{\prime} \widetilde{\mathbf{X}}_{n}\right)^{-1} \widetilde{\mathbf{X}}_{n}^{\prime} \boldsymbol{\epsilon} \\
\mathbf{S}_{k}^{\prime} \boldsymbol{\epsilon}-\mathbf{S}_{k}^{\prime} \widetilde{\mathbf{S}}_{n}\left(\widetilde{\mathbf{S}}_{n}^{\prime} \widetilde{\mathbf{S}}_{n}\right)^{-1} \widetilde{\mathbf{S}}_{n}^{\prime} \boldsymbol{\epsilon} \\
\mathbf{V}_{k}^{\prime} \boldsymbol{\epsilon}-\mathbf{V}_{k}^{\prime} \widetilde{\mathbf{V}}_{n}\left(\widetilde{\mathbf{V}}_{n}^{\prime} \widetilde{\mathbf{V}}_{n}\right)^{-1} \widetilde{\mathbf{V}}_{n}^{\prime} \boldsymbol{\epsilon}
\end{array}\right)+o_{p}(1, k)
$$

The processes $\left\{\mathbf{C}_{\mathrm{x}, k}\right\}$ and $\left\{\mathbf{N}_{\mathrm{x}, k}\right\}$ were studied in the proof of Lemma 2.1 in Robbins et al. (2016); the focus now turns to $\left\{\mathbf{C}_{\mathrm{s}, k}\right\}$ and $\left\{\mathbf{N}_{\mathrm{s}, k}\right\}$.

Let $\mathbf{D}_{T}=\sum_{j=1}^{T} \mathbf{s}_{j} \mathbf{s}_{j}^{\prime} / T$ with $\mathbf{D}_{T}^{*}=\sum_{j=1}^{T} \widetilde{\mathbf{s}}_{j} \mathbf{s}_{j}^{\prime} / T$ and $\widetilde{\mathbf{D}}_{T}=\sum_{j=1}^{T} \widetilde{\mathbf{s}}_{j} \widetilde{\mathbf{s}}_{j}^{\prime} / T$. Consequentially,

$$
n^{-1} \widetilde{\mathbf{S}}_{n}^{\prime} \widetilde{\mathbf{S}}_{n}=\widetilde{\mathbf{D}}_{T}+\mathcal{O}\left(n^{-1}\right)
$$

and

$$
n^{-1} \mathbf{S}_{k}^{\prime} \widetilde{\mathbf{S}}_{n}=(k / n) \mathbf{D}_{T}^{*}+\mathcal{O}\left(n^{-1}, k\right), \quad \text { with } \quad n^{-1} \mathbf{S}_{k}^{\prime} \mathbf{S}_{k}=(k / n) \mathbf{D}_{T}+\mathcal{O}\left(n^{-1}, k\right)
$$

To derive (10), note that

$$
\begin{aligned}
n^{-1} \mathbf{C}_{\mathrm{s},\lfloor n z\rfloor} & \Rightarrow z \mathbf{D}_{T}-z^{2}\left(\mathbf{D}_{T}^{*}\right)^{\prime}\left(\widetilde{\mathbf{D}}_{T}\right)^{-1} \mathbf{D}_{T}^{*} \\
& =z \mathbf{D}_{T}-z^{2}\left(\begin{array}{ll}
\mathbf{I}_{p_{s}} & \mathbf{0}
\end{array}\right) \mathbf{D}_{T}^{*} \\
& =z(1-z) \mathbf{D}_{T}
\end{aligned}
$$

The second line follows from the fact that \mathbf{D}_{T}^{*} equals the first q_{s} columns of $\widetilde{\mathbf{D}}_{T}$, and similarly the third line uses the observation that the first q_{s} rows of \mathbf{D}_{T}^{*} equal \mathbf{D}_{T}. Likewise,

$$
\begin{aligned}
\mathbf{N}_{\mathbf{s}, k} & =\mathbf{S}_{k}^{\prime} \boldsymbol{\epsilon}-(k / n)\left(\widetilde{\mathbf{D}}_{T}^{*}\right)^{\prime}\left(\widetilde{\mathbf{D}}_{T}\right)^{-1} \widetilde{\mathbf{S}}_{n}^{\prime} \boldsymbol{\epsilon}+o_{p}(\sqrt{n}, k) \\
& =\mathbf{S}_{k}^{\prime} \boldsymbol{\epsilon}-(k / n)\left(\mathbf{I}_{q_{s}} \quad \mathbf{0}\right)^{-1} \widetilde{\mathbf{S}}_{n}^{\prime} \boldsymbol{\epsilon}+o_{p}(\sqrt{n}, k) \\
& =\mathbf{S}_{k}^{\prime} \boldsymbol{\epsilon}-(k / n) \mathbf{S}_{n}^{\prime} \boldsymbol{\epsilon}+o_{p}(\sqrt{n}, k),
\end{aligned}
$$

which illustrates (12).
Recall that $\boldsymbol{e}_{i}=\sum_{t=T(i-1)+1}^{i T} \mathbf{S}_{t} \epsilon_{t}$ and note that $\mathbf{S}_{k}^{\prime} \boldsymbol{\epsilon}=\sum_{i=1}^{m^{*}} \boldsymbol{e}_{i}$, where it is assumed that $n=T m$ and $k=T m^{*}$. Note further that $\operatorname{Var}\left(\boldsymbol{e}_{i}\right)=\tau^{2} T \mathbf{D}_{T}$. It follows that

$$
(T / n)^{1 / 2} \mathbf{N}_{\mathrm{s}, k}=\frac{1}{\sqrt{m}} \sum_{i=1}^{m^{*}} \boldsymbol{e}_{i}-\frac{k}{n}\left(\frac{1}{\sqrt{m}} \sum_{i=1}^{m} \boldsymbol{e}_{i}\right)+o_{p}(1, k),
$$

This formula, in combination with (10), yields (14).
Similar approaches are taken to extract the limit behavior of $\mathbf{C}_{\mathrm{v}, k}$ and $\mathbf{N}_{\mathrm{v}, k}$. Define
$\widetilde{\boldsymbol{\Sigma}}_{v}=\mathrm{E}\left[\widetilde{\mathbf{v}}_{t} \widetilde{\mathbf{v}}_{t}^{\prime}\right]$, let $\boldsymbol{\Sigma}_{v}^{*}$ denote the first q_{v} columns of $\widetilde{\boldsymbol{\Sigma}}_{v}$ and let $\boldsymbol{\Sigma}_{v}$ denote the first q_{v} rows of $\boldsymbol{\Sigma}_{v}^{*}$. Furthermore,

$$
n^{-1} \widetilde{\mathbf{V}}_{n}^{\prime} \widetilde{\mathbf{V}}_{n} \rightarrow \widetilde{\boldsymbol{\Sigma}}_{v}, \quad n^{-1} \mathbf{V}_{\lfloor n z\rfloor}^{\prime} \widetilde{\mathbf{V}}_{n} \Rightarrow z \boldsymbol{\Sigma}_{v}^{*}, \quad \text { and } \quad n^{-1} \mathbf{V}_{\lfloor n z\rfloor}^{\prime} \mathbf{V}_{\lfloor n z\rfloor} \Rightarrow z \boldsymbol{\Sigma}_{v}
$$

Formulas (11) and (13) are derived using arguments akin to those that provide (10) and (12). Specifically,

$$
n^{-1} \mathbf{C}_{\mathrm{v},\lfloor n z\rfloor} \Rightarrow z(1-z) \boldsymbol{\Sigma}_{v}
$$

and

$$
\mathbf{N}_{\mathrm{v}, k}=\mathbf{V}_{k}^{\prime} \boldsymbol{\epsilon}-(k / n) \mathbf{V}_{n}^{\prime} \boldsymbol{\epsilon}+o_{p}(\sqrt{n}, k)
$$

Note that the sequence $\left\{\mathbf{v}_{t} \epsilon_{t}\right\}$ is devoid of autocorrelation and observes $\operatorname{Var}\left(\mathbf{v}_{t} \epsilon_{t}\right)=\tau^{2} \boldsymbol{\Sigma}_{v}$. Therefore, the identity in (15) is now evident.

From (A.8) and (A.11), it follows that

$$
\widehat{F}_{k}=\frac{\mathbf{N}_{\mathrm{x}, k}^{\prime} \mathbf{C}_{\mathrm{x}, k}^{-1} \mathbf{N}_{\mathrm{x}, k}}{\hat{\tau}^{2}}+\frac{\mathbf{N}_{\mathrm{s}, k}^{\prime}\left(\mathbf{D}_{T}\right)^{-1} \mathbf{N}_{\mathrm{s}, k}}{\hat{\tau}^{2} k\left(1-\frac{k}{n}\right)}+\frac{\mathbf{N}_{\mathrm{v}, k}^{\prime}\left(\widehat{\boldsymbol{\Sigma}}_{v}\right)^{-1} \mathbf{N}_{\mathrm{v}, k}}{\hat{\tau}^{2} k\left(1-\frac{k}{n}\right)}+o_{p}(1, k)
$$

where \widehat{F}_{k} is defined in (6). The limit behavior of the term involving $\mathbf{N}_{\mathrm{x}, k}$ follows from (A.2), and the limit behavior of the term involving $\mathbf{N}_{\mathrm{s}, k}$ follows from (10) and (12). Likewise, the limit distribution of the term involving $\mathbf{N}_{\mathrm{v}, k}$ follows from (11) and (13). The block-diagonal form of $\operatorname{Var}\left(\mathbf{N}_{k}\right)=\tau^{2} \mathbf{C}_{k}$ as $n \rightarrow \infty$, which is evident in (A.8), implies pairwise asymptotic independence of $\mathbf{N}_{\mathrm{x}, k}, \mathbf{N}_{\mathrm{s}, k}$ and $\mathbf{N}_{\mathrm{v}, k}$. To establish (asymptotic) process independence, calculations similar to those which yield the form of \mathbf{C}_{k} can be used to establish that $\mathbf{N}_{\mathrm{x}, k}$ and $\mathbf{N}_{\mathrm{s}, k^{\prime}}$, for example, are asymptotically uncorrelated for $k \neq k^{\prime}$.

Lemma 1. Let $\left\{\mathbf{b}_{t}\right\}$ and $\left\{\widetilde{\mathbf{b}}_{t}\right\}$ be sequences of vectors that satisfy

$$
\begin{equation*}
\sum_{t=1}^{k} \mathbf{b}_{t} \hat{\epsilon}_{t-i}=\sum_{t=1}^{k} \mathbf{b}_{t} \epsilon_{t-i}-\sum_{t=1}^{k} \mathbf{b}_{t+i} \widetilde{\mathbf{b}}_{t}\left(\sum_{t=1}^{n} \widetilde{\mathbf{b}}_{t} \widetilde{\mathbf{b}}_{t}^{\prime}\right)^{-1} \sum_{t=1}^{n} \widetilde{\mathbf{b}}_{t} \epsilon_{t}+o_{p}(\sqrt{n}, k), \tag{A.12}
\end{equation*}
$$

where $\left\{\hat{\epsilon}_{t}\right\}$ is the sequence of OLS residuals generated using (5) and where $\left\{\epsilon_{t}\right\}$ is the sequence of regression errors generated from the white noise ARMA errors $\left\{Z_{t}\right\}$ in accordance with (22). Assume further that

$$
\begin{equation*}
\frac{1}{n} \sum_{t=1}^{\lfloor n z\rfloor} \mathbf{b}_{t+i} \widetilde{\mathbf{b}}_{t}^{\prime} \Rightarrow z \boldsymbol{\Gamma}_{b}(i) \quad \text { and } \quad \frac{1}{n} \sum_{t=1}^{n} \widetilde{\mathbf{b}}_{t} \widetilde{\mathbf{b}}_{t}^{\prime} \rightarrow \widetilde{\boldsymbol{\Gamma}}_{b}(0) \tag{A.13}
\end{equation*}
$$

for some sequence of deterministic matrices $\left\{\boldsymbol{\Gamma}_{b}(i)\right\}$ with arbitrary $i \geq 0$ and for some matrix $\widetilde{\Gamma}_{b}(0)$. It follows that

$$
\begin{align*}
\sum_{t=1}^{k} \mathbf{b}_{t} \hat{\epsilon}_{t-i}-\frac{k}{n} \sum_{t=1}^{n} \mathbf{b}_{t} \hat{\epsilon}_{t-i}= & \sum_{t=1}^{k} \mathbf{b}_{t} \epsilon_{t-i}-(k / n) \boldsymbol{\Gamma}_{b}(i)\left[\widetilde{\boldsymbol{\Gamma}}_{b}(0)\right]^{-1} \sum_{t=1}^{n} \widetilde{\mathbf{b}}_{t} \epsilon_{t} \\
& -\frac{k}{n}\left(\sum_{t=1}^{n} \mathbf{b}_{t} \epsilon_{t-i}-\boldsymbol{\Gamma}_{b}(i)\left[\widetilde{\boldsymbol{\Gamma}}_{b}(0)\right]^{-1} \sum_{t=1}^{n} \widetilde{\mathbf{b}}_{t} \epsilon_{t}\right)+o_{p}(\sqrt{n}, k) \\
= & \sum_{t=1}^{k} \mathbf{b}_{t} \epsilon_{t-i}-\frac{k}{n} \sum_{t=1}^{n} \mathbf{b}_{t} \epsilon_{t-i}+o_{p}(\sqrt{n}, k) \tag{A.14}
\end{align*}
$$

Let the sequence $\left\{\pi_{j}\right\}_{j=0}^{\infty}$ denote the coefficients from the expansion of ($1-\phi_{1} z-\cdots-$ $\left.\phi_{p} z^{p}\right) /\left(1+\theta_{1} z+\cdots+\theta_{q} z^{q}\right)$, and let $\left\{\hat{\pi}_{j}\right\}_{j=0}^{\infty}$ represent the versions of these coefficients when calculated using the $\hat{\phi}_{j}$ and $\hat{\theta}_{j}$. Hence,

$$
\begin{equation*}
Z_{t}=\sum_{j=0}^{\infty} \pi_{j} \epsilon_{t-j} \quad \text { and } \quad \hat{Z}_{t}=\sum_{j=0}^{\infty} \hat{\pi}_{j} \hat{\epsilon}_{t-j} \tag{A.15}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{t=1}^{k} \mathbf{b}_{t} \hat{Z}_{t}-\frac{k}{n} \sum_{t=1}^{n} \mathbf{b}_{t} \hat{Z}_{t} & =\sum_{j=0}^{\infty} \hat{\pi}_{j}\left(\sum_{t=1}^{k} \mathbf{b}_{t} \hat{\epsilon}_{t-j}-\frac{k}{n} \sum_{t=1}^{n} \mathbf{b}_{t} \hat{\epsilon}_{t-j}\right) \\
& =\sum_{j=0}^{\infty} \pi_{j}\left(\sum_{t=1}^{k} \mathbf{b}_{t} \epsilon_{t-j}-\frac{k}{n} \sum_{t=1}^{n} \mathbf{b}_{t} \epsilon_{t-j}\right)+o_{p}(\sqrt{n}, k) \tag{A.16}
\end{align*}
$$

The last line in the above uses (A.14) and the facts that the elements of $\left\{\pi_{t}\right\}$ decay at an exponential rate while $\left\{\hat{\pi}_{t}\right\}$ converges to $\left\{\pi_{t}\right\}$ at an even quicker rate. It follows that

$$
\sum_{t=1}^{k} \mathbf{b}_{t} \hat{Z}_{t}-\frac{k}{n} \sum_{t=1}^{n} \mathbf{b}_{t} \hat{Z}_{t}=\sum_{t=1}^{k} \mathbf{b}_{t} Z_{t}-\frac{k}{n} \sum_{t=1}^{n} \mathbf{b}_{t} Z_{t}+o_{p}(\sqrt{n}, k)
$$

Note that (A.7) and, therefore, (A.11) hold in the event that \mathbf{M}_{k} is substituted with an analogous version that has the row of \mathbf{M}_{k} that corresponds to ($\mathbf{x}_{t}^{\prime}, \mathbf{s}_{t}^{\prime}, \mathbf{v}_{t}^{\prime}$) replaced with $\left(\mathbf{x}_{t+i}^{\prime}, \mathbf{s}_{t+i}^{\prime}, \mathbf{v}_{t+i}^{\prime}\right)$ for $t=1, \ldots, k$ and for $i \geq 0$. Using this observation as well as the fact that $\left\{n^{-1 / 2} \sum_{t=1}^{k} \mathbf{b}_{t} \hat{\epsilon}_{t-i}\right\}$ and $\left\{n^{-1 / 2} \sum_{t=1}^{k} \mathbf{b}_{t+i} \hat{\epsilon}_{t}\right\}$ are asymptotically equivalent, we see that $\left\{\mathbf{s}_{t}\right\}$ and $\left\{\widetilde{\mathbf{s}}_{t}\right\}$ obey (A.12), as do $\left\{\mathbf{v}_{t}\right\}$ and $\left\{\widetilde{\mathbf{v}}_{t}\right\}$. Lastly, it holds that these predictor sequences obey (A.13), which yields the lemma's main result.

Theorem 3. It is first illustrated that the processes $\left\{\mathbf{R}_{\mathrm{x}, k}\right\},\left\{\mathbf{R}_{\mathrm{s}, k}\right\}$ and $\left\{\mathbf{R}_{\mathrm{v}, k}\right\}$ are asymptotically uncorrelated. In light of (23), (A.11), and Lemma 1, it is sufficient to show that the following three processes are asymptotically uncorrelated:

$$
\left\{\frac{1}{\sqrt{n}} \sum_{t=1}^{k} \mathbf{x}_{t} \epsilon_{t}\right\}, \quad\left\{\frac{1}{\sqrt{n}} \sum_{t=1}^{k} \mathbf{s}_{t} Z_{t}\right\}, \quad \text { and } \quad\left\{\frac{1}{\sqrt{n}} \sum_{t=1}^{k} \mathbf{v}_{t} Z_{t}\right\}
$$

for $1 \leq k \leq n$, where $\left\{\epsilon_{t}\right\}$ is generated from $\left\{Z_{t}\right\}$ via the causal representation in (A.1). Calculations show that $\sum_{t=1}^{k} \mathbf{x}_{t} \epsilon_{t}=\sum_{t=1}^{k} \mathbf{y}_{t} Z_{t}$ where $\mathbf{y}_{t}=\sum_{j=t}^{k} \psi_{j-t} \mathbf{x}_{j}$.

The proof of Theorem 1 illustrates that the latter two processes of the three processes above are uncorrelated in large samples. Further calculations show that the remaining pairwise covariances of these processes are diven by $n^{-1} \sum_{t=1}^{k} \mathbf{y}_{t} \mathbf{s}_{t}^{\prime}$ and $n^{-1} \sum_{t=1}^{k} \mathbf{y}_{t} \mathbf{v}_{t}^{\prime}$. Furthermore,

$$
\sum_{t=1}^{k} \mathbf{y}_{t} \mathbf{s}_{t}^{\prime}=\sum_{j=0}^{k-1} \psi_{j} \sum_{t=1}^{k} \mathbf{x}_{t+j} \mathbf{s}_{t}^{\prime} \quad \text { and } \quad \sum_{t=1}^{k} \mathbf{y}_{t} \mathbf{v}_{t}^{\prime}=\sum_{j=0}^{k-1} \psi_{j} \sum_{t=1}^{k} \mathbf{x}_{t+j} \mathbf{v}_{t}^{\prime}
$$

Using the geometrically decaying structure of $\left\{\psi_{j}\right\}$ in addition to Lemmas A. 1 and A. 2 of Robbins et al. (2016), it holds that $n^{-1} \sum_{t=1}^{k} \mathbf{y}_{t} \mathbf{s}_{t}^{\prime}=\mathcal{O}\left(n^{-1}, k\right)$ and $n^{-1} \sum_{t=1}^{k} \mathbf{y}_{t} \mathbf{v}_{t}^{\prime}=$ $\mathcal{O}_{p}\left(n^{-1 / 2}, k\right)$. This, in combination with (23), Lemma 1 and (25), illustrates the result in the theorem.

Corollary 1. Let \mathbf{b}_{t} denote one of $\mathbf{x}_{t}, \mathbf{s}_{t}$ or \mathbf{v}_{t} and correspondingly let $\boldsymbol{\Delta}_{b}$ denote either $\boldsymbol{\Delta}_{x}$, $\boldsymbol{\Delta}_{s}$ or $\boldsymbol{\Delta}_{v}$. In the event that $\boldsymbol{\Delta}_{b} \neq \mathbf{0}$ and that the changepoint occurs at time c, we see

$$
\begin{align*}
\sum_{t=1}^{k} \mathbf{b}_{t} \hat{\epsilon}_{t-i}= & {\left[\sum_{t=1}^{\min \{k, c\}} \mathbf{b}_{t+i} \mathbf{b}_{t}^{\prime}-\sum_{t=1}^{k} \mathbf{b}_{t+i} \widetilde{\mathbf{b}}_{t}\left(\sum_{t=1}^{n} \widetilde{\mathbf{b}}_{t} \widetilde{\mathbf{b}}_{t}^{\prime}\right)^{-1} \sum_{t=1}^{c} \mathbf{b}_{t} \mathbf{b}_{t}^{\prime}\right] \boldsymbol{\Delta}_{b} } \\
& +\sum_{t=1}^{k} \mathbf{b}_{t} \epsilon_{t-i}-\sum_{t=1}^{k} \mathbf{b}_{t+i} \widetilde{\mathbf{b}}_{t}\left(\sum_{t=1}^{n} \widetilde{\mathbf{b}}_{t} \widetilde{\mathbf{b}}_{t}^{\prime}\right)^{-1} \sum_{t=1}^{n} \widetilde{\mathbf{b}}_{t} \epsilon_{t}+o_{p}(\sqrt{n}, k) \tag{A.17}
\end{align*}
$$

which expands upon (A.12).

Our focus now turns to $\mathbf{b}_{t}=\mathbf{x}_{t}$. Let

$$
\mathcal{A}_{k}=\sum_{i=0}^{p_{\mathrm{ar}}} \hat{\phi}_{i}^{*} \sum_{t=1}^{k} f\left(\frac{t}{n}\right) \hat{\epsilon}_{t}-\sum_{j=0}^{q_{\mathrm{ma}}} \hat{\theta}_{j}^{*} \sum_{t=1}^{k} f\left(\frac{t}{n}\right) \hat{Z}_{t}
$$

where $f(t / n)$ denotes an arbitrary element of \mathbf{x}_{t} and where $\hat{\phi}_{i}^{*}=-\hat{\phi}_{i}$ and $\hat{\theta}_{j}^{*}=\hat{\theta}_{j}$ for $i=1, \ldots, p_{\text {ar }}$ and $j=1, \ldots, q_{\text {ma }}$ with $\hat{\phi}_{0}^{*}=\hat{\theta}_{0}^{*}=1$. Following the proof of Lemma 2.2 of

Robbins et al. (2016), it holds that

$$
\mathcal{A}_{k}+\frac{1}{n} \sum_{i=0}^{p_{\mathrm{ar}}} i \hat{\phi}_{i}^{*} \sum_{t=1}^{k} \dot{f}\left(\xi_{t i}\right) \hat{\epsilon}_{t}-\frac{1}{n} \sum_{j=0}^{q_{\mathrm{ma}}} j \hat{\theta}_{j}^{*} \sum_{t=1}^{k} \dot{f}\left(\xi_{t j}\right) \hat{Z}_{t}=o_{p}\left(n^{1 / \nu}, k\right),
$$

for some $\nu \geq 2$ where $\cdot f(z)$ is the first derivative of $f(z)$. Let

$$
\mathcal{B}_{c}(k)=\left[\sum_{t=1}^{\min \{k, c\}} \mathbf{x}_{t} \mathbf{x}_{t}^{\prime}-\sum_{t=1}^{k} \mathbf{x}_{t} \widetilde{\mathbf{x}}_{t}\left(\sum_{t=1}^{n} \widetilde{\mathbf{x}}_{t} \widetilde{\mathbf{x}}_{t}^{\prime}\right)^{-1} \sum_{t=1}^{c} \mathbf{x}_{t} \mathbf{x}_{t}^{\prime}\right] \boldsymbol{\Delta}_{x}
$$

and note that $n^{-1} \mathcal{B}_{c}(k)=\mathcal{O}_{p}(1, k)$. Using this and calculations that illustrate (A.17), we can show that $n^{-1} \sum_{t=1}^{k} \dot{f}\left(\xi_{t i}\right) \hat{\epsilon}_{t}=\mathcal{O}_{p}(1, k)$ when $\boldsymbol{\Delta}_{x} \neq \mathbf{0}$. Similarly, $n^{-1} \sum_{t=1}^{k} \dot{f}\left(\xi_{t j}\right) \hat{Z}_{t}=$ $\mathcal{O}_{p}(1, k)$, which follows from the application of (A.15). Consequentially,

$$
\begin{equation*}
\mathcal{A}_{k}=o_{p}\left(n^{1 / \nu}, k\right) . \tag{A.18}
\end{equation*}
$$

Using (A.17), (A.18), and the fact that $n^{-1} \mathcal{B}_{c}(k)=\mathcal{O}_{p}(1, k)$, we see that $n^{-1 / 2} \mathbf{R}_{\mathrm{x}, k}$ diverges at rate of $n^{1 / 2}$ if $\boldsymbol{\Delta}_{x} \neq \mathbf{0}$, which proves that $\lim _{n \rightarrow \infty} P\left(\widehat{L}_{\mathrm{x}, k}>c_{\alpha}\right)=1$ for any constant c_{α}.

To illustrate consistency of $\arg \max _{k} \widehat{L}_{\mathrm{x}, k}$ as an estimator of the changepoint time, note that $\left(\mathcal{B}_{c}(k)\right)^{\prime} \mathbf{C}_{\mathrm{x}, k}^{-1} \mathcal{B}_{c}(k)$ is maximized when $k=c$ by Lemma A. 2 of Bai (1997). This, (A.18), and Lemma A. 4 of Bai (1997) show that $\arg \max _{k} \widehat{L}_{\mathrm{x}, k} \xrightarrow{\mathcal{P}} \kappa$, where $c / n \rightarrow \kappa$.

Next, we focus on the case where $\mathbf{b}_{t}=\mathbf{s}_{t}$ or $\mathbf{b}_{t}=\mathbf{v}_{t}$. Formula (A.17) and calculations akin to those which provide (A.14) imply

$$
\begin{aligned}
\sum_{t=1}^{k} \mathbf{b}_{t} \hat{\epsilon}_{t-i}-\frac{k}{n} \sum_{t=1}^{n} \mathbf{b}_{t} \hat{\epsilon}_{t-i}= & n \min \left\{\frac{k}{n}, \frac{c}{n}\right\}\left(1-\max \left\{\frac{k}{n}, \frac{c}{n}\right\}\right) \boldsymbol{\Gamma}_{b}(i) \boldsymbol{\Delta}_{b} \\
& \sum_{t=1}^{k} \mathbf{b}_{t} \epsilon_{t-i}-\frac{k}{n} \sum_{t=1}^{n} \mathbf{b}_{t} \epsilon_{t-i}+o_{p}(\sqrt{n}, k)
\end{aligned}
$$

So long as $\left\{\hat{\pi}_{j}\right\}$ are reasonable approximations under the alternative hypothesis, we mimic
(A.16) to yield

$$
\begin{aligned}
\sum_{t=1}^{k} \mathbf{b}_{t} \hat{Z}_{t}-\frac{k}{n} \sum_{t=1}^{n} \mathbf{b}_{t} \hat{Z}_{t}= & n \min \left\{\frac{k}{n}, \frac{c}{n}\right\}\left(1-\max \left\{\frac{k}{n}, \frac{c}{n}\right\}\right) \sum_{j=0}^{\infty} \pi_{j} \boldsymbol{\Gamma}_{b}(j) \boldsymbol{\Delta}_{b} \\
& +\sum_{t=1}^{k} \mathbf{b}_{t} Z_{t}-\frac{k}{n} \sum_{t=1}^{n} \mathbf{b}_{t} Z_{t}+o_{p}(\sqrt{n}, k)
\end{aligned}
$$

Therefore, $n^{-1 / 2} \mathbf{R}_{\mathrm{s}, k}^{*}$ diverges at rate of $n^{1 / 2}$ if $\boldsymbol{\Delta}_{s} \neq \mathbf{0}$. Note that $\min \{k, c\}(n-\max \{k, c\})$ is maximized when $k=c$. Furthermore, from Lemma A. 4 of Bai (1997), it holds that $\arg \max _{k} \widehat{L}_{\mathrm{s}, k} \xrightarrow{\mathcal{P}} \kappa$, where $c / n \rightarrow \kappa$. Analogous results hold for $\mathbf{R}_{\mathrm{v}, k}^{*}$ and $\arg \max _{k} \widehat{L}_{\mathrm{v}, k}$.

Corollary A.1. We first assume that the seasonal terms obey the harmonic representation in (A.3). Basic trigonometric identities can be used to establish that $\mathbf{D}_{T}=\mathbf{I}_{q_{s}} / 2$. This result in combination with the observation that $\sum_{t=1}^{n} \mathbf{s}_{t} \hat{Z}_{t}=\mathcal{O}_{p}(1)$ establishes the finding of Corollary A.1. To illustrate the latter formula, we establish that $\sum_{t=1}^{n} \mathbf{s}_{t} \hat{\epsilon}_{t-i}=\mathcal{O}_{p}(1)$ for all $i \geq 0$; the invertibility expansions used in (A.16) can then be applied in order to show that $\sum_{t=1}^{n} \mathbf{s}_{t} \hat{Z}_{t}=\mathcal{O}_{p}(1)$.

Define

$$
\mathbf{H}_{j, i}=\left(\begin{array}{rr}
\cos (2 \pi j i / T) & -\sin (2 \pi j i / T) \\
\sin (2 \pi j i / T) & \cos (2 \pi j i / T)
\end{array}\right)
$$

and let \mathbf{H}_{i} denote a block-diagonal matrix of dimension $p_{s} \times p_{s}$ written as

$$
\mathbf{H}_{i}=\left(\begin{array}{cccc}
\mathbf{H}_{j_{1}, i} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{H}_{j_{2}, i} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{H}_{j_{J}, i}
\end{array}\right)
$$

The matrix \mathbf{H}_{i} can be used to establish a recursion between the \mathbf{s}_{t}. Specifically,

$$
\begin{equation*}
\mathbf{H}_{i} \mathbf{s}_{t}=\mathbf{s}_{t+i} . \tag{A.19}
\end{equation*}
$$

Further, note that $\mathbf{H}_{i}=2 \sum_{t=1}^{T} \mathbf{s}_{t+i} \mathbf{s}_{t}^{\prime} / T$. Define

$$
\begin{aligned}
\mathbf{N}_{\mathrm{s}, n}(i):=\sum_{t=1}^{n} \mathbf{s}_{t+i} \hat{\epsilon}_{t} & =\mathbf{S}_{n, i}^{\prime} \boldsymbol{\epsilon}-\mathbf{S}_{n, i}^{\prime} \widetilde{\mathbf{M}}_{n}\left(\widetilde{\mathbf{M}}_{n}^{\prime} \widetilde{\mathbf{M}}_{n}\right)^{-1} \widetilde{\mathbf{M}}_{n} \boldsymbol{\epsilon} \\
& =\mathbf{S}_{n, i}^{\prime} \boldsymbol{\epsilon}-\mathbf{S}_{n, i}^{\prime} \widetilde{\mathbf{S}}_{n}\left(\widetilde{\mathbf{S}}_{n}^{\prime} \widetilde{\mathbf{S}}_{n}\right)^{-1} \widetilde{\mathbf{S}}_{n} \boldsymbol{\epsilon}+\mathcal{O}_{p}(1),
\end{aligned}
$$

where $\mathbf{S}_{n, i}=\left(\mathbf{s}_{1+i}, \ldots, \mathbf{s}_{n+i}\right)^{\prime}$, for $t=1, \ldots, n$.

It follows that

$$
\widetilde{\mathbf{S}}_{n}^{\prime} \widetilde{\mathbf{S}}_{n} / n=\mathbf{I}_{p_{s}} / 2+\mathcal{O}\left(n^{-1}\right), \quad \text { and } \quad \mathbf{S}_{n, i}^{\prime} \widetilde{\mathbf{S}}_{n} / n=\left(\begin{array}{ll}
\mathbf{H}_{i} / 2 & \mathbf{0}
\end{array}\right)+\mathcal{O}\left(n^{-1}\right) .
$$

Continuing,

$$
\begin{align*}
\mathbf{N}_{\mathrm{s}, n}(i) & =\sum_{t=1}^{n} \mathbf{s}_{t+i} \epsilon_{t}-\mathbf{H}_{i} \sum_{t=1}^{n} \mathbf{s}_{t} \epsilon_{t}+\mathcal{O}_{p}(1) \\
& =\mathbf{0}+\mathcal{O}_{p}(1) \tag{A.20}
\end{align*}
$$

which is derived using the recursion in (A.19). The above also implies that $\sum_{t=1}^{n} \mathbf{s}_{t} \hat{\epsilon}_{t-i}=$ $\mathcal{O}_{p}(1)$.

Next, assume that \mathbf{s}_{t} satisfies the formulation in (A.4). Then, it holds that

$$
\mathbf{S}_{n, i}^{\prime} \mathbf{S}_{n}\left(\mathbf{S}_{n}^{\prime} \mathbf{S}_{n}\right)^{-1}=\mathbf{H}_{i}^{*}+\mathcal{O}\left(n^{-1}\right)
$$

where \mathbf{H}_{i}^{*} is defined as follows. First,

$$
\mathbf{H}_{1}^{*}=\left(\begin{array}{cc}
-\mathbf{1}^{\prime} & -1 \\
\mathbf{I}_{T-2} & \mathbf{0}
\end{array}\right)
$$

where $\mathbf{1}$ is a vector of ones. Next, \mathbf{H}_{2}^{*} is defined by permuting the rows of \mathbf{H}_{1} so that the bottom row of \mathbf{H}_{2}^{*} equals the top row of \mathbf{H}_{1}^{*} and the remaining rows of \mathbf{H}_{1}^{*} are each shifted down. In general, define \mathbf{H}_{i}^{*} by permuting the rows of \mathbf{H}_{i-1}^{*} in a similar manner. A recursion analogous to (A.19) can be established: $\mathbf{H}_{i}^{*} \mathbf{s}_{t}=\mathbf{s}_{t+i}$. Therefore, (A.20) is again satisfied, and the proof is completed.

Appendix G: Parameter Estimates for Data Examples

OLS parameter estimates under both the null and alternative are provided in Table A. 1 for the Mauna Loa data example and in Table A. 2 for the Barrow, AK data example. (Notation in the tables is in line with the notation provided in the article. That is, α 's govern trend, β 's govern seasonality, γ 's govern covariates, and Δ 's quantify changes. For example, $\hat{\Delta}_{s, 1,1}$ is the post-changepoint change in the parameter $\hat{\beta}_{1,1}$.)

Table A.1: Parameter estimates for the Mauna Loa data analysis

	Coef.	Estimate
H0	$\hat{\alpha}_{1}$	315.086
	$\hat{\alpha}_{2}$	34.833
	$\hat{\alpha}_{3}$	62.580
	$\hat{\alpha}_{4}$	1.763
	$\hat{\alpha}_{5}$	1.664
	$\hat{\alpha}_{6}$	-15.103
	$\hat{\beta}_{1,1}$	2.552
	$\hat{\beta}_{2,1}$	-0.653
	$\hat{\beta}_{1,2}$	0.022
	$\hat{\beta}_{2,2}$	-0.057
	$\hat{\beta}_{1,3}$	1.120
	$\hat{\beta}_{2,3}$	-0.413
	$\hat{\beta}_{1,4}$	-0.086
	$\hat{\beta}_{2,4}$	0.044
	$\hat{\gamma}_{1}$	-0.015
H1c*	$\hat{\alpha}_{1}$	315.088
	$\hat{\alpha}_{2}$	34.819
	$\hat{\alpha}_{3}$	62.586
	$\hat{\alpha}_{4}$	1.793
	$\hat{\alpha}_{5}$	1.628
	$\hat{\alpha}_{6}$	-15.098
	$\hat{\beta}_{1,1}$	2.424
	$\hat{\beta}_{2,1}$	-0.614
	$\hat{\beta}_{1,2}$	0.018
	$\hat{\beta}_{2,2}$	-0.049
	$\hat{\beta}_{1,3}$	0.890
	$\hat{\beta}_{2,3}$	-0.335
	$\hat{\beta}_{1,4}$	-0.096
	$\hat{\beta}_{2,4}$	0.086
	$\hat{\gamma}_{1}$	-0.014
	$\widehat{\Delta}^{\text {s,l,1 }}$	0.186
	$\widehat{\Delta}_{s, 2,1}$	-0.058
	$\widehat{\Delta}^{\text {s, }}$ s, ${ }^{\text {a }}$	0.006
	$\widehat{\Delta}_{s, 2,2}$	-0.012
	$\widehat{\Delta}_{s, 1,3}$	0.336
	$\widehat{\Delta}_{s, 2,3}$	-0.113
	$\widehat{\Delta}_{s, 1,4}$	0.014
	$\widehat{\Delta}_{s, 2,4}$	-0.061

Table A.2: Parameter estimates for the Barrow, AK data analysis

	Coef.	Estimate
H0	$\hat{\alpha}_{1}$	-13.003
	$\hat{\alpha}_{2}$	2.072
	$\hat{\beta}_{1}$	-8.151
	$\hat{\beta}_{2}$	-17.113
	$\hat{\beta}_{3}$	-22.994
	$\hat{\beta}_{4}$	-25.149
	$\hat{\beta}_{5}$	-26.663
	$\hat{\beta}_{6}$	-25.111
	$\hat{\beta}_{7}$	-17.225
	$\hat{\beta}_{8}$	-6.285
	$\hat{\beta}_{9}$	1.796
	$\hat{\beta}_{10}$	4.885
	$\hat{\beta}_{11}$	4.095
	$\hat{\gamma}_{1}$	-0.017
H1b	$\hat{\alpha}_{1}$	-12.263
	$\hat{\alpha}_{2}$	-0.169
	$\hat{\beta}_{1}$	-7.731
	$\hat{\beta}_{2}$	-16.982
	$\hat{\beta}_{3}$	-23.250
	$\hat{\beta}_{4}$	-25.322
	$\hat{\beta}_{5}$	-27.109
	$\hat{\beta}_{6}$	-25.276
	$\hat{\beta}_{7}$	-17.045
	$\hat{\beta}_{8}$	-6.445
	$\hat{\beta}_{9}$	1.806
	$\hat{\beta}_{10}$	5.030
	$\hat{\beta}_{11}$	4.340
	$\hat{\gamma}_{1}$	-0.017
	$\widehat{\Delta}_{x, 1}$	-4.616
	$\widehat{\Delta}^{\text {a }}$, ${ }^{\text {a }}$	7.312
	$\widehat{\Delta}_{s, 1}$	-0.787
	$\widehat{\Delta}_{s, 2}$	-0.259
	$\widehat{\Delta}_{s, 3}$	0.442
	$\widehat{\Delta}_{s, 4}$	0.302
	$\widehat{\Delta}_{s, 5}$	0.788
	$\widehat{\Delta}_{s, 6}$	0.282
	$\widehat{\Delta}_{s, 7}$	-0.354
	$\widehat{\Delta}_{s, 8}$	0.266
	$\widehat{\Delta}_{s, 9}$	-0.050
	$\widehat{\Delta}^{\text {s, }}$ s,	-0.256
	$\widehat{\Delta}^{\text {s, }}$, ${ }^{\text {d }}$	-0.443
	$\widehat{\Delta}_{v, 1}$	-0.007

Supplement References

Bai, J. (1997). Estimation of a change point in multiple regression models. Review of Economics and Statistics 79, 551-563.

Robbins, M., Gallagher, C., Lund, R. and Aue, A. (2011). Mean shift testing in correlated data. Journal of Time Series Analysis 32, 498-511.

Robbins, M. W., Gallagher, C. M. and Lund, R. B. (2016). A general regression changepoint test for time series data. Journal of the American Statistical Association 111, 670-683.

