Statistica Sinica: Supplement

TESTING CONSTANCY OF CONDITIONAL

VARIANCE IN HIGH DIMENSION

Lu Deng, Changliang Zou, Zhaojun Wang and Xin Chen

Nankai University and South University of Science and Technology of China

Supplementary Material

The supplementary material includes all the proofs of Theorems 1-2 and
Propositions 14, as well as a necessary lemma. Some additional simulation
results are also presented.

We first give a useful lemma as follows.

Lemma 1. Under Condition (C4), given Y, let A(Y) =T"(Y)['(Y), we

have
(i) for any positive integer k,
E{(Z"(Y)A*(Y)Z(Y))* | Y} = t2* () +2tr(E5°) +A(Y)tr(A"(Y)oA*(Y)),
here we define F o G = (fugm), where F = (fu) and G = (gu);
(ii) for independent variables Z1(Y) and Zs(Y),

E{(Z](Y)A(Y)Z5(Y))* | Y} =3tr*(Z) + 6tr(2g) + 6A(Y)tr(A*(Y) o A%(Y))
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+AY(Y zm: An(Y)),
(iii) 3 a1 (Ar(Y))" < tr(X5) and tr(A*(Y) 0 AM(Y)) < tr(33Y).
(iv) for any m x m positive definite matriz F,
E{(Z* (Y)FZ(Y) - u(F))*} < Cte?(F).
where C' s a constant which does’t depend on Y .

This lemma is similar to Proposition A.1 in Chen, Zhang and Zhong

(2010), replacing all the expectations by the conditional expectations.

Proof of Proposition 1

—

Proof. For notational convenience, let A; = tr(X?) and Cj; = tr(/Ei\Ej);
Denote ¢;({s,t}) and ¢;({s}) as the counterparts of 8;({s,t}) and 6;({s})
after replacing every X, by €, respectively. Similarly, let w;({s,¢}) and
w;({s,t}) be the counterparts of 8;({s,t}) and 8,;({s}) by replacing X; by

i, respectively. The test statistic 7T;, can be rewritten as

—1)Y A-2) Cy

=1 1<j

Zl Z{ — ¢i({5.1})" (e — dil{s,1})}

H

~23 5 S llew — B (e~ (DY + Ru

1<j s,t
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where R; denotes the remaining terms.

Expanding ¢;({s,t}) and ¢;({s}) as (I-2)! Z#SJ g and ([—1)71 Z#S Eirs

respectively, we then have

1 1 2 2(1 — 3) o
To=(H-1)3}, qu o ni—2 Til-ni-2p } PICED

A
—2 —8(1 - 3) Al — z_
i {l<l - 1) —2) * (=11 -2)3 + Il - 1 }Zezsews €t

* *

l+4 —2[ 8
lJ_rz D st o= + Zewelteﬁair

s,t,r,q

l(l—l 1—2 ste’tezte’“r 1—2326 €i)’

[—3
i (=101 -2)? SZ# Ezseisegt&t}
_22{(1_;1)2 Z<€ Ejt — 3ZZ€]t€m€ZS€]T

1<j st s t#r
l _ ]_ 1—1)3 Z Z E'Ltejssjssw l _ 1 Z Z Ezssﬁ“slteﬂl} + Ry
s t#r s#L T#q
(S.1)

By Lemma 1 in the Supplementary Material, it can be shown that

E(T, — Ry) :{l32 + 0 _22)2 — 131 1 _11)2}H(H— 1)tr(X3)

H(H — 1)tr* (%) + O{Mtr(ﬁg)}.

1
BNTEE (i — 2y

To derive the variance of T}, consider its variants T,

T, =(H - 1) Z {{ig =1}y +200 -1 -2}
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+2(0 =3 {1 -1 =2°} "} D (ehea)’ =2 (1-1)" Z Teq).

s#t 1<j

Tedious algebra yields that
var() “(efen)?) = 101 — D){(—41 + 6)tr*(3F) + 4(I — 2)0 + 253},
sF#£t

var() (efeq)?) = P{(=20 + D)t (2F) + 2(1 — 1)62 + 05}, (S.2)

s,t

cov(D (ehen)’, > (ehen)’) = 21(1 — D{—t*(25) + 62},

s#t st
cov(D (ehei)®. Y (ehen)?) = P{—tr*(Z7) + 62},
s,t s,t

where d, and 3 are F{(e},€:2)*(el €i3)?} and E{(e];€:2)*}, respectively. By
Lemma 1, we have d = tr?(22) + O(tr(X3)), d3 = 3tr2(X2) + O(tr(X3)).

By Condition (C3), we have

var(T,,) = 417 2H?(H — Dtr2(S2)(1 + o(1)).

By the first part of Condition (C2), the last term in E(7,,—Ry) is o(y/ var(T},)).

By similar arguments, we also have that

var Zezsewe eir) =21(1 — 1)(I — 2){6s + (I — 3)tr(=D)},

s,t,r

*

var( Y eleueheig) =81(1 — 1)(1 — 2)(1 — 3){tr*(2) + 2tx(2)}

S7t7r7q

var() ~eleielen) =Pt (o) + APt (Zo) + O(tr(24)) }tr* ()
sF#t

+ 2P {tr*(20) + O(tr(2)) }* — (77)*tr*(30)
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=PO{tr(Z3)tr* ()},

var ( ZQSEWS gir) =1*O{tr(33)tr* ()},

s,t,r

var() ~efeuchen) =I°O{tr(35)tr*(Z)},
s#£t

var() (eleis)?) =10{tr(38)tr*(So)},

S

Under the condition p = o(I?), each term in T;, —T,—Ry is of op( var(T),)).

—~

Now it suffices to verity that Ry = o,(y/var(7},)), which has the form

i Z{ i — ill5, 1)) e — il {5, 1)

+ (e — dil{s 1) (i — wrl{5,81)) + (e — il E) pais — wil{5.11))
o = {5, ) = (05,1 (10— 0105, = (5,11
e = (5,1 e — D) + (e = o D)o = (5,11}
LY LY { e~ B{s)) (e — 6,({1})

i<j s,t

T (e — D ({5) (s — w0y (1)) + (50 — by ({11) " ptas — wr({5))
T (o — ({5 (1 — wj<{t}>>}{<sis — Gu({1) (e — w0, (1))
T (650 — By (1)) (ae — wil{) + (htse — wi({51) (paye — qut}))}
=Ri1+ Ris.

Expanding ¢; and w; as in (S.1), by Conditions (C1) and (C2), it can be
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seen that in R

0 i 1) ; {(pis — wil{s,}))" (pse — wi({s,t}))}2
<HzmaXHl"zs it < HM4p22max Y55 — Yy *

<HM*p? Zr‘ff‘ =/ Var(N H2pl Zr = 0p( (\/var(T},)).

Based on the specific form of Ry, the above result also holds for correspond-

ing term in R; 5. Now we consider the next term in R, ;.

Il i 1) Z(&‘s — ¢i({s,1}))" (eit — d:i({s,t}))
s#t

(1is —wi({s,1}))" (i — wil{s, 1}))
— ¢i({s,1})"(eie — @i({s,1})) — (1 — 2)*tx(20) }

s;ﬁt

(tis — wi{s, 1}))" (i — wi({s, t}))
tr ZO 1 T
+(H - 1) Z (l (_ 2))2 Z(i ;”’iku’ik - l(l

7 s#t

= 0,( var(T,, ) + O (Hp*l™ 32@ ) = o,(\/ var(T},)).

Note that the expectation of the first term in the last equality is exact 0,
and with Conditions (C1) and (C2), similar calculations as in (S.2) imply its
variance is a higher-order term than var(i;), so we need only consider the
latter term. Denote A; = 171 37, pjy e —{I(1=1)} 1 30, misppin. Let pf =

(s )™ B = (e — iy, o el — ey, )™ = pfS™1, then A; can
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be written in quadratic form: A; = [7'ufDp; = 7 aFSDS™ i1;, where D
is the matrix whose diagonal elements are 1 and off-diagonal elements are
—(I —1)7%. Note that the last row and last column of SDS™ are all 0,
therefore A; < C'171 Zi:l(p,ik — Wik+1)" (Wi — pigs1) for some constant
C’. By Conditions (C1) and (C2), A; < C'I7'M2p S [ Vi — Yipan |2 =
O, (I 'pra;).

Using similar arguments, we can shown the results above hold for all

remaining terms in Rj, from which our assertion holds. O]

Proof of Theorem 1

Proof. From the proof of Proposition 2, we need only to show the asymptotic
normality of TZ

s H

T, =(H-1)) {l0=1D}"Y (ehen)’ —2D (-1 (ehen)

i=1 s#tL 1<j st

Let .F() = {(Z), Q}, .Fk = 0'{8(1), “os ,E(k)} with k£ = 1, 2, oo, n, and Ek(>
denote the conditional expectation given Fy, Ey(.) = E(.), then {Dy, k =
1,...,n} is a martingale difference sequence with respect to the o-fields

{Fr, k=1,...,n}, where TZ =>1_ 1Dy, Dy, = (Ey — Ek,l)f’b. By noting

the fact the €(;)’s are conditional independent given Y ;y’s, Dy, has the exact
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2(H 2 r
_ ﬁ{s o Qr-16(k) —tr(Qp 120)}—l—2{5(k)Wk_16(k)—tr(Wk_120)}a

(S.3)

where Qj—1 = Z];;(li—l)*zﬂ(g(s)e(Ts) — %), Wi = Zii;11)*l(€(s)€(Ts) — 3)
and k= (i — 1)l + j.

To apply martingale central limit theorem (Hall and Hype, 1980) to es-

tablish the limiting distribution of ﬁ, we would further verify the following

two conditions:

Zk 1 l% p 2 ZZ:lE(D:) p 0 (84)

, and =E—F 50,
Var( 7 var?(T")

where 02 = E;_1(D?). As it is true that E(3r_, 02) = var(T7), it suffices
to show var(d_,_, 07) = o(varz(i’:)). By Lemma 1, we express Y ,_, o7 in
the following form:

n

Za,ﬂ :% {Qtr{(Qk—120>2}

+ Ep 1 {AY ()t (T (Y (k))Qk—IF(Y(k))OPT(Y(k)>Qk—1F(Y(k)>)}}

n

;ZZ {Qtr{(Wk 120)%}

+ F_ 1{A( )tr(FT(Y(k))Wk,_lF(Y(k)) o FT(Y(k))Wk_ll“(Y(k)))}}
_ % Z {2tr(Qk120)tr(Wk120)

k=1
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+ Ek,1{A(Y(k))tI“(FT(Y(k))Qk,lr(Y(k)) o PT(Y(k))Wkll“(Y(k)))}}

=Di1+ Do+ Doy + Do+ D3y + Dss.

Now we calculate the variance of D;; (i =1,2,3;5 = 1,2). Consider firstly
D, ;. Using Lemma 1, for any positive integer k < r, with k = (i — 1)l + j,

we have

cov (tr{(Qxr-130)"}, tr{(Q,-1%0)})
=cov(tr{(Qu-120)*}, tr{(Qx-130)"})
—2j(j — 1)var{tr{(e1e] — To)So(e265 — o) o} }
+ jvar{tr{(eie] — o) Bo}*}
—O(uA(T)n(58). (8.5)
Then we can rewrite Y2, tr{(Qu-1%0)*} as 310, 3001, tr{(Qui-1y145-130)?}

based on the specific form of Q1. Thus, var(D; 1) = O(H°*)tr?(32)tr(X])

and by Condition (C3),
var(Dy 1) /var’(T!) = O({Htr2(2)} 't (Z) — 0.

Next, consider the part D;,. Since A(Y) is uniformly bounded by some

constant Ay and as well as I'(Y), we have Dy 5 < D; 3 where

AH - 1) &
D173 ( 1))2 Z Aotr(FTQk,IF ©) FTQkle).
k=1

TRl &
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By similar argument, we can verify that the result for D;; also holds for
D, 3 and for all D;; with ¢ = 1,2,3;5 = 1,2. Hence we complete the first
part of (S.4).

Now we show the second part of (S.4) holds. Note that Fjy_; {E(Tk)Qk,ls(k)} =
tr(Qr_1X0) and Ek_l{s(Tk)Wk_ls(k)} = tr(Wy_1X). By the part (iv) of

Lemma 1, we have

= 16(H — 1)
> B(Dy) <8 {m E{(fkQu-180) — t1(Qu-130))"*}
k=1 k=1
16 - A
-+ Z_S E{(e(k)Wk,le(k) — tl"(kalzo)) }
k=1

<M (H°I™°tr*(X3) + H* 15t (X))
=o(var’(Ty)).

where the last two inequalities come from (S.5) and Condition (C3). The

second part of (S.4) is proved and thus the proof is completed. ]

Proof of Proposition 4

Proof. Similar to the proof of Proposition 2, we can rewrite T as
T, =T 4 {(Ju = Un) + (Un = W) + (W = W)}

By (S.1), T¥ can be represented as

H

. 1 2 2(1 —3) . 9
L=t -1, qu B I T TRy R Ty z>3}2(“”8€“)

i=1 s#t




CONSTANCY TEST IN HIGH DIMENSION 11

-2 —8(1—3) 4(1 — ( 4) i
! {W “i-2) -ni-2¢ l-1i- 2>}Z

st,r
l *
S e
s,t,r,q
1
—ZZ{W Z(E;Fsgjt 2 l— 1 7 1\3 ZZEJths€Zs€jr
1<j s t#r
(1—1) 7_1)3 Z Z €lt€J5€JS€” (I—1) 7 1\4 Z Z szsejrsztsjq} +
st pa—

=(H - 1) ZA*—2ZC* + R =T, + Ry,

1<J
Now we elaborately study the variance of /TE It is easy to see Var(i%) =

H(H—1)*var(A;)—4H (H—1)*cov (A}, Cf)+4H (H—1)(H—2)cov(C};, Cr )+
2H(H — 1)var(C};). By Lemma 1 again and similar arguments for (S.2) in

Proposition 1, under H,,

T 2 ! 2 2 (12
var(T¥) = 4H*(H — 1)[{@ =) + =)= 2)}tr (25)

+O(IHtrA(B2) + O )t () + O(I*H M)t (Xp)

+0(I7°)(8, — tr*(3)) + O(17)(J5 — 3tr*(25)) + O(l_?’)é“}

2 l 2 2 2
= AHH - 1)[{(5— D22 i 1><z—2>}“ (%)

+ o(I™H)tr*(X3) + O(ZQ)tr(Eg)}

2 l 2 2 2
=01 0 |{ g+ g [ o)

where 0, = E{(e],ein)’e} €3k} The second equation holds because
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do = tr?(X2) + O(tr(X3)), 03 = 3tr?*(X2) + O(tr(X3)), and
64 < {var((elesn)?)var(el epsehen)}/? = tr(T2)trl/2(28) = o(tr?(X2)).

The last equation is due to the condition tr(X3) = o(I7!)tr?(X2).

Now we consider the remaining terms. Since p = o({>, ri®} ~tnl/2[=5/2)
and p = o({>],r2}"n'/21/2), by the same arguments used in Propo-
sition 1 and 2, it can be seen that Ry = o,(I"! var(T)), which still
holds for U,, — W and W — W. Combining these results with the fact
Jp = Uy = 0,(I71 Var(i%)) when p = o(I°), we can complete the proof of

our Proposition 4. O

Proof of Proposition 2

Proof. From the proof of Proposition 1, the restriction p = o(l*) mainly

comes from the term in the T,

H *
—20 + 8
J, =(H — 1) E {l(l “Hu—o2n E €, En€; Eir + T E €, EnEHEit

i=1
-3
l—2 32 el€is)? l_1)<l_2>325;§5is€ﬁ€it}-
s#t

It can be shown that var(Jn)/var(i;) = O(I73tr () tr?*(Xy)), from which

we can observe the requirement on /.

Consider the modified test statistic 7). Let W = H(H—l){t@}Q/(l—
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2)2, and T” can be rewritten as

—(H -1) ZA —2) Cy—-W

1<J

:{((H—l);Ai—Jn> —2ZO@}+<Jn—W>

i<j
=T+ (J, — W).
By similar arguments in Proposition 1, it can be verified that without the

condition p = o(l?),

E(T}) = {2/(1-2)+2/(1-2)*=2/(1-1)—-1/(1-1)*} H(H—1)tr(Z§)+o(y/ var(T,,))

and var(T*) = var(T,,)(1+0(1)). Then we need to deal with the terms .J,, —

W. Define U, = (1-2) 2(H-1) 21, (7' Y, ehei—{l(1-1)} ', ehea)”.

Some calculations yield that

H
Jo—Up =(1—2)" 2{121—1 oy Zewsnsﬁsw
i=1
— 8 ZsTs EHE +LZ(6T€' )2
( 1)([_2 s?/:t 18 it it 1t l (Z—Q) - 18- 1S
2
i Setenelen Zzewsnewelq}
s;ét s#t r#q

Taking similar procedures as for (A.2) and (A.3), we can show that E(J, —
U,) = O(H?*173tr(32)) = o var(T},)) and var(J,—U, )/Var( n) = O tr Y (Z2)tr?(X)).
Consequently, it is only required that p = o(I).

o~

It remains to verify that W — U, = o,(y/var(7,)). Let W = (I —
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2)PH(H—1)(H™" Y2, B;)?, where B; = 171 37 ef ess—{l(I-1)} ' 3, €liein.

Note that F(B;) = tr(Xy) and var(B;) = O(I"'tr(X2)). Observe

W — U

B; —tr(20))(B; — H™ ZB

J

—O(HI-5trV/2(£2)) Z{Bi —tr(Xg)}

—0,(H¥134:(22)) = 0,(172)y/ var(Ty)

—~

=o0,(\/ var(T},)).

Also,
— H(H
_21 ! Z 8@5“18 2{l l - 1 } Z Ezsu’lt
s#£t
FUDY Dl — {10 = DYDY
s s#t

=Ri1 + Rio.

As mentioned in Proposition 1, R = A; = O,(I"'pry;), we need only

consider the terms R;;. By the similar argument, ZZ R;1 is a higher-order

term than ), R;5. Combine all these results, we have

W =W =H(H = 1)/(L = 2°0,(p"/n Y _2)

Var(ﬁ)Op(H_l/zl_zp Z T2;)
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:OP( VaI'(Tn)),

from which we complete the proof of Proposition 2. m

Proof of Proposition 3

—_—

Proof. Rewrite tr(X32) as

—_—

tr(333) :{1+132 + (1_22)2}1{(%§:Ai B H(lgf]n— 1)) * }}]("[;_M;)}

=e; + es.

Similar to the proof of Proposition 1, we can show that

E(er) = tr(X5) + O(1tx(335)),
var(ey) = H *var{(H — 1) Z Ai — T 31+ 0(1) = O(n 6% (22) + (H*1) Hr(Z5)).
Accordingly, {e;—tr(2%)}/tr(33) — 0. By Proposition 2 and taking similar

procedures, we have J, — W = o,{ H32"'r(X2)}. Thus, ey/tr(X2) —

0. [l

Proof of Theorem 2

Proof. For technical convenience, we assume that the n data can be exactly
divided to H equal slices. Denote Ej and E; represent the expectation under

Hy and under H; respectively. If a slice A; falls into the area {Y < a}, then
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E1(A;) = Ey(4;). On the contrary, if it falls into the area {Y > a}, we have
Ei1(A) = (1+46,)%Ey(A;). Also note that the number of slices which partly
falls into the former and rest falls into the latter is at most one, there is
little need to consider this situation as long as H is sufficiently large. So we
further assume H is an even number. Similar to the proof of Proposition,
by Condition (C2) that n/l°> — 0 and the fact that b;/a; = 1+ O(I7?), we
have

BT} =(H =1) ) Ei(A) =23 B(Cy) = Bi(W)

1<j

:M{am(zﬁ) + (1= 2) 7t (Zo) + ar(1 + 6,)°tr(35)

2
(= 27214 6,)202() + O((1 — 2>—3tr<zg))} — (D ()
~E e - Lo o)

— H(H —1)(I — 2)7{1 + 6,/2}*tr* (%) + o(o77 0)
=b H*0?tr(X3) /4 + H(H — 1)(1 — 2)20%tr* (%) /4
+ (a = b)) H(H — D){1 + (1 + 0,)*}tr(23)/2 + o(o7 0)

=y 1+ o(ory o)

If a slice A; falls into the area {Y > a}, then

var(Z(efseit)Q) = 1(1 — 1){4(1 + 6,)*r*(23) + O(tr(Z2) }.
sF#t



CONSTANCY TEST IN HIGH DIMENSION 17

Tedious calculations yield
07,1 =207 H(H-1)tr*(3g){1+(1+6,) }(1+0(1)) = o7, o{1+(1+6,)"}/2.

Under the alternative Hi,

1+ (1+6,)?
2

eitI'Q (20)

G o= 2 1H3?
OT;.0 { A2

tr(X2) + H1 4 0,(1)).

Similar to the proof of Theorem 1, we can establish the asymptotic normal-

ity of ﬁ Here we omit the details. O

Further simulation results

An application of our proposed test lies in sufficient dimension reduction
(SDR) which tries to reduce the dimension by replacing original predictors
with a minimal set of their linear combinations without loss of information
in regression. Many SDR methods were developed based on the paradigm
of inverse regression (Li, 1991) and they usually rely on the validity of
the constant variance condition (Cook and Weisberg, 1991), i.e., cov(X |
BTX) = Xy, where B € RP*4 is a basis matrix of the central subspace and
X stands for the predictor vector. In reality, we can test if cov(X | B7X)
is approximately a constant matrix at the value 3 that is close to the true
3. In order not to affect the validity of detection, we can divide data into

two parts, the one for estimating ,é, and the other for testing.
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We added some numerical results regarding this strategy. To show the

performance of empirical size, we use the simple linear model 1
xir ~ N(0,0.2) independently for k = 1,2
Tig ~ N(0,140.6- I(x;2 > 0)) for k=3,...,p
Yi = 4 + O¢

to generate n = 320 data points. ¢; is a standard normal distribution,
independent of x;’s. Clearly noting that the central subspace contains only
one SDR direction, standardized as 8 = (1,0,...,0)" and cov(X | zy) is
constant only for kK = 1. This setting greatly diminishes the number of
which makes null hypothesis hold. Similarly, to show the performance of

empirical power, we use model 2 followed

xi ~ N(0,1) independently for £k =1,3,....p

p

T =(p—2)""" Z(f’f@zk: —D+e
k=3

Yi = 4xip + de;
where the SDR direction is 8 = (0,1,0,...,0)", e;, ¢ are both standard
normal distribution, independent of z;’s. Similar to model 1, cov(X | z%)
depends on x; only for £ = 2, so that it greatly diminishes the number
of g which violates Hy. Here we use the first n; = 160 data points to

estimate § by SIR, then use the rest n — n; = 160 data points to test
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Hoi : cov(X | B7X) = 3o and Hyy : cov(X | f7X) = B, respectively.
All the simulation results are obtained based on 1,000 repetitions and the
nominal level is fixed as 0.05.

For the first 160 data, the classical SIR doesn’t work in the ”large p, s-
mall n” cases. Actually, there are many statistical methods that estimating
central subspace for high dimensional data, for example the SSIR method
(Ni, Cook and Tsai, 2005) and the CISE method (Chen, Zou and Cook |,
2010). Here for convenience, we simply consider the relative small dimen-
sion p = 20, and obtain the estimate by classical SIR procedure. Table 1

shows the simulation result and its performance is reasonably well.

References

Cook, R. D. and Weisberg, S. (1991). Discussion of “Sliced inverse regression for dimension
reduction”. J. Amer. Statist. Assoc. 86, 328-332.

Chen, X., Zou, C. and Cook, R.D. (2010). Coordinate-independent sparse sufficient dimension
reduction and variable selection. Ann. Statist. 38, 3696—3723.

Chen, S. X., Zhang, L-X. and Zhong, P-S. (2010). Tests for high-dimensional covariance ma-
trices. J. Amer. Statist. Assoc. 105, 810-819.

Hall, P. and Hyde, C. C. (1980). Martingale limit theory and its applications. Academic press,

New York.



20 L. Deng, C. Zou, X. Chen and Z. Wang

Table 1: The performance based on our strategy, both in model 1 and in model 2.

Model 1 Model 2

z CR CR
0=0.5

8 79 79 38.6 21.6

10 72 83 411 25.0

20 8.0 9.0 65.8 38.2

8 6.9 83 35.9 220

10 7.5 8.7 41.5 25.5

20 81 9.3 62.9 39.7

Li, K. C. (1991). Sliced inverse regression for dimension reduction(with discussion). J. Am.

Statist. Assoc. 86, 316—-342.

Ni, L., Cook, R.D. and Tsai, C.L. (2005). A note on shrinkage sliced inverse regression. IEEE

Trans. Signal Process. 50, 635—650.
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Table 2: Empirical sizes at 5% significance under the model of d = 1 and y ~ U(2,4).

X|Y Normal Gamma
By Case (I)  Case (II) Case (I) Case (II)
methods T T, T. T, T, T, T, T,

l n P p=20
10 200 20 58 85 6.0 86 63 89 66 92
40 52 73 53 76 59 88 55 73
100 54 85 58 90 43 72 46 87
200 51 78 70 99 36 68 54 89
1000 4.7 72 139 198 5.1 6.9 11.3 15.1
600 20 6.7 97 69 93 83 105 83 108
40 58 84 58 86 58 93 56 9.6
100 55 85 56 88 51 73 49 7.1
200 58 90 59 90 50 78 52 77
1000 45 69 46 70 55 81 6.2 84
15 200 20 49 6.7 55 80 72 88 75 100
40 49 62 52 69 63 83 76 89
100 49 72 79 102 64 87 8.2 109
200 43 58 101 134 49 64 101 131
1000 4.5 6.3 424 46.5 50 6.9 41.1 458
600 20 51 66 53 65 80 96 86 99
40 50 66 49 66 49 68 53 64
100 4.0 6.0 41 6.1 68 83 69 8.6
200 41 63 41 59 50 68 56 7.3

1000 47 72 61 77 48 6.7 52 74
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Table 3: Empirical sizes at 5% significance under the model of d = 1 and y ~ N(3,0.2).

XY Normal Gamma
By Case (I) Case (II)  Case (I)  Case (II)
methods T T, T, T, T. T, T, T
l n D p=20

10 200 20 44 82 50 84 72 105 64 88

40 54 9.1 58 92 76 102 7.0 10.0

100 40 6.0 54 87 71 91 58 82

200 47 74 29 54 59 78 49 73

1000 42 83 60 99 52 92 69 9.7

600 20 62 94 49 65 74 102 89 113

40 5.7 83 57 7.7 72 100 59 85

100 58 9.7 52 89 55 75 55 85

200 56 86 51 87 47 77 53 84

1000 53 84 47 81 63 88 65 9.5

15 200 20 54 72 68 90 70 82 74 94

40 48 6.8 52 73 54 76 57 80

100 54 74 51 73 46 64 52 73

200 60 74 67 88 56 71 64 89

1000 59 73 79 11.0 48 64 95 121

600 20 44 65 59 78 81 95 6.7 87

40 55 74 63 81 58 77 57 79

100 45 55 54 72 59 75 6.0 75

200 57 73 55 76 50 67 64 82

1000 49 74 73 86 46 68 72 83




