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Abstract: Testing the constancy of a conditional covariance matrix is a fundamental

problem, because deviating from this assumption can result in a severely inefficient

estimate. We propose a slice-based procedure to test for constant conditional vari-

ance in cases where the data dimension is larger than the sample size. We develop

a high-order correction that makes the test statistic robust with respect to high

dimensionality, and show that the proposed test statistic is asymptotically normal

under some mild conditions. The proposed method allows the dimensionality to

increase as the square of the sample size. Furthermore, simulations demonstrate

that it exhibits good size and power in a wide range of settings.
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1. Introduction

Testing the constancy of a conditional covariance matrix in high-dimensional

data has many applications, especially in regression studies. The null hypothesis

of such a test can be described as follows:

H0 : cov(X | Y) = Σ0, (1.1)

where X is a p-dimensional variable, Y is a d-dimensional variable, and Σ0 is an

unknown p × p nonnegative definite matrix that does not vary with Y. In this

study, we allow p and the sample size n to go to infinity while the dimension

d ≥ 1 is fixed. We discuss the importance of testing H0 below.

First, we consider estimating a high-dimensional covariance/precision matrix

(Bickel and Levina (2008)). Here, a conventional assumption is that the targeted

matrix is static, that is, its entries are all constant. However, in practice, this

assumption may not be true, and hence a dynamic estimation procedure is re-

quired. Chen and Leng (2016) studied fMRI data collected by New York Univer-

sity Child Study Center. They found that the covariance matrices for the scans

varied with time, and therefore suggested using a dynamic covariance matrix for
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complex data. A testing procedure for the hypothesis given in (1.1) could serve

as a preliminary step before employing a dynamic estimation strategy in such

situations.

As another example, in genome-wide association studies (GWAS), Xk could

represent gene expression levels, where Y is a vector of d biomarkers charac-

terizing various properties of the disease condition. Here the goal is to identify

disease-associated genetics. If the disease is complex with a heterogeneous eti-

ology, that is, cov(X | Y) varies, then the power of the tests used to detect

influential genes would be compromised if the underlying heterogeneous effect

was not taken into account (Yu et al. (2015)).

In this study, we test (1.1) for high-dimensional data, where the dimension

p increases to infinity as the number of observations n → ∞. We allow Y to

be a continuous variable, and divide the data into several slices by clustering

the values of Y. The constancy is gauged by comparing the sample covariance

matrices obtained from these slices. The proposed test statistic is similar to

the two-sample and multi-sample tests for high-dimensional covariance matrices

(e.g., Li and Chen (2012)). However, their results are not directly applicable.

On the one hand, the sample sizes of the slices are random variables rather than

constants, as they are in the multi-sample problem. On the other hand, to make

the conditional expectation of X | Y in each slice sufficiently smooth, the number

of slices needs to be large and, asymptotically speaking, needs to go to infinity

as n → ∞. The technical treatments are therefore not trivial. Thus, a further

contribution of this study is that we propose higher-order bias corrections and

variance estimates for our test that, in general, outperform several “off-the-shell”

methods in finite-sample situations. In the literature on time series, Tse (2000)

and Bruno and Timo (2007) proposed Lagrange multiplier tests for the constancy

of an error covariance matrix. However, their methods apply to low-dimensional

situations only.

2. Methodology

2.1. Constancy test statistic

Let {(Yi,Xi), i = 1, . . . , n} be a sample from the joint distribution (Y,X),

where Y and X are d-dimensional and p-dimensional random variables, respec-

tively. We assume that Y follows a continuous distribution. However, the pro-

posed method can be modified accordingly to accommodate discrete Y. First, we

divide the range of Y into H clusters (slices), as in Li (1991), say {I1, . . . , IH},
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and compare the covariances of X of the H clusters. Let Σi = cov(X | Ii).
Naturally, ∑∑

1≤i<j≤H
tr{(Σi −Σj)

2} (2.1)

could be a reasonable measure to gauge the constancy of the conditional co-

variance. The validity of the null hypothesis (1.1) implies that an appropriate

estimate of (2.1) should not be large.

We let the sample sizes of all H clusters be equal to l = n/H, for ease of

computation and technical analysis. If Y is univariate, that is, d = 1, then we

can directly assign Y((i−1)l+1), . . . , Y(il) as the ith cluster, denoted by Sni, for

i = 1, . . . ,H, where Y(1) ≤ · · · ≤ Y(n). This is equivalent to the set

Sni =

{
Yk : Yk ∈

(
F−1n

(
i− 1

H

)
, F−1n

(
i

H

))}
,

where Fn denotes the sample empirical distribution of Y .

When d > 1, a natural ordering of the data points does not exist. Several

efficient clustering methods exist; however, we suggest the following method for

simplicity and technical convenience. Without loss of generality, we assume that

n = h1h2 . . . hdl. Then, we sort the data on the first component of Y, and divide

the data into h1 equal clusters, B1, . . . , Bh1
, using the sample quantiles. Next,

for cluster Bk, we sort on the second component of Y, and divide Bk into h2
equal and smaller clusters, Bk,1, . . . , Bk,h2

. We repeat this step until we obtain H

clusters {Sni}Hi=1. Clearly, each cluster is simply a hypercube containing exactly

l observations. The partition of Y depends on the order of the response when Y

is multivariate. In general, it is difficult to find an “optimal” partition without

knowing the alternative structures. The partition proposed above may be a

useful initial step before applying a better dividing method, such as the standard

K-means procedure.

Given the above clusters, we can arrange the data as (Xis,Yis), for i =

1, . . . ,H and s = 1, . . . , l, such that Yis = Y(l(i−1)+s). Accordingly, we may

consider
∑∑

1≤i<j≤H tr{(Vi −Vj)
2} as a naive estimator of (2.1), where Vi is

the sample covariance matrix of {Xi1, . . . ,Xil}. However, in high-dimensional

cases, tr(V2
i ) is not an effective estimator of tr(Σ2

i ) owing to its inherent bias.

Furthermore, the bias is always difficult, if not impossible, to estimate without

further information (Chen, Zhang, and Zhong (2010)). Rather than estimating
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Σi, we suggest using

t̂r(Σ2
i ) =

1

l(l − 1)

∑∑
s 6=t

[{Xis − θi({s, t})}T[Xit − θi({s, t})}]2 , (2.2)

̂tr(ΣiΣj) =
1

l2

∑∑
s,t

[{Xis − θi({s})}T{Xjt − θj({t})}]2 (2.3)

as estimators of tr(Σ2
i ) and tr(ΣiΣj), respectively, where θi({s, t}) = (l −

2)−1
∑

k 6=s,t Xik and θi({s}) = (l−1)−1
∑

k 6=s Xik. Here t̂r(Σ2
i ) and ̂tr(ΣiΣj) are

of the “leave-two-out” and “leave-one-out” forms, respectively, and are used to

remove certain terms that impose unnecessary demands on the dimensionality.

Our test statistic is constructed as follows:

Tn = (H − 1)
∑
i

t̂r(Σ2
i )− 2

∑∑
i<j

̂tr(ΣiΣj).

Similar estimators have been proposed and shown to be consistent in the liter-

ature on high-dimensional location tests; see, for example, Li and Chen (2012).

However, it is clear that a more thorough analysis is required here because these

estimators are employed to form a test statistic.

Remark 1. Chen, Zhang, and Zhong (2010) and Li and Chen (2012) proposed

the following unbiased estimators for tr(Σ2
i ) and tr(ΣiΣj):

t̃r(Σ2
i ) =

1

P 2
l

∑
s 6=t

(XT

isXit)
2 − 2

P 3
l

∗∑
s,t,r

XT

isXitX
T

itXir +
1

P 4
l

∗∑
s,t,r,q

XT

isXitX
T

irXiq,

˜tr(ΣiΣj) =
1

l2

∑
s,t

(XT

isXjt)
2 − 1

l2(l − 1)

∑
s 6=r

∑
t

XT

isXjtX
T

jtXir

− 1

l2(l − 1)

∑
s 6=r

∑
t

XT

jsXitX
T

itXjr +
1

l2(l − 1)2

∑
s 6=r

∑
t6=q

XT

isXjtX
T

irXjq,

where P rl = l!/(l− r)!, and
∗∑

implies summation over mutually distinct indices.

Here, we use (2.2) and (2.3) for the following reasons. First, the total compu-

tational complexity of Tn is O(n2p), whereas using t̃r(Σ2
i ) needs O(n2p + n2l2),

which seems more computationally complex. Our numerical experience indicates

that the computation time of the latter one is, in general, three or four times

longer than that of the former, especially when n or l is large. Second, under

some mild conditions, we can accurately correct the biases of Tn from using (2.2)
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and (2.3). Third, our asymptotic and numerical results reveal that Tn could

be a more powerful test than that based on t̃r(Σ2
i ) and ˜tr(ΣiΣj) for commonly

encountered cases.

2.2. Null distribution of the test statistic

To study the asymptotic behavior of Tn under the null hypothesis, we need to

make several assumptions. First, denote the conditional expectation function as

µ(Y) = E(X | Y), and its sliced form as µis = E(Xis | Yis). If we transform Xis

by its regulation εis = Xis−µis, the difference between Tn and the test statistic

after the transformation may be asymptotically negligible if µ(Y) is sufficiently

smooth in each cluster. Second, different permutation of the components of

Y result in different partition sets, implying that the clustering results are not

unique. Define two quantities as

r1i = max
s,t
‖Yis −Yit‖, r2i = min

l−1∑
k=1

‖Yi,k+1 −Yik‖2α, (2.4)

where the minimum in r2i is taken with respect to all permutations of {Yik}lk=1,

and α ∈ (0, 1]. These quantities can be viewed as generalizations of the range and

spacings, respectively, of Y when d = 1. We need to impose conditions on these

quantities to ensure the estimation performance of the conditional variances.

Third, several assumptions on Σ0 and X | Y are required in order to obtain the

asymptotic normality of Tn. Formally, we need the following conditions:

(C1) µ(Y) satisfies the Lipschitz condition of order α, say,

‖µ(Y1)− µ(Y2)‖ ≤Mp1/2‖Y1 −Y2‖α for Y1,Y2 ∈ Ω,

where Ω is the compact support of Y, and α ∈ (0, 1].

(C2) n/l5 → 0,
∑

i r
4α
1i = op(H

1/2(pl)−1),
∑

i r2i = op(H
1/2l2p−1).

(C3) tr(Σ4
0) = o(tr2(Σ2

0)), as p = p(n)→∞.

(C4) Given Y, X | Y follows the model X | Y = µ(Y)+Γ(Y)Z(Y), where Γ(Y)

is a p×mmatrix, such that Γ(Y)Γ(Y)T = Σ0 under the null hypothesis, and

Z(Y) = (Z1(Y), . . . , Zm(Y))T satisfies the following: E(Z(Y) | Y) = 0;

var(Z(Y) | Y) = Im; E(Z4
i (Y) | Y) = 3 + ∆(Y) is uniformly bounded;

E(Z8
i (Y) | Y) is uniformly bounded; and E(Zα1

i1
(Y) . . . Z

αq

iq
(Y) | Y) =
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E(Zα1

i1
(Y) | Y) . . . E(Z

αq

iq
(Y) | Y), for any positive integer in the set {q :∑q

k=1 αk ≤ 8} and any i1 6= i2 6= · · · 6= iq.

Remark 2. Condition (C1) guarantees that the effect of using θi({s, t}) or

θi({s}) to approximate µis on the null distribution of Tn could be negligible,

provided that the cluster partition satisfies Condition (C2). The first part of

Condition (C2) imposes a restriction on the lower bounds of the order for l.

This is needed because the test statistic Tn is not unbiased. The remaining part

of Condition (C2) is related to the quantities r1i and r2i. In practice, these

quantities depend mainly on the distribution of Y and the number of clusters

H. In general, the faster the convergence rate in the tails of the density func-

tion f(Y) or the larger the number of clusters H, the higher the orders are of

these quantities that can be attained. For example, if Y follows a uniform (0,1)

distribution, we have Y(i+1) − Y(i) = Op(n
−1), such that r1i = Op(H

−1) and

r2i = Op(ln
−2α). Then, Condition (C2) requires that p = o(n4α−1/2l−4α−1/2)

and p = o(n2α−1/2l3/2). Suppose α = 1. This condition implies that if we set

l = O(n1/3), then p is allowed to grow at a rate of o(n2). If Y follows the stan-

dard exponential distribution, which does not have bounded support, we have

Y(i+1)−Y(i) = Op{(n−i)−1}. Consequently, p should be o(n1/4), which is a much

lower rate. In this situation, larger n is required to ensure the observations in the

tail are sufficiently dense and, thus, reasonably good performance. In fact, Con-

dition (C1) can be relaxed to hold only when Y1,Y2 fall into the same cluster.

Moreover, when Y is discrete, under a natural partition, each cluster contains

same value Y, which implies M = r1i = r2i = 0. In this case, Conditions (C1)

and (C2) trivially hold.

Remark 3. Conditions (C3) and (C4) are common in the literature; for exam-

ple, see Bai and Saranadasa (1996), Chen, Zhang, and Zhong (2010), and Li

and Chen (2012). Condition (C3) is used to satisfy the Lindeberg condition, on

which the martingale central limit theorem relies. If all eigenvalues of Σ0 are

bounded, this is trivially true. It also holds for the popular autoregressive co-

variance matrix Σ0(i, j) = ρ|i−j|, with |ρ| < 1. However, if the covariance matrix

contains many large entries, neither this condition nor the asymptotic normality

of Tn hold. Thus, the asymptotic normality relies on the strength of the depen-

dencies between the variables; here, a certain sparseness on Σ0 is needed (Zou

et al. (2014)). Condition (C4) implies that the distribution of X | Y satisfies the

linear structure used in the literature on high-dimensional tests (Chen, Zhang,

and Zhong (2010)). This condition greatly facilitates the calculation of the mo-
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ments of the proposed test statistic. Note that in the condition of Chen, Zhang,

and Zhong (2010), m ≥ p is required, because it implies that the nonconditional

covariance Σ is positive definite. However, in our problem, m < p can be al-

lowed, because we require only that the conditional covariance cov(X | Y) be

nonnegative definite. For example, if X ∼ Np(0, Ip), Y = x1, then the elements

in the first row of ΣY are all zero. A proper Γ is (0, Ip−1)
T, with m = p− 1 < p.

The following proposition provides approximations for the mean and variance

of Tn under H0.

Proposition 1. Under H0 and Conditions (C1)–(C4), if p = o(l3), we have

E(Tn) =

{
2

l − 2
+

2

(l − 2)2
− 2

l − 1
− 1

(l − 1)2

}
H(H − 1)tr(Σ2

0)

+
1

(l − 2)2
H(H − 1)tr2(Σ0) + o{

√
var(Tn)},

var(Tn) =

{
4

l2
H2(H − 1)tr2(Σ2

0)

}
{1 + o(1)}.

Note that in Proposition 1, we need the condition p = o(l3), which is similar

to the condition p = o(n3) in some two-sample testing problems (e.g., Feng et al.

(2015)). However, in the present problem, if µ(Y) is not sufficiently smooth, large

values of l will not be allowed. Considering a special case that l = O(n1/3), this

condition requires p/n→ 0, which clearly contradicts high-dimensional settings.

Our analysis of the high-order expansion of Tn shows that this condition can

be much relaxed after we correct the bias term of tr2(Σ0). A simple estimate of

tr(Σ0) in each slice is l−1
∑l

s=1 XT

isXis−{l(l−1)}−1
∑

s 6=t X
T

isXit; thus, a pooled

estimator is given by

t̂r(Σ0) =
1

H

H∑
i=1

{
1

l

l∑
s=1

XT

isXis −
1

l(l − 1)

∑
s 6=t

XT

isXit

}
.

Let T ′n = Tn −H(H − 1){t̂r(Σ0)}2/(l − 2)2. We have the following result.

Proposition 2. Under H0 and Conditions (C1)–(C4), if p = o(l7), we have

E(T ′n) =

{
2

l − 2
+

2

(l − 2)2
− 2

l − 1
− 1

(l − 1)2

}
H(H − 1)tr(Σ2

0) + o{
√

var(T ′n)}

≡µT ′
n,0 + o{

√
var(T ′n)},

var(T ′n) =

{
4

l2
H2(H − 1)tr2(Σ2

0)

}
{1 + o(1)} ≡ σ2T ′

n,0
{1 + o(1)}.
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The following theorem establishes the asymptotic null distribution of T ′n.

Theorem 1. Under Conditions (C1)–(C4) and the null hypothesis H0, if p =

o(l7), as (n, p)→∞,

σ−1T ′
n,0
T ′n − δn,l

d−→ N(0, 1),

where δn,l = µT ′
n,0/σT ′

n,0 depends only on H and l.

To formulate a test procedure, we need to obtain a good estimate for tr(Σ2
0).

Note that in the construction of the test statistic, we already obtain t̂r(Σ2
i ). By

the proof of Proposition 1, we know that

E{t̂r(Σ2
i )} =

{
1 +

2

l − 2
+

2

(l − 2)2

}
tr(Σ2

0) +
1

(l − 2)2
tr2(Σ0) +O

(
tr(Σ2

0)

(l − 2)3

)
.

This motivates us to use

t̂r(Σ2
0) =

{
1 +

2

l − 2
+

2

(l − 2)2

}−1{ 1

H

H∑
i=1

t̂r(Σ2
i )−

(t̂r(Σ0))
2

(l − 2)2

}
.

This is a ratio-consistent estimator of tr(Σ2
0), as revealed by the following propo-

sition.

Proposition 3. Under Conditions (C1)–(C4) and H0, if p = o(l7), we have as

(n, p)→∞,

t̂r(Σ2
0)− tr(Σ2

0)

tr(Σ2
0)

p−→ 0.

The advantage of this estimator is that no additional computation effort is

required. This result, together with Theorem 1, suggests we should reject H0

with α level of significance if

σ̂−1T ′
n,0
Tn′ − δn,l > zα,

where zα is the upper α-quantile of N(0, 1), and σ̂2T ′
n,0

is the plug-in estimator of

σ2T ′
n,0

.

2.3. Asymptotic power analysis and comparison

We investigate the asymptotic behavior of our test under the alternative

hypotheses. For simplicity, we consider only d = 1, and the following local
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alternative:

H1 : cov(X | Y ) = Σ0, for all Y < a, cov(X | Y ) = (1 + θn)Σ0, for all Y ≥ a,

where a is a constant value, and θn is a sequence tending to zero. This alterna-

tive is essentially a two-sample problem, though the mean in each sample varies

with the response Y . This not only facilitates our technical analysis, but also

mimics real-data behavior. For example, in GWAS, we have measured a set of

d biomarkers Yi = (Yi1, . . . , Yid)
T that are used for disease subtype classifica-

tion. Our proposed constancy test is used to detect whether a heterogeneous

effect exists. This alternative is thus the simplest that could be encountered in

practice.

For ease of computation, we assume that pr(Y < a) = pr(Y ≥ a) = 1/2 and

pr(Y = a) = 0. We have the following result.

Theorem 2. Under Conditions (C1)–(C4) and the alternative hypothesis H1, if

p = o(l7), as (n, p)→∞, σ−1T ′
n,1

(T ′n − µT ′
n,1)

d−→ N(0, 1), where

µT ′
n,1 =

bl
4
H2θ2ntr(Σ2

0) +
1

4(l − 2)2
H(H − 1)θ2ntr2(Σ0)

+
(al − bl)

2
H(H − 1){1 + (1 + θn)2}tr(Σ2

0),

σ2T ′
n,1

=
σ2T ′

n,0

2
{1 + (1 + θn)4},

with al = 1 + 2(l − 2)−1 + 2(l − 2)−2, and bl = 1 + 2(l − 1)−1 + (l − 1)−2.

Accordingly, the asymptotic power of the T ′n test under H1 is approximately

β(θn) = Φ

{
−zασ̂T ′

n,0

σT ′
n,1

+
µT ′

n,1 − δn,lσ̂T ′
n,0

σT ′
n,1

}
,

where Φ is the standard normal distribution function. By similar arguments to

those used in the proof of Propositions 1–2, we can show that under alternative

H1,

σ̂T ′
n,0 = 2l−1H3/2

{
1 + (1 + θn)2

2
tr(Σ2

0) +
θ2ntr2(Σ0)

4l2

}
(1 + op(1)).

In addition, the leading order terms of the last two parts in Φ(·) of (2.5) have an
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explicit expression, resulting in the asymptotic power

βT ′
n
(θn) = Φ

(
− Lnzα +

√
Hlθ2n
8Kn

+
θ2ntr2(Σ0)

8l2tr(Σ2
0)Kn

(
√
Hl − zα)

)
, (2.5)

where Kn = {(1 + (1 + θn)4)/2}1/2 and Ln = {1 + (1 + θn)2}/(2Kn).

For comparison purposes, we consider a test statistic using the unbiased

estimators of tr(Σ2
i ) and tr(ΣiΣj) proposed by Li and Chen (2012); that is,

T̃n = (H − 1)
∑
i

t̃r(Σ2
i )− 2

∑∑
i<j

˜tr(ΣiΣj), (2.6)

where t̃r(Σ2
i ) and ˜tr(ΣiΣj) are given in Remark 1.

Compared with t̂r(Σ2
i ) and ̂tr(ΣiΣj), t̃r(Σ2

i ) and ˜tr(ΣiΣj) have similar

forms, but remove more diagonal terms. If we assume that µ(Y) is a con-

stant function or is constant in every Sni, the latter two estimators are ex-

actly unbiased, such that under Conditions (C1) and (C2), no bias correction

is needed for T̃n. Under H0, we can show that σ̃−1
T̃n,0

T̃n
d−→ N(0, 1), where

σ̃2
T̃n,0

= 4H2(H − 1){t̃r(Σ2
0)}2/l2, with t̃r(Σ2

0) = H−1
∑

i t̃r(Σ2
i ). Under the

local alternative, its asymptotic power can be written as

βT̃n
(θn) = Φ

(
− Lnzα +

√
Hlθ2n
8Kn

)
. (2.7)

Note that if tr2(Σ0)/{l2tr(Σ2
0)} → ∞, the last term in the asymptotic power of

βT ′
n

becomes dominant. Consequently, our proposed test would be more powerful

than T̃n in this setting. Our simulation results in the next section concur with

this observation. In fact, if we assume that the conditional covariance is fixed

as Σi in each cluster, by a similar discussion to that of Proposition 1, the bias

term is (l − 2)−2(H − 1)
∑H

i=1 tr2(Σi). Therefore, correcting the bias using the

estimator t̂r(Σ0), which averages over all clusters, will enhance the power, unless

tr(Σi) is the same across all clusters.

3. Practical Guidelines

3.1. More accurate variance estimates

Although σ̂2T ′
n,0

is a ratio-consistent estimator of var(T ′n), its convergence

is usually slow because l cannot be large for a small to moderate sample size
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n. For example, when n is 400 or 800, l would in general be less than 20, as

required by Condition (C2). Therefore, in practical applications, a more precise

estimator of var(T ′n) is definitely desirable. The following result provides us with

a higher-order approximation of var(T ′n).

Proposition 4. Suppose Conditions (C1)–(C4) hold. Under H0, if p = o(l5),

ltr(Σ4
0)/tr

2(Σ2
0)→ 0, p = o({

∑
i r

4α
1i }−1n1/2l−5/2), and p = o({

∑
i r2i}−1n1/2l1/2),

we have

var(T ′n) =4l−2H2(H − 1)tr2(Σ2
0)

{
l3

(l − 1)(l − 2)2
+

2l

(l − 1)(l − 2)

}
{1 + o(1)}

≡ clσ2T ′
n,0
{1 + o(1)}.

Clearly, liml→∞ cl = 1. However, cl is considerably larger than one when l is

not large. For example, it is about 1.42 when l = 20. Thus, we suggest modifying

our test statistic as follows: {σ̂−1T ′
n,0
T ′n − δn,l}/

√
cl. Our numerical results in the

next section show that, in general, this modified test statistic performs better for

small l.

3.2. Choice of H

Like many other smoothing-based or sliced-based tests, the performance of

the proposed test depends upon the number of slices, H, which is a smoothing

parameter that plays a similar role to that of the bandwidth in a nonparametric

regression. It is widely acknowledged that the optimal bandwidth for a nonpara-

metric estimation is usually not optimal for testing (Hart (1997)), and identify-

ing the selection that optimizes the power of the test remains an open problem.

Asymptotically, a range of H that satisfies the conditions could maintain the con-

sistency of the test, whereas a specific H may maximize the power. The amount

of smoothing applied affects the power of the test. However, we have observed in

our simulations that the observed significance changes mildly over a reasonably

wide range of values for H. In addition, we found that, in general, a large H

leads to better power. This can be understood from the asymptotic power ex-

pression of T ′n in (2.5). The term, |
√
Hlθ2ntr2(Σ0)/{8l2tr(Σ2

0)Kn}|, is often the

leading term and becomes larger with H, resulting in an improvement. However,

in practice, Condition (C2) will be violated if l is too small. An inappropriately

large H will yield a much larger false alarm rate.

Based on Condition (C2) and our numerical experience, we recommend the

empirical ` ∝ n1/{2+min(d,2)}. This formula works well for a wide range of models
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and sample sizes, as shown in Section 4. How to best utilize the data to select

an optimal l for our proposed test is difficult, because it depends not only on the

values of (d, p, n), but also on the types of alternatives. A potential remedy is

to use a hybrid method that combines a sequence of values of l, similar to that

proposed by Horowitz and Spokoiny (2001) in the context of a nonparametric

model specification. Another is to consider the maximum of our proposed test

statistics over a set of values of l. This is similar to the approach proposed by

Zhong, Chen and Xu (2013) in the context of higher criticism. Both are certainly

challenging, and warrant future research.

4. Simulation Study

We consider the following two models, with d = 1 and d = 2. In the first

model, Model (I), the vector X of length p is generated through Xy = rµy+ΓZy,

where Γ = AΣ1/2, with A = diag(Jp/2, 2Jp/2), Σ(i, j) = ρ|i−j|, ρ = 0, 0.5, and

Jk a k-dimensional vector with all components being one. Y is generated from

two distributions: (i) U(2, 4); (ii) N(3, σ2), with σ2 = 0.2. Two cases of µy are

considered. In the first case, Case (I), all components of µy are equal to y. In

the second case, Case (II), the first p/2 components of µy are equal to y, and

the remaining components are equal to y2. Additionally, two distributions of Zy
are employed: N(0, 1), and Gamma(y2, y−1) − y. Under this model, linear and

nonlinear E(X | Y ) are included, and the conditional covariance of X, given Y ,

is weakly dependent, but a constant matrix.

In Model (II), d = 2 and the data-generation process is similar to that in

Model (I). Y = (y1, y2)
T is also generated from two scenarios: (i) two components

are independent from a U(2, 4) distribution; and (ii) y1 = z1+z2 and y2 = z1+z3,

where z1, z2, and z3 are independent U(1, 2) variables. The first p/2 components

of µY are set as y1, and the remaining components are equal to y2. Again,

ZY follows either N(0, 1) or a gamma distribution. In the gamma setting, the

first p/2 components are distributed as Gamma(y21, y
−1
1 )− y1, and the other p/2

components follow Gamma(y22, y
−1
2 ) − y2. All simulation results are obtained

based on 1,000 repetitions, and the nominal level is fixed as 0.05. We adopt the

higher-order expansion form of var(T ′n) given in Section 3.1. The first simulation

results are intended to support our contention that the asymptotic test based

on T ′n can be simple and useful in finite-sample situations, in the sense that the

type-I error can be reasonably well controlled. Tables 1–2 show the empirical

sizes of our proposed test under the model of d = 1 when Y follows a uniform
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Table 1. Empirical sizes at 5% significance under the model of d = 1 and y ∼ U(2, 4).

X | Y Normal Gamma
µY Case (I) Case (II) Case (I) Case (II)

methods T ′
n T̃n T ′

n T̃n T ′
n T̃n T ′

n T̃n
l n p ρ = 0.5

10 200 20 7.6 11.2 7.2 10.4 8.2 10.9 8.4 11.5
40 6.0 9.7 6.7 10.3 7.0 10.9 6.7 10.8

100 4.9 6.8 5.0 7.0 4.2 6.2 4.7 6.9
200 5.8 7.7 5.8 9.4 6.8 9.8 6.8 10.6

1,000 4.8 6.8 10.2 14.3 4.8 7.2 11.2 15.6
600 20 7.3 10.5 7.2 10.3 11.8 14.4 10.2 14.9

40 6.0 8.5 6.0 8.4 5.9 8.5 5.7 8.3
100 6.8 10.1 6.3 10.4 5.9 8.4 5.9 8.5
200 5.1 8.3 4.6 8.2 4.7 5.4 5.3 5.6

1,000 5.5 7.8 4.8 7.7 6.1 9.0 6.5 9.7
15 200 20 8.5 10.5 8.2 11.6 8.0 9.6 9.1 10.8

40 7.0 8.8 7.0 10.8 7.6 9.1 8.4 10.5
100 4.8 6.3 6.2 9.2 6.2 8.2 8.4 12.1
200 5.2 6.9 8.4 10.8 5.2 7.4 7.5 10.4

1,000 5.0 6.5 10.8 15.4 4.6 6.7 12.1 15.6
600 20 7.8 10.0 7.0 9.6 10.9 11.9 10.7 12.2

40 6.1 7.3 5.5 7.4 5.2 7.2 5.3 6.6
100 6.0 8.3 6.1 7.8 5.4 7.3 5.5 7.2
200 6.1 7.6 4.8 7.5 6.0 7.7 6.4 8.1

1,000 4.9 5.9 4.7 7.2 4.8 7.0 6.5 9.4

and a normal distribution with r = 1 and 0.2, respectively. Although we focus

on high-dimensional settings, we also present results for small p, such as 20 or

40. We only present the results for ρ = 0.5 here. The results for ρ = 0 are

reported in the Supplementary Material. For comparison, the results for the test

statistic T̃n given by (2.6) are presented. Here, we do not consider other existing

multi-sample tests for high-dimensional covariance matrices, because Li and Chen

(2012) have shown that their test performs quite well for a considerable range

of dimensionality and distributions, in comparison with some benchmarks. The

empirical levels are close to the nominal level in most cases as n and p increase

together, which shows the effectiveness of the suggested asymptotic procedure.

The performances is not affected by ρ and is insensitive to the choice of l. In

contrast, we observe that the sizes of the T̃n test appear to be more liberal than

those of the proposed test. This demonstrates the benefit of using the high-order

variance estimators suggested in Section 3.1. Note that under the same setting,

the results given in Table 2 are usually worse than those shown in Table 1. This
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Table 2. Empirical sizes at 5% significance under the model of d = 1 and y ∼ N(3, 0.2).

X | Y Normal Gamma
µY Case (I) Case (II) Case (I) Case (II)

methods T ′
n T̃n T ′

n T̃n T ′
n T̃n T ′

n T̃n
l n p ρ = 0.5

10 200 20 7.4 11.5 8.2 12.7 7.7 10.2 7.4 9.7
40 5.6 8.4 5.3 8.7 4.9 7.2 5.3 7.9

100 4.3 6.2 4.3 7.0 4.9 8.4 5.3 8.3
200 6.2 9.1 6.2 8.7 5.4 7.4 5.6 7.9

1,000 4.1 6.3 5.1 7.4 4.7 8.2 5.8 8.7
600 20 8.0 11.0 7.8 11.0 10.0 12.5 10.3 13.0

40 5.9 9.0 5.9 9.3 6.5 10.0 6.2 9.0
100 6.2 8.3 6.4 9.0 6.2 8.0 6.3 8.2
200 5.0 8.6 5.3 9.2 5.5 7.6 5.6 7.8

1,000 5.1 8.1 5.5 9.0 5.7 8.7 6.8 9.0
15 200 20 7.3 8.5 7.3 8.9 10.2 10.7 9.7 11.7

40 5.8 7.3 5.6 7.7 8.1 11.4 7.9 10.4
100 6.4 8.9 6.1 9.1 6.0 7.5 5.7 8.1
200 5.2 6.7 5.6 7.2 6.2 8.3 6.9 8.8

1,000 5.0 6.7 8.2 9.7 5.9 7.6 8.4 10.8
600 20 7.6 9.2 7.8 9.0 9.2 10.8 9.0 10.8

40 6.7 8.8 7.0 8.6 6.9 9.0 7.1 9.5
100 5.2 6.6 5.5 7.1 6.2 7.8 6.4 8.1
200 5.9 7.7 6.5 7.9 6.0 7.1 5.7 6.9

1,000 4.4 6.1 5.7 7.1 5.4 6.7 6.7 8.7

is not surprising because, unlike the uniform distribution, unbounded support of

the normal distribution would yield relatively large r1i and r2i; in such a case, a

large n is required to attain desirable empirical levels. Table 3 shows the empirical

size of our proposed test under the model with d = 2 and r = 1. In most cases,

the proposed test is still able to maintain the empirical sizes, but with the same

sample size, the deviations to the nominal level become more pronounced than

those in Tables 1–2. This is expected because as the dimension of Y increases, r1i
and r2i get larger and, accordingly, the convergence of the proposed test statistic

becomes slower.

To evaluate the power performance, we consider the alternative Σ(y) =

{1 + θn(y − 2)}Σ0 when d = 1, and Σ(y) = [1 + θn{(y1 + y2)/2 − 2}]Σ0 when

d = 2, where θn = 0.1, 0.2, 0.3, 0.4. Figures 1–2 show the empirical power curves

against θn when d = 1 and d = 2, respectively. For a relatively fair comparison,

we conduct a size-corrected power evaluation, in the sense that the actual criti-

cal values are found using simulations such that all tests have accurate sizes of
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Table 3. Empirical sizes at 5% significance under the model of d = 2.

X | Y Normal Gamma
scenarios (i) (ii) (i) (ii)

methods T ′
n T̃n T ′

n T̃n T ′
n T̃n T ′

n T̃n
l n p ρ = 0.5

10 200 20 6.0 9.2 7.0 10.1 8.0 10.4 8.2 10.9
40 7.6 10.4 5.8 8.7 5.9 9.1 6.7 9.9

100 5.4 8.6 5.3 8.3 5.8 7.8 5.6 8.1
200 5.5 8.1 4.7 7.7 4.9 8.1 5.9 8.7

1,000 5.9 8.7 7.2 8.7 6.4 8.6 7.4 8.8
600 20 9.3 12.4 8.4 11.6 7.8 10.1 8.2 10.8

40 5.4 8.4 6.9 10.1 6.9 8.9 7.8 10.8
100 6.4 9.2 4.8 8.4 7.3 10.1 6.5 9.5
200 5.5 8.8 6.5 9.4 5.5 8.0 5.3 8.2

1,000 5.5 9.1 5.8 8.1 5.9 7.7 6.7 8.8
15 200 20 5.1 7.5 5.5 8.9 6.3 9.1 7.6 9.9

40 4.4 7.4 4.8 6.7 4.6 8.2 5.6 8.4
100 5.4 8.2 5.2 7.9 4.6 7.3 4.9 7.9
200 4.8 7.2 4.6 7.2 5.9 8.4 6.0 9.3

1,000 4.0 7.3 6.1 7.4 5.7 8.5 6.8 9.7
600 20 5.7 8.7 5.5 8.0 8.5 11.5 7.4 9.9

40 6.4 9.2 4.3 6.9 5.9 8.0 7.7 10.3
100 4.4 7.6 5.5 9.9 5.5 7.8 4.1 6.7
200 4.9 7.2 4.6 7.5 5.1 7.2 6.0 8.4

1,000 5.1 8.3 4.4 8.0 5.7 8.7 6.8 9.2

0.05 in each scenario. With the same choice of l, T ′n performs uniformly better

than T̃n in almost all settings. This finding is consistent with our asymptotic

comparison in Section 2.3. The performance of T̃n improves as l grows from 10

to 30, whereas T ′n generally performs better with smaller l. These results concur

with the asymptotic power expressions (2.5) and (2.7).

For a more comprehensive comparison, we consider a natural benchmark that

weights samples using unimodal kernels. Specifically, we extend the estimators

of tr(Σ2
i ) and tr(ΣiΣj), respectively, as follows:

̂tr(Σ2
Y)

=

∑∑
s 6=t [{Xs − θ∗s({s, t})}T[Xt − θ∗t ({s, t})}]

2Kh(Ys −Y)Kh(Yt −Y)∑∑
s 6=tKh(Ys −Y)Kh(Yt −Y)

,
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Figure 1. Power performance of T ′
n (solid) and T̃n (dashed-dot) for the model with d = 1

and fixed p = 400 in settings where Y ∼ U(2, 4), µY comes from Case (I) and ρ = 0.5.

̂tr(ΣYΣY′)

=

∑∑
s 6=t [{Xs − θ∗s({s, t})}T{Xt − θ∗t ({s, t})}]

2Kh(Ys −Y)Kh(Yt −Y′)∑∑
s 6=tKh(Ys −Y)Kh(Yt −Y′)

,

where θ∗s({s, t}) =
∑

k 6=s,t XkKh(Yk−Ys)/
∑

k 6=s,tKh(Yk−Ys) and the function

Kh(y) = h−dK(y/h), with a unimodal kernel K(·). Then, the test statistic is

constructed by

Tn,h = (n− 1)

n∑
i=1

̂tr(Σ2
Yi

)− 2
∑∑
1≤i<j≤n

̂tr(ΣYi
ΣYj

).

Note that the computational burden of Tn,h is considerably heavier than that of

T ′n because it needs to compute all pair differences for n samples. When n is not

small, such as 200, Tn,h is not easy to obtain within an acceptable time. To make
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Figure 2. Power performance of T ′
n (solid) and T̃n (dashed-dot) for the model with d = 2

and fixed p = 400 when Y comes from scenario (i) and ρ = 0.5.

the computational cost comparable to that of T ′n, a naive method is to randomly

choose k0 points from n samples, denoted as an index set M. Then, the test

statistic is given as

Tk0,h = (k0 − 1)
∑
i∈M

̂tr(Σ2
Yi

)− 2
∑∑
i<j;i,j∈M

̂tr(ΣYi
ΣYj

).

To make the tuning parameters comparable, we let nhd = l and k0 = H be-

cause they basically imply similar quantities of “effective” sample sizes. Here,

we use the Epamechnikov kernel as K(·), and derive the critical value of Tn,h by

numerical simulation.

Table 4 presents the power performance of T ′n, T̃n, and Tn,h for the model

with d = 1 and (n, p) = (80, 400). Because n is relatively small, we can compute

Tn,h for comparison purposes. Similarly to the results shown in Figure 1, T ′n
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Table 4. Power performances of T ′
n, T̃n and Tn,h for the model of d = 1, with (n, p) =

(80, 400), where Y ∼ U(2, 4), µY comes from Case (I) and ρ = 0.5.

ρ = 0.5 l = 8 l = 10 l = 20

θn T ′
n T̃n Tn,h T ′

n T̃n Tn,h T ′
n T̃n Tn,h

Normal case
0.0 3.9 7.9 6.3 5.2 8.1 6.4 7.2 8.4 6.8
0.1 6.4 9.3 10.8 5.6 8.2 10.1 7.6 9.2 9.1
0.2 11.3 11.6 13.3 9.7 11.0 13.3 12.0 12.7 11.1
0.3 20.1 14.2 17.4 15.8 13.5 17.6 15.6 15.6 14.4
0.4 29.4 14.0 25.1 25.9 15.9 25.8 25.7 23.3 19.7

Gamma case
0.0 5.7 8.3 6.2 4.5 7.0 6.9 9.0 10.6 5.9
0.1 5.8 8.6 8.6 6.9 9.2 7.9 6.7 8.2 8.3
0.2 10.0 10.1 12.1 9.2 9.8 10.0 11.2 12.4 9.5
0.3 19.1 13.3 16.7 15.0 12.0 14.9 16.0 16.0 12.7
0.4 27.0 12.9 25.5 23.7 14.1 21.0 24.8 22.4 15.7

Table 5. Power performances of T ′
n, T̃n, and Tk0,h for the model of d = 1, with (n, p) =

(200, 2, 000), where Y ∼ U(2, 4), µY comes from Case (I), and ρ = 0.5.

ρ = 0.5 l = 10 l = 20 l = 30

θn T ′
n T̃n Tk0,h T ′

n T̃n Tk0,h T ′
n T̃n Tk0,h

Normal case
0.0 4.2 6.7 5.8 5.1 6.0 6.9 5.7 6.5 5.0
0.1 15.0 9.9 6.3 8.6 8.1 4.7 8.6 8.6 7.2
0.2 63.0 11.6 11.5 23.5 11.9 6.5 21.9 15.5 9.4
0.3 97.9 13.5 10.7 55.7 20.0 7.8 39.6 22.9 10.2
0.4 100 19.9 14.8 82.1 27.8 12.1 66.1 35.6 15.5

Gamma case
0.0 4.6 7.5 5.5 5.3 7.0 5.5 6.2 7.3 4.5
0.1 13.9 8.6 6.2 8.6 7.9 6.0 9.4 9.2 8.2
0.2 60.5 12.2 7.3 23.8 13.4 7.5 19.1 13.5 11.1
0.3 98.4 16.4 9.2 54.4 19.5 9.7 41.2 24.1 12.3
0.4 100 18.4 13.0 81.8 27.2 14.4 65.2 34.4 19.4

gains power as l decreases. In contrast, T̃n gains power as l increases because,

in these cases, the last term in the asymptotic power of βT ′
n

becomes dominant.

Clearly, the power of Tn,h shows no significant improvement. Table 5 reports the

simulation results of T ′n, T̃n, and Tk0,h for the model with d = 1 and (n, p) =

(200, 2, 000). Because n is relatively large, we only include Tk0,h for comparison.

T ′n outperforms Tk0,h, as expected.

Previous results show that l can have a significant effect on the power per-

formance of our method. Motivated by the discussion of the power function in
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Table 6. Power performances of T ′
n for the model of d = 1, with (n, p) = (200, 400), in

different l under the first alternative.

l
θn 6 8 10 12 14 16 18 20 22 24 26 28 30

Normal case
0.0 4.8 5.8 4.4 5.6 5.1 4.8 4.9 5.3 4.7 5.8 7.1 5.0 5.1
0.1 10.2 7.3 6.5 6.5 5.7 5.5 5.4 6.1 7.0 6.9 8.3 7.9 9.0
0.2 20.0 15.8 14.2 14.3 10.7 12.5 10.8 10.0 11.4 12.4 13.5 12.0 14.9
0.3 48.8 34.4 25.8 21.5 21.3 20.3 21.6 21.6 21.5 19.5 22.6 21.7 23.4
0.4 79.4 59.1 47.4 40.3 35.0 34.3 30.6 31.7 33.5 34.2 37.0 36.1 36.8

Gamma case
0.0 5.1 4.6 6.1 5.6 5.5 5.2 5.9 4.9 5.7 5.8 4.4 6.3 6.2
0.1 10.5 8.2 8.8 6.6 6.8 6.8 7.7 6.2 7.3 8.9 7.4 7.3 5.7
0.2 23.1 19.5 13.3 9.4 11.4 9.9 12.3 12.1 11.2 12.1 11.4 13.5 12.0
0.3 51.2 32.7 25.3 23.9 23.4 21.5 20.3 21.4 19.8 21.2 24.0 22.5 24.2
0.4 79.5 57.3 45.4 38.9 34.8 35.4 30.2 32.6 33.8 32.7 35.4 36.2 38.5

Table 7. Power performances of T ′
n for the model of d = 1, with (n, p) = (200, 400), in

different l under the second alternative.

l
θn 6 8 10 12 14 16 18 20 22 24 26 28 30

Normal case
0.0 4.5 4.7 6.3 4.7 3.8 4.4 4.9 6.2 5.5 6.5 5.6 5.9 5.8
0.1 5.3 5.9 5.6 6.8 6.3 6.9 5.6 8.0 9.2 8.9 7.2 9.2 8.9
0.2 7.0 9.6 10.1 12.7 11.9 14.8 16.9 14.1 16.0 18.6 20.5 20.1 21.6
0.3 14.2 16.2 19.4 26.5 29.4 34.3 33.1 39.2 40.8 45.3 48.8 50.1 55.4
0.4 25.9 38.3 46.8 55.6 59.7 67.5 71.7 78.1 81.2 85.4 89.6 88.5 91.6

Gamma case
0.0 5.2 5.3 4.8 4.4 5.0 3.7 4.6 5.2 5.7 6.3 6.5 5.9 7.5
0.1 6.4 5.9 7.0 6.7 7.7 7.6 6.5 6.4 9.8 9.0 8.8 9.7 7.5
0.2 9.6 9.5 10.1 12.6 11.9 12.1 13.3 16.1 15.5 18.0 19.2 19.0 21.2
0.3 16.5 20.0 24.3 26.1 28.4 32.8 38.2 41.8 45.1 46.7 51.0 50.8 55.0
0.4 30.3 39.1 49.0 52.6 62.1 66.1 72.0 77.2 80.0 83.1 88.0 87.9 90.5

Section 2, two simple experiments were conducted to further examine the role of

l. Alternative 1 is generated as in Figure 1, whereas alternative 2 is generated

as Σ(y) = I(y < 3)Ip + I(y ≥ 3)Σ∗, where Σ∗ij = θ
|i−j|
n , with no changes on the

diagonal. By the asymptotic power expressions (2.5), we expect βT ′
n

(in l) to be

a convex function under the first alternative, but a monotone increasing function

under the second. This was verified by the simulation results in Tables 6–7.
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5. A Real-Data Application: Cardiomyopathy Microarray Data

In this section, we apply our proposed methods to cardiomyopathy microar-

ray data. This data set has been studied by, among others, Segal, Dahlquist

and Conklin (2003), Hall and Miller (2009), and Li, Zhong and Zhu (2012).

These works typically try to identify the most significant genes for the overex-

pression of a G protein-coupled receptor (Ro1) in mice. The data set contains 30

samples. Compared with the small sample size, the dimension of the observed

real-value vector in each sample is very large (i.e., 6,320). That is, a univariate

Y denotes the Ro1 expression level, and its corresponding 6,319 Xk are other

gene-expression levels.

We first test the constancy of cov(X | Y ), which can be regarded as testing

whether a heterogeneous effect exists in Ro1. If the underlying heterogeneous

effect is ignored, the test for detecting differences in gene expression levels might

lose power. After removing obvious outliers in Y , the respective p-values of T ′n
and T̃n are 0.0645, 0.0713 for l = 5; 0.0006, 0.0002 for l = 6; and 0.0011, 0.0002

for l = 10, which imply that cov(X | Y ) is stochastic and that the heterogeneous

effect exists.

Furthermore, by applying the standard SIS procedure (Fan and Lv (2008)),

we select the top bn/ log nc X and then fit a single-index model,

Y = `(βTX) + ε.

Here, we consider two estimates of β: β̂, from the sliced inverse regression (SIR)

procedure (Li (1991)); and β̃, from the sliced average variance estimation (SAVE)

procedure. In both cases, we use the R package dr . Because the result of the

hypothesis test for the dimension of the central subspace revealed that there

is only one dimension-reduction direction, a single-index model suffices for our

study. We next test whether cov(X | βTX) is nonrandom. Our motivation is

that if the constant conditional variance (CCV) assumption is violated for these

data, that is, cov(X | βTX) is random, then the fit between Y and β̃TX would

be worse than that between Y and β̂TX, because SAVE relies on CCV, whereas

SIR does not.

Figure 3 shows a scatter plot of Y versus a linear combination of the gene-

expression levels β̂TX identified by SIS-SIR and the top one X ranked by SIS.

The figure shows that β̂ from SIR is closer to the true β, and thus we can test

cov(X | β̂TX) instead. This intuitive reasoning is checked further in additional

simulation results in the Supplementary Material. The respective P-values of T ′n
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Figure 3. The scatter Y versus the linear combination of gene expression levels β̂TX
identified by SIS-SIR and the top one X ranked by SIS.

and T̃n for testing cov(X | β̂TX) are 0.0278, 0.0079 for l = 5; 0.0781, 0.0417 for

l = 6; and 0.0018, 0.0004 for l = 10, which implies that cov(X | β̂TX) varies

and the CCV assumption is indeed violated for these data. The R2 values based

on the estimators from SIR and SAVE are 0.9628 and 0.0135, respectively, both

computed by the R package dr . As expected, SIR performs far better because it

does not require the constant variance condition on which the validity of SAVE

so heavily relies.

Supplementary Material

The online Supplementary Material contains all technical proofs, as well as

several additional simulation results.
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