Statistica Sinica: Supplement

New Parsimonious Multivariate Spatial Model: Spatial Envelope

S1 Brief Review of Linear Coregionalization Model

Linear Coregionalization Models (LCM) is popular in multivariate spatial
data analysis. This model assumes that the observed variables are linear
combinations of sets of independent underlying variables and they covary
jointly over a region. Various methods have been proposed for fitting LCM
in literatures including least square approach (Goulard and Voltz,[1992)) and

expectation maximization (EM) algorithm (Zhang, 2007)), among others.

Let Y(si) = (y1(si),---,y-(s:))" be an r-variate stochastic spatial response
vector along with p regressors X (s;) = (z1(s;),...,2,(s;))T observed at
locations s = {s1,82,...,5,; s € R%¢ = 1,2,...,n}. The most basic

version of the LCM can be written as

Y(si) = p+ > Wisi), (S1.1)

where p denotes the mean. The mean term, p, shows the trend in data
and it is common to use a linear model of covariates such as a4+ B8X (s;) to
model this term. In model (S1.1]), Wy(s;) is a stationary but uncorrelated
r-variate process with mean 0 and multivariate covariance function ¥y =

V. Furthermore, for k = 1,..., K, Wy(s;) are i.i.d spatial processes with
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mean 0 and multivariate covariance function ¥y = Vipi(h) where h =
||s; — s;|| denotes the Euclidean distance between location s; and s;. The

log likelihood function of model ([S1.1) can be written as

1
log LIA,Y, W) = —ilogdet(Eo)
K T K
(Y—u@l—zwk) »;! (Y—u@l—zwk>
k=1 k=1

(log(det(Zy)) + Wi, "W, ,

N | —

|
DN | =
]~

el
Il
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where Y = (Y% (s1),...,Y"(s,))" denotes the reponse, A = (i, Vo, Vi, p); k =
1,..., K, denotes the parameters in the model, ® denotes the Kronecker
product, and 1 is a vector which all of its entries are 1. In addition, for the
spatial processes, let Wy, = (Wii(s1), ..., Wii(s,))", Wi = (W, . .. ,WZP)T,
and W = (W{,...,W{)T. Since in the LCM, the W are unobserved, the
expectation-maximization (EM) algorithm can be applied to estimate the
parameters. For further information on the EM algorithm for maximum-
likelihood estimation of the LCM, see Zhang (2007) and the references

therein.
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S2 Derivation of the factorization of the likelihood

function in section 4.1

The likelihood function of the model (3.6) will be as follows:

N|=

L*(e, 8%, Vo, V1,0) = [det((Vo + V1) @ p(0))]

X exp {—%(Y —a®1, - XB8) " (Vo+V)®p0) " (Y -—ax1, - X,B*)}

[NIES

= [det(Vo ® p(0) + V1 ® p(0))]”

(Y-a®l,—X8" (Vo+ V) '@p'(0) (Y -a®l, - Xﬂ*)}

1
X exp 5

[N

= [det(Vo @ p(0) + V1 @ p(0))]”

<eop{ - 5(¥ ~ @@, - X8 ((Vho p6) + (Ve p(6) (v - a1, ~ X5},
(S2.1)

where T denotes Moore-Penrose inverse and Vo = T'(Q2I'g and V; =
'y, Since span(B) C span(V;) and B8 = I'im, therefore we have

BT = n"I'T which means

B* = vec(B') = vec(n'TT) = (T @ n")vec(1,).
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Last equality holds by the results of theorem 11.6a in [Seber| (2008)). Thus

we have

(Vi p ' (0)Xp" = (Vi@ p ' (0)I, © X)8"
= (Vi@ p™(0))(I, © X)(Ty @ n" Jvec(T,)
= (VIT1 @ p'(0)Xn" )vec(1,)
= (Lo 'TGT1 @ p~ ' (0)Xn" Jvee(L,)

=0,

the last equality holds because I'; and I'y are orthagonal. Therefore, Since
(Vi@ p~1(0)XB* = 0 and V = V; + V, the likelihood in (S2.1)) can be

factored as:

L*(et, B, Vo, V1,0) = [det((Vo + V1) ® p(0))

1 _
X exp {—§(Y —a®1, - Xg)" (VI ®p 1(9)) Y-—a®1l, — Xﬂ*)}
X exp {—%(Y —a®1,)” (VEL) ® p_1(9)> Y -—a® 1n)}

= L1f<a7ﬁ*7vl7 0) X Lg(aav(h 0)7
(52.2)



S2. DERIVATION OF THE FACTORIZATION OF THE LIKELIHOOD
FUNCTION IN SECTION 4.1

where

Li(e, 87, V1,8) = [deto(V1)] 2 [det(p(6))]
% exp {—%(Y —a®1,-X8) (Viep(0) (Y -as1,- XB*)} |
L, Vo, 0) = [deto(Vo)] ¢ det(p(0))]

X exp {—%(Y —a®1,)’ (VS ® p_1(0)> (Y —-—a® ln)} ;
(52.3)

where dety(A) denotes the product of non-zero eigenvalues of A where A

is a non-zero symmetric matrix. This is due to

det((Vo + V1) & p(0)) = det[Vo ® p(0) +V® p(O)]
= deto[Vo ® p(0)] + deto[V1 ® p(6)]
= [deto(Vo)]"[deto(p(0))]" + [deto(V1)]"[deto(p(6))]

= [deto(Vo)]"[det(p(0))]" + [deto(V1)]"[det(p(8))]"

the last equality holds because is p(0) a full rank positive definite matrix

therefore dety = det.
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S3 Coordinate free version of the algorithm of the

spatial envelope

The objective is to maximize the likelihood in (3.7) over «, 8*, Vg, V1, and

0 subject to the constraints:

span(B) C span(Vy), (a)
(S3.1)
V()Vl - 0, (b)
Based on this factorization given in equation (S2.2]), we can decompose the

likelihood maximization into the following steps:

1. Fix B, Vy, V1, and 0, and maximize L™ in (3.6) over a which will
be:
a=Y-X3".

Let H=Y-Y®1,, U=vec(H),G=X-X®1,,and F=1,®G.

Therefore, the profile likelihood can be written as the following:
LY(8*,V1,0) = [deto(V1)] 2 [det(p(6))] 2
<expl—tu_EpT (VT® “1(9)) (U - F@'
p—s (@ p(0)) (U-FB") b
(S3.2)

and

L3(Vo,8) = [deto(Vo)]~*[det(p(0))] 2 eap {—%UT (VE ® 0’1(9)) U} :

(93.3)



S3. COORDINATE FREE VERSION OF THE ALGORITHM OF THE SPATIAL
ENVELOPE

2. Fix V4, and 0 and maximize the function L} over B*, subject to

(S3.1h), to obtain LY (V1,8). Since vec(AB) = (I, ® A)vec(B”) and
tr(DY(CTBTAT)) = (vec(D))" (A @ CT)(vec(B))T,

we have
(U-F8)" (Viep (0) (U-FB) = tr (H-GB")p ' (6)(H - GB")V])
—tr ((H-GB")"p 4 (0)p 3 (0)(H - GA") V)
—tr (p 3 (O)H - GB")VI(H - GB")"p 4(9))
—ir ((p—%<0>H ~pH0)GET) V] (phOH - p i (0)GA") )
((

1 1 T t 1 1 7+ \ 1
p HOH — p H(0)GA'L) VI (p 5 (O)H - pH(0)GA"T, )
(S3.4)
where tr(-) denotes the trace of the matrix. The last equality in equa-

tion (S3.4)) is from Lemma 4.1 in |Cook, Li, and Chiaromonte| (2010)).

Thus, the optimal p~2(8)GA71L, is

_1 T - _1
P(P‘%(wG) (p 2<3>H) P(IT(VI» B P(p‘%(mG) <p(9) QH) Py,
where P is the projection onto the subspace indicated by its argu-

ment. This implies following

AT = (GTp ' (9)G) ' Gp '(§)HPy, = B = Py, B,

where 3 is the MLE estimate of 3 from the full model (3.6). Substitut-
ing this into 1} and using the relation PVIVi = VI, the maximum
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of L{" for fixed V; over B is

LY, (V1,0) = [deto(V1)]~ 2 [det(p(8))] 2

T
! “SH - -3 1 “3H - -3
X exp {2t7“ ((P(e) H P(p,%(e)c>ﬂ (9)HPV1) Vi (P(e) H P(p,%(e)G>P (9)HPV1> ) }

= [deto(V1)]~ % [det(p(0))] "2

T
Lo [ (ot o - -4 (ot oym - -4
X exp {—2t7‘ ( (p (0)H P(p_% oG p (9)H> A2 (p (6)H P<p_%<6)G)p (0)H> ) }

T
= [deto(V1)]™ % [det(p(6))]~ 2 exp {—;tr ((Q (-Ho0) p—%(o>H> vi (Q (-1o0) p—%(e>H) ) }

where Q(pi%(G)G> = In — P(pfé(H)G) .
. Maximize L*(Vy, V1, 0) over all Vo, Vi, and 6. Since L*(V, V1,0) =
LY (V1,0) x LY(Vy,80), we have

L*(Vo, V1,0) = [deto(Vo)]* [deto(V1)] 2 [det(p(6))] "

X exp {—%tr ((Q(p%(e)(;)p‘%(B)H) Vi (Q<p%(o)c) P‘5(0)H) T) }

= [deto(Vo)] 2 [deto(V1)] ™% [det(p(6))] "

This maximization can be as follows:

(a) Fix Vo and V; and maximize L*(Vy, V1, 0) over @ by solving the
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following maximization problem:

6= arg;nin{*r det(p(0))
1 _1 _1 g 1 T _1
o ((Q(p;(e)c)p 2(0>H) v <Q(p;(g)c)p(0) H) +p HOHVIH 2(@)}.

(b) Fix the 6 and maximize L“(V,, V1,0) over Vo and V;. This
means maximize LY}, (Vy,0) over Vi and LY, (V, 8) over V. Max-

imization LY (Py,) over V7 is

LY (Py,) [deto (Pvl (HTP_é(mQ(p%(e)G)p _2<0)H> PVN

(S3.7)
and maximization L}, (Pv,) over Vj is
LYy (Pv,) o [dety (Pv,H p ' (0)HPv,)]| * (S3.8)

Therefore, maximization L*(Vg, V1, 0) over Vi and V7 is equiva-

lent to maximization of LY, (Pv,) x Li,(Pv,) which is proportion

to
[ T 1 _1 i
D = |deto | Pv, | H p 2 (9)Q<p7%(9)G>p 2 (G)H Pv,
X [deto (PVOHTp‘l(e)HPVO)] 2
r -3
= |deto (Pvl <HTP_ 2 (O)Q <p*% (9)(;) p 2 (0)H> PV1 + PVo HTp_l (G)HPVO)
: -3
_1 _1 _
= |deto (Pvl <HTP 2 (G)Q(p*%(e)c)p 2 (0)H> Pv, + QVOHTP 1(0)HQV0
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where Qy, = I, — Pv,. Since Sy = H p~'(§)H and

- - -1 -
—~H'p'(0)G (G"'p™'(0)G) G'p '(0)H.
Therefore we have D = det(Pv, Sres Py, +Qv, EA]YQVI) and V, =

argminy, (D) and Py, =1, — Py,

Repeat (a) and (b) until the difference between estimations of the pa-
rameters from two consecutive iterations is smaller than a pre-specified

tolerance level.

S4 Proof of Lemma 1

In this section, we derive the Fisher information matrix for the parame-
ters given by equation (4.2). Before starting the derivation, the following

properties hold:

1. Suppose A and X are both r x r, and X is symmetric, then

Ovech(X ™)

(Doech(X))7 =-C, (X"'9XHE,

where E, € R™*7(r+1)/2 i an expansion matrix such that for a matrix

A, vec(A) = E,vech(A), and C, € R'+1/2< i5 expansion matrix
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which is defined such that for a given matrix such as A, vech(A) =
C,vec(A) and E, € R”*"("+1/2 ig expansion matrix which is defined

such that vec(A) = E,vech(A).

. If X is nonsingular and unconstrained, then we have

otr(AX'B)

_ —1 —I\T
= (XTBAXTHT

. If Y = AXB, then
tr(Y) = vec(ATB  Yvec(X) = vec(A"BT)E,vech(X),

and
otr(Y)

_ TRT
Fvec(X) vec(A"B").

. Suppose B is an m x n and B, is an n X ¢, matrix, then

vec(B1Bs) = (By ® I, )vec(By).

. Suppose X is an m x n and A is an n X n, matrix, then

Ovec(XAX)

oec))t — XA OT)Lun + (L@ XTA).

. Assume X to be m x n . Then we have,

O(XTAX)

= AX + ATX.
X +

. Let Pg, denotes the projection of E,.(E'E,)'E! then, Pg, = E,C,

and E'E,C, = ET,
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Proof of the first six properties can be found in |Seber| (2008). The proof of
the last property can be found in (Cook, Li, and Chiaromonte| (2010))

The logarithm of the likelihood function (3.7) is

1 1
((©) = —3 log[det(Vep(8))] -5 (Y —ae1,—XB)" (Vap(9)) (Y —ae1,-X3")
(S4.1)
where ® = {V,«, 3*,60}. First and second derivatives of the log likelihood

function in (S4.1)) with respect to 3* are

First derivative: 621(8(?) =X'V'ep @)Y -ax®1l, - X3,
2
Second derivative: &Q)T = -X'(V'ept6)X
9B*0B*

= —(LeX")(V'ep (0)(I,®X)
= -V'e (X"p(0)X)
From (3.7), we can rewrite the log likelihood function as

((©) = — log[det(V)] — 5 log[det(p(6))]

- %tr ((P_;(O)H — p_%(B)GBT) v (p—%(Q)H _ p_%(O)G,BT)T
(54.2)

The tr(-) is due to
(U—FBY (V"' & p(0)(U—Fg") — tr ((H - GBY p ' (6)(H — GE)TV")

—tr ((pHOH - p 3 (0)GE") V! (p 5O - pE(0)GA") ).

Therefore, the first derivative of the log likelihood function in (S4.2)) with



S4. PROOF OF LEMMA 1

respect to V is oU®) _ 04O) Jdvec(V)

dvech(V) ~— dvec(V) dvech(V)? where
ol(O) n AT
aa St NN v E
dvech(V) o Vee ( )

+ Svec {v—l (o @ p i O)Ca") (pi(0)H -~ p i (0)aB) v—l} E,

= —gvech (V_l)T E'E.

+ %vech {V—l (p*%(e)H . p%(e)G5T>T (p*%(e)H . p’%(H)GBT) V—l} E'E,
(S4.3)

and second derivative of the log likelihood function in (S4.2) with respect
to V is

0%4(©) N_T 1 -1
= —E E,.
Avech(V)dvech(V)T 27" (V=evT)
- %AV*lEZ(V*1 ©V )CTE'E, — %ATV’lET(V’l %V Y)CTETE, (34.4)

1

where A = <p’§(0)H — pé(H)GBT>T (p’%(O)H — p’%(H)GﬁT) Thus,

0%0(©) g »
(8vech(V)8vech(V)T>__EEr(V ® VTE,

Finally, we have to calculate %Bgf% an ﬁ%. Since these

two are equal, we only calculate the second one.

02((©) 52((©)

dvech(V)OB*"  Ovech(V)d(vec(BT))T

vee {v-l (rtoH - pho)ca") (o HOH - pi0)GH") v—l} E,

"2 d(vec(BT))T

_ lvec (V' (H"p'(0)H- BG p ' (0)H-H p 1 (0)GB" + BG"p~'(6)GB") V'] E,
> d(vee(BT))" '

(S4.5)
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The derivative of vec (V'H" p=2(0)HV ') E, with respect to vec(8”))"
is zero. Furthermore, using matrix algebra, we have
vee (V'BG p () HV ") = (VT'H p 'G @ V) vec(B)
= (V'H"p'G o V) K,vec(8")
vec (V7'H p~(0)GB" V") = (V'@ V'H p1(0)G) vec(87).
where K, € R"™*"? is the unique matrix that transform the vec of a matrix
into the wvec of its transpose i.e. for a given matrix such as A € R™*" we
have vec(AT) = K,nvec(A). More properties of K,,, can be found in

Cook, Li, and Chiaromonte (2010) lemma D.2. Therefore, we have
vec (V'BG p~1()HV )

=(V'H'p'GeoV K,

d(vec(BT))"
vec (VIH  p=1(0)GBTV ™! _ ~ _
= VeV o))
vee (V1B8GTp~1(0)GBTV ™! B B B B B B
V2DGTp OISV (w96 p 016 6 V) Ky + (V7 6V 1AGT 7 0)G)
(S4.6)
Substituting in equation ((S4.5)), we have
826(6) . 1 1 ™T _q -1
duech(V)oB" 2 {ViE-as) p@Ge VKB, 47

1
+3 {V*1 oV (H-Ga")" p_l(B)G} E,

Taking the expected value of these derivatives together and the fact

that

lead to obtain (4.4).
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S5 Proof of Theorem 1

In this section, we derive the an explicit expression for ¥ as given by (4.3).

In order to find these expression, we need to find expressions for the eight

partial derivatives g;’f fort=1,2and 5 =1,2,3,4.
J
Theorem 1: Suppose X = 0 and J is the Fisher information for ¢ (¢)

in the model (3.6):

0 B (V'@ VY E,
V' (pr—l(e)x> 0

0 IEf (Ve VY)E,

Then
V(g — ¢) = N(0, Ag) (S5.1)

where Ag = U(UTAW)IW, A = J ! is the asymptotic variance of the MLE

under the full model, and ¥ is as follows:

K.p(I, @ T) K,(n"®L) 0 0

0 2C, (T @I —T1 @TyQI') C, (I ®T)E, C.(Ty®T\)E,_,

Furthermore, A2 (A—AO)A’% > 0, so the spatial envelope model decreases

the asymptotic variance.
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Proof: We can rewrite 8* as follows

B =vec(n'TT)

= K, vec(T'1n)
(S5.2)
— K (I, @ Ty )vec()
=K,,(n" @ I)vec(Ty).
Therefore, the derivatives of 1, with respect to ¢7 is
I B 9 [Kip(I, @ T'y)vec(n)]
= = =K, (I,®I),
957 ~ Avecm)T  dlveem))” et

and the derivatives of ¢; with respect to ¢I is

0 oF* 0K,,(n" @I, )vec(T
1/}711 _ /6 = — [ p(n ) - ( 1)] — KTp(nT ®Ir) (853)
0¢s  O(vec(I')) O(vec(I'y))
It is clear that g(% = 3%4} = 0.
The derivative of g% to g% are similar to those in |Cook, Li, and
1 4

Chiaromonte| (2010). Having these derivatives together lead to obtain (4.3).
The asymptotic distribution ((S5.1)) follows from |Shapiro| (1986). In

order to prove that Ag < A, we have

N

Ao—A =T —WWTAW) O = J3 [IWMTH) P J%qf(xpTAxp)T\pJ%] J-

Since the matrix I,y (41)/2 — J%\IJ(\I'TA\II)T\IIJ% is the projection on to
orthogonal complement of span(J %\P), it is positive semidefinite, which im-

plies that Ag — A is also positive semidefinite. In addition, we have

A_%(A - A())A_% - Ipr+r(r+1)/2 - J%\I/<\I/TA\1/)T\I/J%
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which proves the last statement of the theorem.

S6 Proof of Corollary 1

In this section, we restate and proof the corollary 1.
Corollary 1: The asymptotic variance (avar) of /n3* can be written

as

X7 p(6)-1X\
L) @ TYUTT + (07 @ To) (WEIW,) (@ roT)} K,

n

wartyi = 6,
(86.1)

T
oY1 0
where WUy = <%, ﬁ) )

Proof: Using lemma 1 and theorem 1, the asymptotic variance of \/n3*

can be written as
avar(v/nB*) = K (WTJ0) KT + K, (0130, KT

( T
where ¥; = (g‘% g%) K1 =K,,(I,®T) and K, = K,,(n”®T,). Using

straightforward matrix multiplication and corollary D1 to D3 in (Cook, Li,

and Chiaromonte, (2010) complete the proof.

S7 Proof of the comparison between the variance of

the envelope and spatial envelope models

In this section, we restate and proof the equation (4.8).
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For the simplify version of the spatial envelope and envelope, it can be

shown that

xTp~(0)X
Vi VenVs XTp (0%, S (1 f> rory (S7.1)
EN + 0 ’ .
SPEN SPEN = nol T (03 —0?)2 + 020% 18|12 ’

where Vgprny shows the asymptotic variance of the spatial envelope model,
V g shows the asymptotic variance of the envelope model, and 0% denotes
the variance of the variance of the X which is a n x 1 vector.

Proof: For the simplified version of the mode, the asymptotic variance

for two models are:

2 2 2. T
07 T 0p01M" M
” = —I'T T F
Uar(\/ﬁBE 2 cr% tr aia%n 77+(Uo 01)? °
2 2. T
Uar(\/ﬁ/g*) — LF]I‘T—F nO'oaln TI FOF(’J;’

X'p (@)X X p ()Xot n + n(of — 0})’
therefore, to compare the variance of two models, we have

XTp~1(6)X (03 —0})* +o7X" ’I(O)Xn n

VIZ. VauVo: rrf 4+ 2 Tol'g
SPENYENVYsSpEN — no—%( 1 n(o’o—o'l)2+7’l0' or "7 n om0
_ MI‘ rT 4+ n(of —of)® +o7X" 71(0)Xn TporT
_ . 17 3 oL’y
no% n(O'O—O'l) +no? UXTI n
XTp~-1(6)X
+ piQ()I‘O[‘g
TLO'X
_ w - _prfl(e)ern(aofol) +oiXTp (@) XnTn ) [ 1o
nUX nUg( ”(0 _01)2+"010X77 n ’
S _— nog=of)?® |
XTp=1(9)X XTp=1(9)X XTp—1(6)X ain’n T
= ) I+ ) -1+ (02022 I‘()FO
noyx noyx &_&_gln n
%
XTp-1@)X. XTp=1()X (o —o2)® (m_%)
= pn2 L+ 22 —l+1+ (02—02)2 | Tord
o g -
X X %4‘0 nTn
2 _ 22 __nmox
XTp (@)X XTpl(e)x [ (70 W) (XTP”(‘”X 1) T
= 0] Ir+ 2 2 2\2 22 T FoFO
nox noyg (0'070'1) +010Xﬂ n
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Since n’n = ||n||* = ||8|/?, therefore we have
_1 1 2 _2)2 nox
VsppnVEnVsppn _ I+ (o5 — 1) (XTpfl(G)X 1) r,I7
XTp 1 (6)X " (08 — 01)? + ook ||BII? 0

2
TLG’X

S8 Preliminary Analysis for the Real Data

In this section, we provide the estimated Moran’s autocorrelation coefficient
(also called Moran’s I) and empirical variogram for the real data. Moran’s
I is an extension of the Pearson correlation and measures spatial autocorre-
lation in the data (Cliff and Ord, 1973). For a a vector of data s, Moran’s
Iis

n iy Dy Wis(wi — T)(w; — I)

MI = . . ,
So 2 iz (T — T)?

where Z denotes the mean of the observation, w;; is the weight between ob-
servation ¢ and j, and Sy is the sum of all weights i.e. Sy =>"" | Z?:l Wij.
The weights w;;, are chosen to be the inverse of the distance between ob-
servation ¢ and j. Using Moran’s I, one can test the existence of the spatial
autocorrelation where the null hypothesis is that there is no correlation ver-
sus the alternative hypothesis of there exists the spatial statistics. Table 4
presents the results of Moran’s I for all the variables in the study. Based
on these results, we can reject the null hypothesis that there is zero spatial

autocorrelation present in the data for each variable.
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Table 1: Moran’s I for different variables in the study.

Variable observed expected sd p-value

Ozone 0.4498559 | -0.003731343 | 0.02014298 0

Carbon monoxide 0.08161912 | -0.003731343 | 0.01918668 | 8.650319e-06

Sulfur dioxide 0.2425074 | -0.003731343 | 0.01981788 0
Lead 0.234758 | -0.003731343 | 0.01924146 0
Nitrogen dioxide 0.4414368 | -0.003731343 | 0.02013472 0
Nitrogen monoxide | 0.1665705 | -0.003731343 | 0.01911524 0
PM 2.5 0.2449143 | -0.003731343 | 0.02014268 0
PM 10 0.4063382 | -0.003731343 | 0.01967082 0

In addition, to test the existence of the spatial correlation in the data,
one common approach is to look at the patterns of the empirical variograms
for the data in the preliminary analysis. We used the Matern covariance
function for the real data analysis. Using this covariance function makes the
computation faster and it is one of the most common covariance function
used in analyzing the air pollution data. Figure [I| shows the empirical var-
iogram of the responses. These plots show that using a Matern covariance

function is reasonable.
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Figure 1: The empirical variogram of different responses in our study. These plots shows

that using a Matern covariance function is reasonable.
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S9 Estimated Regression Coefficients

In this section, we provide the estimated regression coefficients and their
standard deviation for traditional envelope model and our proposed model.
As it can be seen the standard deviation for the estimated coefficients based
on our proposed model is smaller than those calculated by traditional en-

velope model.

Table 2: Regression Coefficients (asymptotic standard deviation) using envelope the air

pollution data in northeastern United States.

Variable

Relative humidity

Temperature

Wind

Ozone

0.068 (0.388)

-0.083 (0.493)

-0.034 (0.303)

Carbon monoxide

-0.008 (0.051)

0.014 (0.064)

0.004 (0.040)

Lead

-0.016 (0.094)

0.022 (0.120)

0.008 (0.074)

Nitrogen dioxide

-0.050 (0.515)

0.148 (0.564)

0.037 (0.406)

Nitrogen monoxide

-0.032 (0.442)

0.157 (0.553)

0.001 (0.346)

Sulfur dioxide

-0.029 (0.381)

0.196 (0.487)

0.007 (0.297)

PM10

0.013 (0.353)

0.188 (0.440)

-0.021 (0.276)

PM2.5

0.033 (0.343)

-0.162 (0.581)

-0.011 (0.261)
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Table 3: Regression coefficients (asymptotic standard deviation) using spatial envelope

the air pollution data in northeastern United States.

Variable

Relative humidity

Temperature

Wind

Ozone

0.007 (0.178)

-0.004 (0.083)

-0.004 (0.033)

Carbon monoxide

0.011 (0.005)

0.014 (0.064)

-0.001 (0.001)

Lead

-0.001 (0.014)

0.002 (0.120)

0.001 (0.004)

Nitrogen dioxide

0.072 (0.021)

0.348 (0.121)

-0.037 (0.046)

Nitrogen monoxide

0.062 (0.022)

0.457 (0.115)

-0.084 (0.023)

Sulfur dioxide

-0.613 (0.111)

0.196 (0.006)

0.004 (0.096)

PM10 -0.013 (0.025) 0.188 (0.024) | -0.098 (0.026)
PM2.5 0.116 (0.143) 0.162 (0.051) | 0.003 (0.016)
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Figure 2: Prediction plot for the log of the ground level Ozone for the study area. Ozone
level is not high in the study area. The north part of New Hampshire seems to have the

highest value for the Ozone.
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Plot of Carbon monoxide
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Figure 3: Prediction plot for carbon monoxide (CO) for the study area. Carbon monoxide
is moderately low in the study area. CO is high in Rhode Island, New York, New Jersey,
and Buffalo which are highly populated and therefore there will be a lots of car and

usage of fossil fuels which leads to high concentration of carbon monoxide in the air.
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Figure 4: Prediction plot for the Nitrogen monoxide for the study area. Nitrogen monox-
ide is high in New York and New Jersey and moderately high almost every place in the

study area.
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Figure 5: Prediction plot for lead for the study area. Lead is high in Harrisburg and

Lancaster.

S10 Prediction Plot for Response Variables
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