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New Parsimonious Multivariate Spatial Model: Spatial Envelope

S1 Brief Review of Linear Coregionalization Model

Linear Coregionalization Models (LCM) is popular in multivariate spatial

data analysis. This model assumes that the observed variables are linear

combinations of sets of independent underlying variables and they covary

jointly over a region. Various methods have been proposed for fitting LCM

in literatures including least square approach (Goulard and Voltz, 1992) and

expectation maximization (EM) algorithm (Zhang, 2007), among others.

Let Y(si) = (y1(si), . . . , yr(si))
T be an r-variate stochastic spatial response

vector along with p regressors X(si) = (x1(si), . . . , xp(si))
T observed at

locations s = {s1, s2, . . . , sn; si ∈ R2; i = 1, 2, . . . , n}. The most basic

version of the LCM can be written as

Y(si) = µ +
K∑
k=0

Wk(si), (S1.1)

where µ denotes the mean. The mean term, µ, shows the trend in data

and it is common to use a linear model of covariates such as α+βX(si) to

model this term. In model (S1.1), W0(si) is a stationary but uncorrelated

r-variate process with mean 0 and multivariate covariance function Σ0 =

V0. Furthermore, for k = 1, . . . , K, Wk(si) are i.i.d spatial processes with
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mean 0 and multivariate covariance function Σk = Vkρk(h) where h =

||si − sj|| denotes the Euclidean distance between location si and sj. The

log likelihood function of model (S1.1) can be written as

logL(∆,Y,W) = −1

2
log det(Σ0)

− 1

2

(
Y− µ⊗ 1−

K∑
k=1

Wk

)T

Σ−1
0

(
Y− µ⊗ 1−

K∑
k=1

Wk

)

− 1

2

K∑
k=1

(
log(det(Σk)) + WT

kΣ−1
k Wk

)
,

where Y = (YT (s1), . . . ,YT (sn))T denotes the reponse, ∆ = (µ,V0,Vk, ρk); k =

1, . . . , K, denotes the parameters in the model, ⊗ denotes the Kronecker

product, and 1 is a vector which all of its entries are 1. In addition, for the

spatial processes, let Wki = (Wki(s1), . . . ,Wki(sn))T , Wk = (WT
k1, . . . ,W

T
kp)

T ,

and W = (WT
0 , . . . ,W

r
0)T . Since in the LCM, the W are unobserved, the

expectation-maximization (EM) algorithm can be applied to estimate the

parameters. For further information on the EM algorithm for maximum-

likelihood estimation of the LCM, see Zhang (2007) and the references

therein.
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S2 Derivation of the factorization of the likelihood

function in section 4.1

The likelihood function of the model (3.6) will be as follows:

Lu(α,β∗,V0,V1,θ) = [det((V0 + V1)⊗ ρ(θ))]−
1
2

× exp
{
−1

2
(Y −α⊗ 1n −Xβ∗)T ((V0 + V1)⊗ ρ(θ))−1 (Y −α⊗ 1n −Xβ∗)

}
= [det(V0 ⊗ ρ(θ) + V1 ⊗ ρ(θ))]−

1
2

× exp
{
−1

2
(Y −α⊗ 1n −Xβ∗)T

(
(V0 + V1)−1 ⊗ ρ−1(θ)

)
(Y −α⊗ 1n −Xβ∗)

}
= [det(V0 ⊗ ρ(θ) + V1 ⊗ ρ(θ))]−

1
2

× exp
{
−1

2
(Y −α⊗ 1n −Xβ∗)T

(
(V†0 ⊗ ρ−1(θ)) + (V†1 ⊗ ρ−1(θ))

)
(Y −α⊗ 1n −Xβ∗)

}
,

(S2.1)

where † denotes Moore-Penrose inverse and V0 = Γ0Ω0Γ0 and V1 =

Γ1Ω1Γ1. Since span(β) ⊆ span(V1) and β = Γ1η, therefore we have

βT = ηTΓT
1 which means

β∗ = vec(βT ) = vec(ηTΓT
1 ) = (Γ1 ⊗ ηT )vec(Iu).
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Last equality holds by the results of theorem 11.6a in Seber (2008). Thus

we have

(V†0 ⊗ ρ−1(θ))Xβ∗ = (V†0 ⊗ ρ−1(θ))(Ir ⊗X)β∗

= (V†0 ⊗ ρ−1(θ))(Ir ⊗X)(Γ1 ⊗ ηT )vec(Iu)

= (V†0Γ1 ⊗ ρ−1(θ)XηT )vec(Iu)

= (Γ0Ω
−1
0 ΓT

0 Γ1 ⊗ ρ−1(θ)XηT )vec(Iu)

= 0,

the last equality holds because Γ1 and Γ0 are orthagonal. Therefore, Since

(V†0 ⊗ ρ−1(θ))Xβ∗ = 0 and V = V0 + V1, the likelihood in (S2.1) can be

factored as:

Lu(α,β∗,V0,V1,θ) = [det((V0 + V1)⊗ ρ(θ))

× exp
{
−1

2
(Y −α⊗ 1n −Xβ∗)T

(
V†1 ⊗ ρ−1(θ)

)
(Y −α⊗ 1n −Xβ∗)

}
× exp

{
−1

2
(Y −α⊗ 1n)T

(
V†0 ⊗ ρ−1(θ)

)
(Y −α⊗ 1n)

}
= Lu1(α,β∗,V1,θ)× Lu2(α,V0,θ),

(S2.2)
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where

Lu1(α,β∗,V1,θ) = [det0(V1)]−
n
2 [det(ρ(θ))]−

r
2

× exp
{
−1

2
(Y −α⊗ 1n −Xβ∗)T

(
V†1 ⊗ ρ−1(θ)

)
(Y −α⊗ 1n −Xβ∗)

}
,

Lu2(α,V0,θ) = [det0(V0)]−
n
2 [det(ρ(θ))]−

r
2

× exp
{
−1

2
(Y −α⊗ 1n)T

(
V†0 ⊗ ρ−1(θ)

)
(Y −α⊗ 1n)

}
,

(S2.3)

where det0(A) denotes the product of non-zero eigenvalues of A where A

is a non-zero symmetric matrix. This is due to

det((V0 + V1)⊗ ρ(θ)) = det[V0 ⊗ ρ(θ) + V1 ⊗ ρ(θ)]

= det0[V0 ⊗ ρ(θ)] + det0[V1 ⊗ ρ(θ)]

= [det0(V0)]n[det0(ρ(θ))]r + [det0(V1)]n[det0(ρ(θ))]r

= [det0(V0)]n[det(ρ(θ))]r + [det0(V1)]n[det(ρ(θ))]r

the last equality holds because is ρ(θ) a full rank positive definite matrix

therefore det0 = det.
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S3 Coordinate free version of the algorithm of the

spatial envelope

The objective is to maximize the likelihood in (3.7) over α,β∗,V0,V1, and

θ subject to the constraints:

span(β) ⊆ span(V1), (a)

V0V1 = 0, (b).

(S3.1)

Based on this factorization given in equation (S2.2), we can decompose the

likelihood maximization into the following steps:

1. Fix β,V0, V1, and θ, and maximize L(u) in (3.6) over α which will

be:

α̂ = Ȳ− X̄βT .

Let H = Y− Ȳ⊗1n, U = vec(H), G = X− X̄⊗1n, and F = Ir⊗G.

Therefore, the profile likelihood can be written as the following:

Lu1(β∗,V1,θ) = [det0(V1)]−
n
2 [det(ρ(θ))]−

r
2

× exp
{
−1

2
(U− Fβ∗)T

(
V†1 ⊗ ρ−1(θ)

)
(U− Fβ∗)

}
,

(S3.2)

and

Lu2(V0,θ) = [det0(V0)]−
n
2 [det(ρ(θ))]−

r
2 exp

{
−1

2
UT

(
V†0 ⊗ ρ−1(θ)

)
U

}
.

(S3.3)
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2. Fix V1, and θ and maximize the function Lu1 over β∗, subject to

(S3.1a), to obtain Lu21(V1,θ). Since vec(AB) = (Ir ⊗A)vec(BT ) and

tr(DT (CTBTAT )) = (vec(D))T (A⊗CT )(vec(B))T ,

we have

(U− Fβ∗)T
(
V†1 ⊗ ρ−1(θ)

)
(U− Fβ∗) = tr

(
(H−GβT )Tρ−1(θ)(H−GβT )V†1

)
= tr

(
(H−GβT )Tρ−

1
2 (θ)ρ−

1
2 (θ)(H−GβT )V†1

)
= tr

(
ρ−

1
2 (θ)(H−GβT )V†1(H−GβT )Tρ−

1
2 (θ)

)
= tr

((
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

)
V†1

(
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

)T)
= tr

((
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT Ir

)
V†1

(
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT Ir

)T)
(S3.4)

where tr(·) denotes the trace of the matrix. The last equality in equa-

tion (S3.4) is from Lemma 4.1 in Cook, Li, and Chiaromonte (2010).

Thus, the optimal ρ−
1
2 (θ)GβT Ir is

P(
ρ−

1
2 (θ)G

) (ρ− 1
2 (θ)H

)
PT

(Ir(V
†
1))

= P(
ρ−

1
2 (θ)G

) (ρ(θ)−
1
2 H
)

PV1 ,

where P(·) is the projection onto the subspace indicated by its argu-

ment. This implies following

βT =
(
GTρ−1(θ)G

)−1
Gρ−1(θ)HPV1 ⇒ β = PV1β̂,

where β is the MLE estimate of β from the full model (3.6). Substitut-

ing this into (S3.3) and using the relation PV1V
†
1 = V†1, the maximum
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of L
(u)
2 for fixed V1 over β is

Lu11(V1,θ) = [det0(V1)]−
n
2 [det(ρ(θ))]−

r
2

× exp

−1

2
tr


ρ(θ)−

1
2 H−P(

ρ
− 1

2 (θ)G

)ρ− 1
2 (θ)HPV1

V†1

ρ(θ)−
1
2 H−P(

ρ
− 1

2 (θ)G

)ρ− 1
2 (θ)HPV1

T



= [det0(V1)]−
n
2 [det(ρ(θ))]−

r
2

× exp

−1

2
tr


ρ−

1
2 (θ)H−P(

ρ
− 1

2 (θ)G

)ρ− 1
2 (θ)H

V†1

ρ−
1
2 (θ)H−P(

ρ
− 1

2 (θ)G

)ρ− 1
2 (θ)H

T



= [det0(V1)]−
n
2 [det(ρ(θ))]−

r
2 exp

−1

2
tr


Q(

ρ
− 1

2 (θ)G

)ρ− 1
2 (θ)H

V†1

Q(
ρ
− 1

2 (θ)G

)ρ− 1
2 (θ)H

T



(S3.5)

where Q(
ρ−

1
2 (θ)G

) = In −P(
ρ−

1
2 (θ)G

).
3. Maximize Lu(V0,V1,θ) over all V0, V1, and θ. Since Lu(V0,V1,θ) =

Lu1(V1,θ)× Lu2(V0,θ), we have

Lu(V0,V1,θ) = [det0(V0)]−
n
2 [det0(V1)]−

n
2 [det(ρ(θ))]−r

× exp

{
−1

2
tr

((
Q(

ρ−
1
2 (θ)G

)ρ− 1
2 (θ)H

)
V†1

(
Q(

ρ−
1
2 (θ)G

)ρ− 1
2 (θ)H

)T)}

× exp
{
−1

2
UT

(
V†0 ⊗ ρ−1(θ)

)
U

}
= [det0(V0)]−

n
2 [det0(V1)]−

n
2 [det(ρ(θ))]−r

× exp

{
−1

2
tr

((
Q(

ρ−
1
2 (θ)G

)ρ− 1
2 (θ)H

)
V†1

(
Q(

ρ−
1
2 (θ)G

)ρ− 1
2 (θ)H

)T)}

× exp
{
−1

2
tr
(
ρ−

1
2 (θ)HV†0H

Tρ−
1
2 (θ)

)}
.

(S3.6)

This maximization can be as follows:

(a) Fix V0 and V1 and maximize Lu(V0,V1,θ) over θ by solving the
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following maximization problem:

θ̂ = argmin
θ
{r det(ρ(θ))

+
1

2
tr

(Q(
ρ
− 1

2 (θ)G

)ρ− 1
2 (θ)H

)
V†1

(
Q(

ρ
− 1

2 (θ)G

)ρ(θ)− 1
2 H

)T
+ ρ−

1
2 (θ)HV†0H

Tρ−
1
2 (θ)

}.

(b) Fix the θ and maximize Lu(V0,V1,θ) over V0 and V1. This

means maximize Lu11(V1,θ) over V1 and Lu12(V0,θ) over V0. Max-

imization Lu11(PV1) over V1 is

Lu11(PV1) ∝
[
det0

(
PV1

(
HTρ−

1
2 (θ)Q(

ρ−
1
2 (θ)G

)ρ− 1
2 (θ)H

)
PV1

)]−n
2

(S3.7)

and maximization Lu12(PV0) over V0 is

Lu12(PV0) ∝
[
det0

(
PV0H

Tρ−1(θ)HPV0

)]−n
2 . (S3.8)

Therefore, maximization Lu(V0,V1,θ) over V0 and V1 is equiva-

lent to maximization of Lu11(PV1)×Lu12(PV0) which is proportion

to

D =

[
det0

(
PV1

(
HTρ−

1
2 (θ)Q(

ρ
− 1

2 (θ)G

)ρ− 1
2 (θ)H

)
PV1

)]−n
2

×
[
det0

(
PV0HTρ−1(θ)HPV0

)]−n
2

=

[
det0

(
PV1

(
HTρ−

1
2 (θ)Q(

ρ
− 1

2 (θ)G

)ρ− 1
2 (θ)H

)
PV1 + PV0HTρ−1(θ)HPV0

)]−n
2

=

[
det0

(
PV1

(
HTρ−

1
2 (θ)Q(

ρ
− 1

2 (θ)G

)ρ− 1
2 (θ)H

)
PV1 + QV0

HTρ−1(θ)HQV0

)]−n
2

(S3.9)
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where QV0
= Ir −PV1 . Since Σ̂Y = HTρ−1(θ)H and

Σ̂res = HTρ−
1
2 (θ)Q(

ρ−
1
2 (θ)G

)ρ− 1
2 (θ)H

= HTρ−1(θ)H

−HTρ−1(θ)G
(
GTρ−1(θ)G

)−1
GTρ−1(θ)H.

(S3.10)

Therefore we have D = det(PV1Σ̂resPV1 +QV1
Σ̂YQV1

) and V̂1 =

argminV1
(D) and PV̂0

= Ir −PV̂1

Repeat (a) and (b) until the difference between estimations of the pa-

rameters from two consecutive iterations is smaller than a pre-specified

tolerance level.

S4 Proof of Lemma 1

In this section, we derive the Fisher information matrix for the parame-

ters given by equation (4.2). Before starting the derivation, the following

properties hold:

1. Suppose A and X are both r × r, and X is symmetric, then

∂vech(X−1)

(∂vech(X))T
= −Cr

(
X−1 ⊗X−1

)
Er,

where Er ∈ Rr2×r(r+1)/2 is an expansion matrix such that for a matrix

A, vec(A) = Ervech(A), and Cr ∈ Rr(r+1)/2×r2 is expansion matrix
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which is defined such that for a given matrix such as A, vech(A) =

Crvec(A) and Er ∈ Rr2×r(r+1)/2 is expansion matrix which is defined

such that vec(A) = Ervech(A).

2. If X is nonsingular and unconstrained, then we have

∂tr(AX−1B)

∂X
= −(X−1BAX−1)T .

3. If Y = AXB, then

tr(Y) = vec(ATBT )vec(X) = vec(ATBT )Envech(X),

and

∂tr(Y)

∂vec(X)
= vec(ATBT ).

4. Suppose B1 is an m× n and B2 is an n× q, matrix, then

vec(B1B2) = (B2 ⊗ Im)vec(B1).

5. Suppose X is an m× n and A is an n× n, matrix, then

∂vec(XAX)

∂(vec(X))T
= (XTAT ⊗ In)Inm + (In ⊗XTA).

6. Assume X to be m× n . Then we have,

∂(XTAX)

∂X
= AX + ATX.

7. Let PEr denotes the projection of Er(E
T
r Er)

−1ET
r then, PEr = ErCr

and ET
r ErCr = ET

r ,
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Proof of the first six properties can be found in Seber (2008). The proof of

the last property can be found in Cook, Li, and Chiaromonte (2010)

The logarithm of the likelihood function (3.7) is

`(Θ) = −1

2
log[det(V⊗ρ(θ))]−1

2
(Y−α⊗1n−Xβ∗)T (V⊗ρ(θ))−1(Y−α⊗1n−Xβ∗)

(S4.1)

where Θ = {V,α,β∗,θ}. First and second derivatives of the log likelihood

function in (S4.1) with respect to β∗ are

First derivative:
∂`(Θ)

∂β∗
= XT (V−1 ⊗ ρ−1(θ))(Y −α⊗ 1n −Xβ∗),

Second derivative:
∂2`(Θ)

∂β∗∂β∗T
= −XT (V−1 ⊗ ρ−1(θ))X

= −(Ir ⊗XT )(V−1 ⊗ ρ−1(θ))(Ir ⊗X)

= −V−1 ⊗
(
XTρ−1(θ))X

)
From (3.7), we can rewrite the log likelihood function as

`(Θ) = −n
2

log[det(V)]− r

2
log[det(ρ(θ))]

− 1

2
tr

((
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

)
V−1

(
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

)T)
.

(S4.2)

The tr(·) is due to

(U− Fβ∗)T (V−1 ⊗ ρ−1(θ))(U− Fβ∗) = tr
(
(H−GβT )Tρ−1(θ)(H−GβT )TV−1

)
= tr

((
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

)
V−1

(
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

))
.

Therefore, the first derivative of the log likelihood function in (S4.2) with
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respect to V is ∂`(Θ)
∂vech(V)

= ∂`(Θ)
∂vec(V)

∂vec(V)
∂vech(V)

, where

∂`(Θ)

∂vech(V)
= −n

2
vec
(
V−1

)T
Er

+
1

2
vec

{
V−1

(
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

)T (
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

)
V−1

}
Er

= −n
2
vech

(
V−1

)T
ET
r Er

+
1

2
vech

{
V−1

(
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

)T (
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

)
V−1

}
ET
r Er

(S4.3)

and second derivative of the log likelihood function in (S4.2) with respect

to V is

∂2`(Θ)

∂vech(V)∂vech(V)T
=

n

2
ET
r

(
V−1 ⊗V−1)Er

− 1

2
AV−1ET

r (V
−1 ⊗V−1)CT

r ET
r Er −

1

2
ATV−1Er(V

−1 ⊗V−1)CT
r ET

r Er (S4.4)

where A =
(
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

)T (
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

)
. Thus,

E

(
∂2`(Θ)

∂vech(V)∂vech(V)T

)
= −n

2
ET
r (V−1 ⊗V−1)Er

Finally, we have to calculate ∂2`(Θ)
∂∂β∗∂vech(V)T

and ∂2`(Θ)

∂vech(V)∂β∗T
. Since these

two are equal, we only calculate the second one.

∂2`(Θ)

∂vech(V)∂β∗T
=

∂2`(Θ)

∂vech(V)∂(vec(βT ))T

=
1

2

vec

{
V−1

(
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

)T (
ρ−

1
2 (θ)H− ρ−

1
2 (θ)GβT

)
V−1

}
Er

∂(vec(βT ))T

=
1

2

vec
[
V−1

(
HTρ−1(θ)H− βGTρ−1(θ)H−HTρ−1(θ)GβT + βGTρ−1(θ)GβT

)
V−1

]
Er

∂(vec(βT ))T
.

(S4.5)
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The derivative of vec
(
V−1HTρ−1(θ)HV−1

)
Er with respect to vec(βT ))T

is zero. Furthermore, using matrix algebra, we have

vec
(
V−1βGTρ−1(θ)HV−1

)
=
(
V−1HTρ−1G⊗V−1

)
vec(β)

=
(
V−1HTρ−1G⊗V−1

)
Krpvec(β

T )

vec
(
V−1HTρ−1(θ)GβTV−1

)
=
(
V−1 ⊗V−1HTρ−1(θ)G

)
vec(βT ).

where Krp ∈ Rrp×rp is the unique matrix that transform the vec of a matrix

into the vec of its transpose i.e. for a given matrix such as A ∈ Rm×n we

have vec(AT ) = Kmnvec(A). More properties of Kmn can be found in

Cook, Li, and Chiaromonte (2010) lemma D.2. Therefore, we have

vec
(
V−1βGTρ−1(θ)HV−1

)
∂(vec(βT ))T

=
(
V−1HTρ−1G⊗V−1

)
Krp

vec
(
V−1HTρ−1(θ)GβTV−1

)
∂(vec(βT ))T

=
(
V−1 ⊗V−1HTρ−1(θ)G

)
vec
(
V−1βGTρ−1(θ)GβTV−1

)
∂(vec(βT ))T

=
(
V−1βGTρ−1(θ)G⊗V−1

)
Krp +

(
V−1 ⊗V−1βGTρ−1(θ)G

)
.

(S4.6)

Substituting (S4.6) in equation (S4.5), we have

∂2`(Θ)

∂vech(V)∂β∗T
=

1

2

{
V−1

(
H−GβT

)T
ρ−1(θ)G⊗V−1

}
KrpEr

+
1

2

{
V−1 ⊗V−1

(
H−GβT

)T
ρ−1(θ)G

}
Er

(S4.7)

Taking the expected value of these derivatives together and the fact

that

E

[
∂2`(Θ)

∂vech(V)∂β∗

]
= 0,

lead to obtain (4.4).
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S5 Proof of Theorem 1

In this section, we derive the an explicit expression for Ψ as given by (4.3).

In order to find these expression, we need to find expressions for the eight

partial derivatives ∂Ψi
∂φTj

for i = 1, 2 and j = 1, 2, 3, 4.

Theorem 1: Suppose X̄ = 0 and J is the Fisher information for ψ(φ)

in the model (3.6):

J =

 1
n
X
T
(
V−1 ⊗ ρ−1(θ)

)
X 0

0 1
2
ET
r

(
V−1 ⊗V−1

)
Er



=

V−1 ⊗
(

XTρ−1(θ)X
n

)
0

0 1
2
ET
r

(
V−1 ⊗V−1

)
Er

 .
Then

√
n(φ̂− φ)→ N(0,Λ0) (S5.1)

where Λ0 = Ψ(ΨTΛΨ)†Ψ, Λ = J−1 is the asymptotic variance of the MLE

under the full model, and Ψ is as follows:Krp(Ip ⊗ Γ1) Krp(η
T ⊗ Ir) 0 0

0 2Cr(Γ1Ω1 ⊗ Ir − Γ1 ⊗ Γ0Ω0Γ
T
0 ) Cr(Γ1 ⊗ Γ1)Eu Cr(Γ0 ⊗ Γ0)Er−u

 .
Furthermore, Λ−

1
2 (Λ−Λ0)Λ−

1
2 ≥ 0, so the spatial envelope model decreases

the asymptotic variance.
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Proof : We can rewrite β∗ as follows

β∗ = vec(ηTΓT
1 )

= Krpvec(Γ1η)

= Krp(Ip ⊗ Γ1)vec(η)

= Krp(η
T ⊗ Ir)vec(Γ1).

(S5.2)

Therefore, the derivatives of ψ1 with respect to φT1 is

∂ψ1

∂φT1
=

∂β∗

∂(vec(η))T
=
∂ [Krp(Ip ⊗ Γ1)vec(η)]

∂(vec(η))T
= Krp(Ip ⊗ Γ1),

and the derivatives of ψ1 with respect to φT2 is

∂ψ1

∂φT2
=

∂β∗

∂(vec(Γ))T
=
∂
[
Krp(η

T ⊗ Ir)vec(Γ1)
]

∂(vec(Γ1))T
= Krp(η

T ⊗ Ir). (S5.3)

It is clear that ∂ψ1

∂φT3
= ∂ψ1

∂φT4
= 0.

The derivative of ∂ψ2

∂φT1
to ∂ψ2

∂φT4
are similar to those in Cook, Li, and

Chiaromonte (2010). Having these derivatives together lead to obtain (4.3).

The asymptotic distribution (S5.1) follows from Shapiro (1986). In

order to prove that Λ0 ≤ Λ, we have

Λ0−Λ = J−1−Ψ(ΨTΛΨ)†Ψ = J−
1
2

[
Ipr+r(r+1)/2 − J

1
2 Ψ(ΨTΛΨ)†ΨJ

1
2

]
J−

1
2

Since the matrix Ipr+r(r+1)/2 − J
1
2 Ψ(ΨTΛΨ)†ΨJ

1
2 is the projection on to

orthogonal complement of span(J
1
2 Ψ), it is positive semidefinite, which im-

plies that Λ0 −Λ is also positive semidefinite. In addition, we have

Λ−
1
2 (Λ−Λ0)Λ−

1
2 = Ipr+r(r+1)/2 − J

1
2 Ψ(ΨTΛΨ)†ΨJ

1
2
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which proves the last statement of the theorem.

S6 Proof of Corollary 1

In this section, we restate and proof the corollary 1.

Corollary 1: The asymptotic variance (avar) of
√
nβ∗ can be written

as

avar(
√
nβ∗) = Krp

{(
XTρ(θ)−1X

n

)−1

⊗ Γ1Ω1Γ
T
1 + (ηT ⊗ Γ0)(ΨT

2 JΨ2)†(η ⊗ ΓT
0 )

}
KT
rp

(S6.1)

where Ψ2 =
(
∂ψ1

∂φT2
, ∂ψ2

∂φT2

)T
.

Proof : Using lemma 1 and theorem 1, the asymptotic variance of
√
nβ∗

can be written as

avar(
√
nβ∗) = K1(ΨT

1 JΨ1)†KT
1 +K2(ΨT

2 JΨ2)†KT
2

where Ψ1 =
(
∂ψ1

∂φT1
, ∂ψ2

∂φT1

)T
, K1 = Krp(Ip⊗Γ1) and K2 = Krp(η

T⊗Γ0). Using

straightforward matrix multiplication and corollary D1 to D3 in Cook, Li,

and Chiaromonte (2010) complete the proof.

S7 Proof of the comparison between the variance of

the envelope and spatial envelope models

In this section, we restate and proof the equation (4.8).
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For the simplify version of the spatial envelope and envelope, it can be

shown that

V
− 1

2
SPENVENV

− 1
2

SPEN =
XTρ−1(θ)X

nσ2
X

Ir +

 (σ2
0 − σ2

1)2
(

1− XT ρ−1(θ)X

nσ2
X

)
(σ2

0 − σ2
1)2 + σ2

1σ
2
X||β||2

Γ0ΓT0 , (S7.1)

where VSPEN shows the asymptotic variance of the spatial envelope model,

VEN shows the asymptotic variance of the envelope model, and σ2
X denotes

the variance of the variance of the X which is a n× 1 vector.

Proof : For the simplified version of the mode, the asymptotic variance

for two models are:

var(
√
nβEnv) =

σ2
1

σ2
X

Γ1Γ
T
1 +

σ2
0σ

2
1η

Tη

σ2
Xσ

2
1η

Tη + (σ2
0 − σ2

1)2
Γ0Γ

T
0 ,

var(
√
nβ∗) =

nσ2
1

XTρ−1(θ)X
Γ1Γ

T
1 +

nσ2
0σ

2
1η

Tη

XTρ−1(θ)Xσ2
1η

Tη + n(σ2
0 − σ2

1)2
Γ0Γ

T
0 ,

therefore, to compare the variance of two models, we have

V
− 1

2
SPENVENV

− 1
2

SPEN =
XTρ−1(θ)X

nσ2
X

Γ1ΓT1 +
n(σ2

0 − σ2
1)2 + σ2

1XTρ−1(θ)XηTη

n(σ2
0 − σ2

1)2 + nσ2
1σ

2
XηTη

Γ0ΓT0

=
XTρ−1(θ)X

nσ2
X

Γ1ΓT1 +
n(σ2

0 − σ2
1)2 + σ2

1XTρ−1(θ)XηTη

n(σ2
0 − σ2

1)2 + nσ2
1σ

2
XηTη

Γ0ΓT0

±
XTρ−1(θ)X

nσ2
X

Γ0ΓT0

=
XTρ−1(θ)X

nσ2
X

Ir +

(
−

XTρ−1(θ)X

nσ2
X

+
n(σ2

0 − σ2
1)2 + σ2

1XTρ−1(θ)XηTη

n(σ2
0 − σ2

1)2 + nσ2
1σ

2
XηTη

)
Γ0ΓT0

=
XTρ−1(θ)X

nσ2
X

Ir +
XTρ−1(θ)X

nσ2
X

−1 +

n(σ2
0−σ

2
1)

2

XT ρ−1(θ)X
+ σ2

1η
Tη

(σ2
0−σ

2
1)

2

σ2
X

+ σ2
1η

Tη

Γ0ΓT0

=
XTρ−1(θ)X

nσ2
X

Ir +
XTρ−1(θ)X

nσ2
X

−1 + 1 +

(σ2
0 − σ2

1)2
(

n
XT ρ−1(θ)X

− 1
σ2
X

)
(σ2

0−σ
2
1)

2

σ2
X

+ σ2
1η

Tη

Γ0ΓT0

=
XTρ−1(θ)X

nσ2
X

Ir +
XTρ−1(θ)X

nσ2
X

 (σ2
0 − σ2

1)2
(

nσ2
X

XT ρ−1(θ)X
− 1

)
(σ2

0 − σ2
1)2 + σ2

1σ
2
XηTη

Γ0ΓT0
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Since ηTη = ||η||2 = ||β||2, therefore we have

V
− 1

2
SPENVENV

− 1
2

SPEN

XTρ−1(θ)X

nσ2
X

= Ir +

(σ2
0 − σ2

1)2
(

nσ2
X

XTρ−1(θ)X
− 1
)

(σ2
0 − σ2

1)2 + σ2
1σ

2
X||β||2

Γ0Γ
T
0

S8 Preliminary Analysis for the Real Data

In this section, we provide the estimated Moran’s autocorrelation coefficient

(also called Moran’s I) and empirical variogram for the real data. Moran’s

I is an extension of the Pearson correlation and measures spatial autocorre-

lation in the data (Cliff and Ord, 1973). For a a vector of data s, Moran’s

I is

MI =
n

S0

∑n
i=1

∑n
j=1wij(xi − x̄)(xj − x̄)∑n

i=1(xi − x̄)2
,

where x̄ denotes the mean of the observation, wij is the weight between ob-

servation i and j, and S0 is the sum of all weights i.e. S0 =
∑n

i=1

∑n
j=1wij.

The weights wij, are chosen to be the inverse of the distance between ob-

servation i and j. Using Moran’s I, one can test the existence of the spatial

autocorrelation where the null hypothesis is that there is no correlation ver-

sus the alternative hypothesis of there exists the spatial statistics. Table 4

presents the results of Moran’s I for all the variables in the study. Based

on these results, we can reject the null hypothesis that there is zero spatial

autocorrelation present in the data for each variable.
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Table 1: Moran’s I for different variables in the study.

Variable observed expected sd p.value

Ozone 0.4498559 -0.003731343 0.02014298 0

Carbon monoxide 0.08161912 -0.003731343 0.01918668 8.650319e-06

Sulfur dioxide 0.2425074 -0.003731343 0.01981788 0

Lead 0.234758 -0.003731343 0.01924146 0

Nitrogen dioxide 0.4414368 -0.003731343 0.02013472 0

Nitrogen monoxide 0.1665705 -0.003731343 0.01911524 0

PM 2.5 0.2449143 -0.003731343 0.02014268 0

PM 10 0.4063382 -0.003731343 0.01967082 0

In addition, to test the existence of the spatial correlation in the data,

one common approach is to look at the patterns of the empirical variograms

for the data in the preliminary analysis. We used the Matern covariance

function for the real data analysis. Using this covariance function makes the

computation faster and it is one of the most common covariance function

used in analyzing the air pollution data. Figure 1 shows the empirical var-

iogram of the responses. These plots show that using a Matern covariance

function is reasonable.
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Figure 1: The empirical variogram of different responses in our study. These plots shows

that using a Matern covariance function is reasonable.
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S9 Estimated Regression Coefficients

In this section, we provide the estimated regression coefficients and their

standard deviation for traditional envelope model and our proposed model.

As it can be seen the standard deviation for the estimated coefficients based

on our proposed model is smaller than those calculated by traditional en-

velope model.

Table 2: Regression Coefficients (asymptotic standard deviation) using envelope the air

pollution data in northeastern United States.

Variable Relative humidity Temperature Wind

Ozone 0.068 (0.388) -0.083 (0.493) -0.034 (0.303)

Carbon monoxide -0.008 (0.051) 0.014 (0.064) 0.004 (0.040)

Lead -0.016 (0.094) 0.022 (0.120) 0.008 (0.074)

Nitrogen dioxide -0.050 (0.515) 0.148 (0.564) 0.037 (0.406)

Nitrogen monoxide -0.032 (0.442) 0.157 (0.553) 0.001 (0.346)

Sulfur dioxide -0.029 (0.381) 0.196 (0.487) 0.007 (0.297)

PM10 0.013 (0.353) 0.188 (0.440) -0.021 (0.276)

PM2.5 0.033 (0.343) -0.162 (0.581) -0.011 (0.261)
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Table 3: Regression coefficients (asymptotic standard deviation) using spatial envelope

the air pollution data in northeastern United States.

Variable Relative humidity Temperature Wind

Ozone 0.007 (0.178) -0.004 (0.083) -0.004 (0.033)

Carbon monoxide 0.011 (0.005) 0.014 (0.064) -0.001 (0.001)

Lead -0.001 (0.014) 0.002 (0.120) 0.001 (0.004)

Nitrogen dioxide 0.072 (0.021) 0.348 (0.121) -0.037 (0.046)

Nitrogen monoxide 0.062 (0.022) 0.457 (0.115) -0.084 (0.023)

Sulfur dioxide -0.613 (0.111) 0.196 (0.006) 0.004 (0.096)

PM10 -0.013 (0.025) 0.188 (0.024) -0.098 (0.026)

PM2.5 0.116 (0.143) 0.162 (0.051) 0.003 (0.016)

Figure 2: Prediction plot for the log of the ground level Ozone for the study area. Ozone

level is not high in the study area. The north part of New Hampshire seems to have the

highest value for the Ozone.
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Figure 3: Prediction plot for carbon monoxide (CO) for the study area. Carbon monoxide

is moderately low in the study area. CO is high in Rhode Island, New York, New Jersey,

and Buffalo which are highly populated and therefore there will be a lots of car and

usage of fossil fuels which leads to high concentration of carbon monoxide in the air.

Figure 4: Prediction plot for the Nitrogen monoxide for the study area. Nitrogen monox-

ide is high in New York and New Jersey and moderately high almost every place in the

study area.
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Figure 5: Prediction plot for lead for the study area. Lead is high in Harrisburg and

Lancaster.

S10 Prediction Plot for Response Variables
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