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Abstract: The current literature on order-of-addition experiments generally relies on

main effects models constructed from pair-wise ordering (PWO) factors. This study

constructs models utilizing interactions of PWO factors to explain variations that

are best accounted for by the ordering of sets of three or more components. Order-

of-addition orthogonal arrays are optimal for fitting the main effects PWO model,

but they differ in terms of their susceptibility to bias due to model misspecification.

A measure computed from the alias matrix is proposed to identify robust PWO

designs, and is illustrated for cases with four and five components. Applications

with constraints on the ordering and order-of-addition experiments with additional

mixture proportion and factorial factors are discussed briefly. Two drug sequence

experiments based on data from private consultations are used to compare the

usefulness of different order-of-addition models.

Key words and phrases: Alias matrix, component position model, interaction, mix-

ture experiment, model misspecification, orthogonal array, pairwise order.

1. Introduction

The mixing order is critical when preparing tanks for spraying herbicides and

pesticides. For example, Adama Agricultural Solutions Ltd. provide a 13-step

guide specifying the order when adding up to 12 different categories of products,

with water added in Steps 1, 10, and 12. They also give advice on pre-testing

compatibility using a standard jar test prior to actual mixing, as well as limiting

the number of products in a new mix. In the latter case, the more products

one adds, the more likely it is that the active ingredients or adjuvants will be

incompatible. Thus, even given well-established orders, some experimentation

may be needed. In another agricultural application, Wagner (1995) investigated

the order of mixing of feed rations and the time spent blending using two types

of mixers. The order in which reagents are added also matters in a polymerase

chain reaction (PCR), and the sequence in which drugs are administered can

impact clinical outcomes (Ding et al. (2015)).

The literature on experimental designs for mixtures focuses primarily on the

proportions or amounts of ingredients, rather than on the order of addition. Mod-
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eling the effects of changing proportions can be achieved using linear, quadratic,

and various cubic models (Scheffe (1958)). For modeling the effect of the mixing

order, two classes of models have been proposed: pair-wise order models (Van

Nostrand (1995)), and the recently proposed position effect model of Yang, Sun

and Xu (2018). This study extends Van Nostrand’s model for characterizing

mixing order effects.

Order-of-addition models can be employed for any application where the

order or sequence varies. When the product is a mixture of ingredients, it is

natural to refer to the ingredients as components. When the sequence refers

to the stages in an operation or process, one naturally refers to these as steps.

We use the terms components and steps interchangeably. In the simplest cases,

the m components are added (or steps are performed) sequentially. In other

settings, some steps may be prepared in parallel and then combined, so that

neither precedes the other. In this article, we discuss the design and modeling

implications for both situations.

If there are m components added in sequence, then there exist m! possible

sequences, if no constraints are placed on the order. We consider this setting

first, where all sequences are feasible. Van Nostrand (1995) proposed experi-

mental designs that were a subset of the m! sequences, and proposed fitting a

model using pair-wise ordering (PWO) factors. Van Nostrand’s model assumes

that the response variable Y has expectation E(Y ), which depends solely on the

sum of m-choose-2 PWO terms. In the next section, we examine how to detect

higher-order effects, given data from the full set of m! sequences. In particular,

we propose models with terms that explain variation that depends on the or-

der of triplets (or larger subsets) of components, and suggest analysis methods

for full designs. In Section 3, we analyze data from a 40-run drug sequenc-

ing experiment involving five compounds. This example illustrates the need for

higher-order models, as well as showing how to select a model based on only

a fraction of the full 5! sequences. In Section 4, we consider the implications

for fractional design choice based on models with higher-order effects, and pro-

pose a measure of the robustness to model misspecification based on an alias

matrix. This robustness measure improves on Voelkel (2019) minimum moment

aberration criterion. Section 5 discusses experiments in which the steps are only

partially ordered. Section 6 describes more complicated experiments in which we

vary the mixture proportions and/or the levels of other quantitative factors, in

combination with order-of-addition experiments.

The contributions of this study are as follows. First, it extends the standard
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PWO model for applications where Van Nostrand’s model exhibits a lack of fit.

By using selected interactions of the PWO factors, these new models are both

flexible and interpretable. Second, we improve on Voelkel’s criterion for ranking

order-of-addition designs by deriving a measure based on the alias matrix. This

provides a robustness-against-bias rationale for the ranking criterion. Third, we

consider cases in which the sequence of some steps are fixed. Prior studies have

largely ignored such applications, focusing instead on cases where all m! permu-

tations of the steps are deemed relevant. When this is not the case, the required

design sizes are reduced and the corresponding models are simpler. Lastly, we

present an analysis of two recent order-of-addition experiments.

2. Modeling Order Effects, Given All m! Sequences

2.1. Van Nostrand’s pairwise order-of-addition model

Suppose we number the components 1, 2, . . . ,m, and denote feasible se-

quences by permutations of these numbers. Using this notation, Table 1 displays

the 24 possible sequences for a four-component experiment, adding one compo-

nent at a time. For any pair of components I and J, define the PWO factor

XI.J = 1 if I precedes J , −1 if J precedes I, and 0 if they are added simul-

taneously. Table 1 displays the six PWO factors. Van Nostrand (1995) model

is

E(Y ) = β0 +

m−1∑
i=1

m∑
j=i+1

βi.jXi.j . (2.1)

Voelkel (2019) refers to this as the main effects PWO model, because it contains

no interactions; here, we refer to it as the simple pairwise model.

2.2. Lack of fit and the triplets order-of-addition model

There are six possible orderings for each set of three components. The main

effects PWO model, having a constant and three PWO terms, would leave two

degrees of freedom (df) for the lack of fit. Any two two-factor interactions of the

PWO terms will account for this variation. If we had a full 23 factorial, there

would be 3 df for two-factor interactions, and 1 df for the three-factor interaction.

However, the 3! sequences result in a 3/4th fraction of the 23 in the PWO factors,

creating the following linear dependencies:

XI.J −XI.K +XJ.K = XI.JXI.KXJ.K ,
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Table 1. Full sequence design for m = 4, with PWO factors.

Sequence X1.2 X1.3 X2.3 X1.4 X2.4 X3.4 Y1 Y2*
1234 1 1 1 1 1 1 12 41.1
1243 1 1 1 1 1 -1 12 37.5
1324 1 1 -1 1 1 1 19.5 55.4
1342 1 1 -1 1 -1 1 17 56.5
1423 1 1 1 1 -1 -1 2 43.3
1432 1 1 -1 1 -1 -1 17 51.2
2134 -1 1 1 1 1 1 12 46.1
2143 -1 1 1 1 1 -1 12 27.8
2314 -1 -1 1 1 1 1 -3 39.5
2341 -1 -1 1 -1 1 1 2 46.4
2413 -1 1 1 -1 1 -1 32 34.4
2431 -1 -1 1 -1 1 -1 2 39.4
3124 1 -1 -1 1 1 1 4.5 53.5
3142 1 -1 -1 1 -1 1 2 51.2
3214 -1 -1 -1 1 1 1 4.5 50.8
3241 -1 -1 -1 -1 1 1 9.5 51.4
3412 1 -1 -1 -1 -1 1 7 52.9
3421 -1 -1 -1 -1 -1 1 7 53.4
4123 1 1 1 -1 -1 -1 22 39.1
4132 1 1 -1 -1 -1 -1 37 46.4
4213 -1 1 1 -1 -1 -1 22 37.2
4231 -1 -1 1 -1 -1 -1 -8 42.1
4312 1 -1 -1 -1 -1 -1 7 46.8
4321 -1 -1 -1 -1 -1 -1 7 41.8

* For Y1, see Section 2.4. For Y2, see Yang, Sun and Xu (2018).

Table 2. Full sequence design for m = 3, with PWO factors and interactions.

Sequence X1.2 X1.3 X2.3 X1.2X1.3 X1.2X2.3 X1.3X2.3 X1.2X1.3X2.3

123 1 1 1 1 1 1 1
132 1 1 -1 1 -1 -1 -1
213 -1 1 1 -1 -1 1 -1
231 -1 -1 1 1 -1 -1 1
312 1 -1 -1 -1 -1 1 1
321 -1 -1 -1 1 1 1 -1

XI.JXI.K −XI.JXJ.K +XI.KXJ.K = 1.

These are easily verified by inspecting the six sequences; see Table 2. Thus, the

three-factor interaction is in the column space of the PWO factors, and any two

two-factor interactions make the third unnecessary.

We refer to the model with all df2 = m(m − 1)/2 PWO terms and any
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full-rank set of df3|2 = m(m − 1)(m − 2)/3 two-factor interactions that share a

common factor as the triplets order-of-addition model. For instance,

E(Y ) = β0+

m−1∑
i=1

m∑
j=i+1

βi.jXi.j +

m−2∑
i=1

m−1∑
j=i+1

m∑
k=j+1

[βi.j∗i.kXi.jXi.k+βi.j∗j.kXi.jXj.k].

(2.2)

Note that two-factor interactions of PWO factors involve either three or four dis-

tinct components. The triplets model (2.2) only includes two-factor interactions

that involve three distinct components, excluding interactions such as X1.2X3.4.

If the order-of-addition design consists entirely of pairs of opposite sequences,

the resulting PWO treatment combinations will be mirror image pairs, and the

design is a foldover design. As a result, each two-factor interaction that involves

a shared component is orthogonal to the main effect PWO terms, but not or-

thogonal to the intercept.

Any design containing all m! sequences, equally replicated, consists of mirror

image pairs and, thus, enjoys the orthogonality property just described. For such

designs, the variances of the estimators of the coefficients in the triplets order-of-

addition model are simple functions of m and n. For m = 3, the estimators for

the three PWO main effects and the two interactions all have the same variance,

1.5σ2/n, where n is the number of sequences (a multiple of 3! = 6) and σ2 is

the common variance for Y at each given sequence. Voelkel (2019) reported

that the main effects have variance inflation factors (VIF) of 3(m− 1)/(m+ 1).

Therefore, with n = m! observations, these estimators have variance 3(m −
1)σ2/(m + 1)!. Furthermore, this remains true when fitting a triplet order-of-

addition model, because the interactions are orthogonal to the main effects for

the equally replicated m! design. For m > 3, the estimators of the interaction

terms in (2.2) have variance 3.75[(m− 1)/(m+ 2)]σ2/n, as verified by inspection

up to m = 10. Thus, for m > 3 and the full triplet model, the interaction

estimators have variances that are slightly larger than those of the PWO main

effect estimators. For reduced models with some terms eliminated, the variances

are less; see Section 2.4.

2.3. Higher-order terms

We have already seen that two-factor interactions involve either three or four

components. In the previous subsection, those involving just three components

were included in model (2.2). Terms that depend on four components, such

as X1.2X3.4, X1.2X1.3X1.4, and X1.2X2.3X1.4, would be considered next if the
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triplets model showed a lack of fit. Note that three-factor interactions such as

X1.2X1.3X2.3 are ignored, because these lie within the column space of the main

effects PWO model.

A saturated model for m = 4 has 23 df after the intercept. Because the

triplets model has df2 +df3|2 = 14 degrees of freedom, there are 23−14 = 9 df to

account for variation not attributable to the ordering of triplets of components.

We have these 9 df for each set of four components, and thus define df4|3 = 9
(
m
4

)
.

In general, the sequential degrees of freedom for each order may be obtained using

a rencontres series (Riordan (1958, p.65)). Define a2 = 1 and ar = r∗ar−1+(−1)r,

such that a3 = 2, a4 = 9, a5 = 44, and so on. These are the degrees of freedom for

each additional order for combinations of r components. Thus, for r = 2, . . . ,m,

dfr|r−1 = ar

(
m

r

)
.

For instance, for m = 5, the degrees of freedom are partitioned as 10, 20, 45, and

44, which total 119. Interestingly, for any m, the last two counts always differ

by ±1.

2.4. Simple numerical example

The Y1 column of Table 1 is obtained as follows. Suppose the four compo-

nents have the following effects, starting with Y0 = 1 before any components:

1: add 10; 2: subtract 5; 3: multiply by 4; 4: divide by 2. The response is

maximized for the sequence 4132, resulting in Y1 = {[(1/2) + 10]× 4} − 5 = 37,

and minimized for the sequence 4231, for which Y1 = {[(1/2)−5]×4}+10 = −8.

The fitted parsimonious model requiring only four PWO main effects and

two interactions is

Y1 =11.375 + 11.250X1.3 − 6.250X1.4 − 3.750X1.3X1.4

− 5.625X2.3 + 3.125X2.4 + 1.875X2.3X2.4.
(2.3)

This model fits perfectly, exactly reproducing the values of Y1 in Table 1. If a

random error were added to the response, the true variances for the corresponding

main effect estimators would be 1.4σ2/24, and for the interactions would be

just 1.2σ2/24. If we were fitting the full triplets model, the constants in the

numerators of these variances would be 1.8 and 1.875, respectively, as given by

the formulae in Section 2.2.

Note how the three coefficients for subtraction are opposite in sign and

half the magnitude of those for addition in (2.3). This makes sense because
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the quantity subtracted (5) is half of the quantity added (10). Interpretation

of the main effects is straightforward. The positive coefficient for X1.3 (X2.4)

indicates the benefit of adding 10 before multiplying by 4 (subtracting 5 be-

fore dividing by 2). The negative coefficients for X2.3 and X1.4 indicate that

subtracting-before-multiplication and addition-before-division both reduce the

response. The X1.3X1.4 interaction shows that the addition-before-multiplication

benefit is greater when X1.4 = −1 (i.e., when division precedes addition). Inter-

preting the X2.3X2.4 interaction, the subtraction-before-multiplication effect is

greater in magnitude when subtraction follows division (−5.625− 1.875 = −7.5)

than when subtraction precedes division (−5.625 + 1.875 = −3.75). Equiva-

lently, consider how the order for subtraction and multiplication (X2.3) influences

the effect associated with X2.4. Conditional on subtracting before multiplying

(X2.3 = 1), the coefficient of X2.4 is 3.125 + 1.875 = 5; conditional on subtract-

ing after multiplying (X2.3 = −1), X2.4’s effect is 3.125 − 1.875 = 1.25. This

discussion illustrates the interpretability of the triplet interaction terms.

2.5. Proposed analysis procedure

We now consider how to analyze a full m! design, using the data in Table 3

of Yang, Sun and Xu (2018); see the last column of our Table 1. Table 3 provides

the mean squares for the main effects PWO model, and for each additional order.

Here, because the triplets do not add anything useful, we tentatively conclude

that Van Nostrand’s simple pairwise model should suffice, and proceed to identify

which PWO factors to include. The main effects PWO model, with R2 = 83.25%,

is

Ŷ = 45.22 + 1.21X1.2 + 0.04X1.3 − 3.61X2.3 − 0.40X1.4 − 1.19X2.4 + 3.98X3.4.

By backward elimination, X1.3, X1.4, and X1.2 are removed sequentially, with p-

values 0.96, 0.66, and 0.19, respectively; this implies that it does not matter when

drug 1 is administered. One more term (X2.4) has a p-value of 0.078; removing

this, the reduced model, with R2 = 78.2%, is Ŷ = 45.22 − 4.70X2.3 + 3.07X3.4,

with p-values < 0.001 for both remaining terms. Thus, to maximize the response,

drug 3 should precede drugs 2 and 4. The eight sequences in which this is true

all yielded a coded response above 50, while only one of the other 16 sequences

achieved such response.

When the main effects PWO model holds, Yang et al.’s component-position

effects plot (their Figure 1) should show mean responses that are approximately
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Table 3. Basic ANOVA for Yang, Sun and Xu (2018).

Source df SS MS
Pairs 6 1,051.274 175.21
+Triplets 8 117.236 14.65
+Quadruplets 9 94.303 10.48
Total 23 1,262.813

Mean vs. Position
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55

1 2 3 4
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Drug

1
2
3
4

Figure 1. Component-position effects plot for 24-run m = 4 study.

linear when we have a full m! design; see Figure 1. Only drug 1 appears to depart

significantly from linear trend, but we have already seen that its position has no

noticeable effect.

Yang, Sun and Xu (2018) fit their position-component model for Y2; their

model contains (m − 1)2 = 9 terms and achieves R2 = 84.43%. However, the

Vuong (1989) test for non-nested models indicates that the simple PWO model

(2.1) is significantly closer to the truth than the position-component model is,

with p-value = 0.0152 using the Schwarz BIC adjustment for the three additional

parameters. In the next section, we analyze a five-drug experiment where several

triplet model terms are needed to explain the response.
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3. Using Fractions of Full m! Designs: A Five-Drug Example

Table 4 presents a five-drug experiment conducted in two blocks of 20 runs

each. Y denotes a coded, larger-the-better response. The runs have been sorted

in ascending order within each block. Although the lack of similarity in the se-

quences with the largest responses suggests that a complicated model is likely

required, we anticipate that beginning with either drug 3 or drug 5 will be pre-

ferred. Note too that the first block tended to yield better results, though we do

not explore this further here. The PWO model, including a block main effect,

has model sum of squares (SS) of 1,060.38 (R2 = 61.03%, RMSE = 4.92); the

position-component model, with six additional parameters, produces a modest

improvement (R2 = 72.62%, RMSE = 4.65). Vuong’s test (with the BIC adjust-

ment for the number of parameters) indicates a significant difference between

these two models, favoring the PWO model (p-value = 0.0215) as closer to the

truth. If we use forward selection with Bonferroni-adjusted p-values (Westfall,

Young and Lin (1998)), after forcing in the block effect, we would add at most

three PWO terms, because the adjusted p-value for the next term is 7 × 0.186;

see Table 5. This simple model indicates that drug 3 should precede drug 4

(b3.4 = 3.22), and that drugs 1 and 2 should both follow drug 5 (b1.5 = −1.79,

b2.5 = −1.80).

What about higher-order terms involving triplets? Partitioning the sum of

squares as we did in Table 3 for the four-drug example, we find clear evidence

for the need of triplet terms, though 1 df for triplets is lost as a result of the

confounding with blocks (see Table 6). Using the remainder mean square as the

denominator for the F-ratios, we are persuaded that the main effects PWO model

cannot account for all systematic effects caused by drug ordering; that is, some

interactions are needed (p-value = 0.0056).

The next step is to determine which triplets indicate useful interaction terms.

One way to proceed with such an analysis is to use forward selection, using nomi-

nal effects for the 10 triplets as the eligible terms. Starting with a model contain-

ing the block effect and all PWO main effects, the results are shown in Table 7.

Using Bonferroni adjusted p-values to reduce the chance of over-fitting the data,

we have evidence for triplets 235 and 135, because their adjusted p-values are

less than 0.20. Note that triplet 345 had the second smallest unadjusted p-value

in each step: 0.0193, 0.1331, and 0.0828 in steps 1, 2, and 3, respectively. No

other triplet had an unadjusted p-value of less than 0.125 in any of the steps.

Forward selection with 30 individual interactions yields results similar to
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Table 4. Five-drug, 40-run experiment.

Block Sequence Y Block Sequence Y
1 42135 4.93 2 42351 5.53
1 21345 13.63 2 21453 7.72
1 41253 15.57 2 12435 10.96
1 43512 18.47 2 24315 12.09
1 54123 19.50 2 41532 13.84
1 12543 20.23 2 14523 16.25
1 24531 21.47 2 15342 16.37
1 15234 21.59 2 43125 17.97
1 13425 23.55 2 53412 19.71
1 14352 23.61 2 54231 20.35
1 23154 23.85 2 25134 20.40
1 45321 25.23 2 13254 22.06
1 53241 25.62 2 32514 22.35
1 32451 26.08 2 31245 23.37
1 51432 26.75 2 45213 23.40
1 25413 28.38 2 52143 24.31
1 34215 29.43 2 23541 24.65
1 35142 30.52 2 34152 25.99
1 31524 31.27 2 35421 26.30
1 52314 31.96 2 51324 26.49

Table 5. Five-drug example: Forward selection for PWO terms.

Step Parameter p-value No. Eligible Adj. p-value RSquare
1 X3.4 0.0008 10 0.0084 0.3337
2 X2.5 0.0065 9 0.0588 0.4590
3 X1.5 0.0324 8 0.2589 0.5263

Table 6. Five-drug example: ANOVA.

Source df Sequential SS Mean Sq. F p-value
Block 1 166.22 166.22 28.714 0.0005
2 | Block 10 894.16 89.416 15.446 0.0002
3 | 2, Block 19 624.96 32.893 5.682 0.0056
Remainder 9 52.10 5.789
Total 39 1737.44

those shown in Table 7. The first four interactions to be added are X2.3X3.5,

X1.3X1.5, X1.2X1.5, andX3.4X3.5, with unadjusted p-values 0.0035, 0.0054, 0.0206,

and 0.0276, respectively; the next step had unadjusted p-value > 0.05. The model

with just two interactions still exhibits a possible lack of fit, based on a test using

MSE = 5.789 from Table 6 as the error mean square. This leads us to consider
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Table 7. Five-drug example: Forward selection for adding triplets to simple PWO model.

Step Triplet Adjusted p-value RSquare
1 {235} 10 ∗ 0.0133 = 0.133 0.721
2 {135} 9 ∗ 0.0215 = 0.193 0.797
3 {125} 8 ∗ 0.0754 = 0.603 0.840

two models, one with just two interactions, and a fuller model with four inter-

actions. Table 8 displays the fuller model with R2 = 86.4%, 24 df for error, and

RMSE = 3.14. Without the last two interactions, R2 = 79.1% and RMSE = 3.73,

with b2.3∗3.5 = −2.06 and b1.3∗1.5 = −1.95. Note how much larger in magnitude

b2.3∗3.5 is in this model than in the Table 8 model.

The primary use of these models is to identify which sequences are likely to

yield the highest average response. The best observed response was for sequence

52314, but our models do not commend this sequence. Sequence 52314 was

ranked 15th (29th) out of 120 sequences based on the model with two (four)

interactions. Instead, the models with two and four interactions both rank the

sequences 31524 and 35214 as best and second best; sequence 31524 was the

second-best observed response, while 35214 does not appear in the Table 4 design.

The main effects PWO model with the batch effect does not agree with either of

the models with interactions, ranking 31524 (35214) as 12th (3rd) best. Thus,

the interactions improve the fit and change which sequences have the highest

predicted responses.

4. Robustness of Order-of-Addition Orthogonal Arrays

Voelkel (2019) introduced the concept of order-of-addition orthogonal ar-

rays, as follows: a design is an order-of-addition orthogonal array (OofA-OA) of

strength t if, for every subset of size t in the PWO factors, the frequencies are

proportional to those of the full m! design. Voelkel showed that strength-2 (3)

OofA-OAs only exist for run sizes that are integer multiples of 12 (24). Thus,

for m = 4, the only OofA-OA’s (with n < 24) are half-fractions. It can be shown

that any 12-run OofA-OA is isomorphic to one of Voelkel (2019) two 12-run

fractions for m = 4.

Although every strength-2 OofA-OA is fully efficient for the PWO model,

they generally have correlations between the main effects and the two-factor in-

teractions. Any design that consists of foldover pairs, including the full m! design,

does not have these correlations, but is not necessarily fully efficient for the PWO

model. (The 40-run design in Table 4 does not consist of foldover pairs, and each
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Table 8. Five-drug example: Fitted model with four interactions (R2 = 86.4%, MSE =
9.87).

Term Estimate Std Error t Ratio Prob> |t| VIF
Intercept 27.54 1.71 16.10 <0.0001
batch -4.78 1.07 -4.47 0.0002 1.16
X1.2 0.00 0.76 0.00 0.9980 2.34
X1.3 -0.95 0.74 -1.27 0.2154 2.24
X1.4 0.55 0.76 0.72 0.4778 2.33
X1.5 -1.41 0.75 -1.87 0.0734 2.29
X2.3 -1.46 0.75 -1.93 0.0653 2.30
X2.4 0.57 0.77 0.74 0.4664 2.40
X2.5 -1.57 0.75 -2.10 0.0469 2.27
X3.4 1.74 0.74 2.34 0.0277 2.24
X3.5 -0.10 0.75 -0.14 0.8896 2.27
X4.5 -0.76 0.75 -1.01 0.3225 2.28
X2.3 ∗X3.5 -0.93 0.63 -1.48 0.1507 1.45
X1.3 ∗X1.5 -2.35 0.57 -4.09 0.0004 1.22
X1.2 ∗X1.5 1.71 0.65 2.63 0.0145 1.43
X3.4 ∗X3.5 1.35 0.57 2.35 0.0276 1.22

effect estimate is correlated with every other estimate.)

One common design diagnostic is the alias matrix. For main effect models,

the alias matrix is commonly constructed by taking all two-factor interactions as

the omitted effects. Let D1 be the n × df2 matrix of PWO factors, and let [D2

X2] be the matrix of all two-factor interactions, partitioned into those that share

a common component and those that do not. That is, D2 has m(m−1)(m−2)/2

columns (> rank(D2)), whereas X2 has m!/[8(m− 4)!] columns. Define the alias

matrix as

A = (D′1D1)
−1D′1[D2, X2] = [(D′1D1)

−1D′1D2, (D
′
1D1)

−1D′1X2] = [A3, A4].

(4.1)

If A were zero, as for the full m! design, then omitting the two-factor inter-

actions would not bias the main effect estimates, and their inclusion would not

change those estimates or increase their VIFs. We prefer the coefficients of A to

be small. One scalar measure of size is the sum of the square of all elements of

A:

trace(A′A) = trace(A′3A3) + trace(A′4A4). (4.2)

If the columns of D1 were orthogonal to one another, then (4.1) would be a matrix

of the correlations between all PWO effects and their two-factor interactions.

Furthermore, (4.2) would be the sum of the squares of these correlations. For
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regular 2k−p fractions, (4.2) is simply three times the number of length-3 words

in the defining relation, whereas for nonregular fractions of strength 2, (4.2) is

3B3, where B3 is the leading term in the generalized word length pattern (gwlp).

Thus, one motivation for the G2-aberration criterion (Tang and Deng (1999)),

which is based on sequentially minimizing the elements of the gwlp, is to minimize

the bias caused by omitted interactions. Voelkel (2019) Sim3 is equivalent to the

ranking based on B3; here, the criterion (4.2) is preferred because it takes into

account the lack of orthogonality for the columns of D1, and because it enables

us to distinguish between two-factor interactions associated with triplets versus

those with quadruplets of components.

For fullm! order-of-addition designs, and any fraction that consists of foldover

pairs, (4.1) is a matrix of zeros. However, where there does not exist an (n/2)×k
matrix E such that D1 = [E′; −E′]′, generally trace(A′A) > 0 and B3 > 0. We

opt to assess the potential bias for strength-2 OofA-OA and other small fraction

designs using trace(A′3A3) and trace(A′4A4).

Voelkel (2019) 12-run Design 1 for m = 4, with trace(A′A) = 12.96 = 12.48 +

0.48, is such that the three two-factor interactions involving all four components,

if present, would cause little bias to the PWO estimates. However, Design 2, with

trace(A′A) = 15.84 = 9.6 + 6.24, is less susceptible to bias caused by omitting

triplet effects. Thus, which design is more robust depends on whether active

two-factor interactions are associated with triplets or quadruplets.

We also compute (4.2) for three strength-2 OofA-OA designs from Voelkel

(2019) with m = 5 and n = 24 orderings. By this measure, his Design 65, with

trace(A′A) = 24.5̄ = 14.3̄ + 10.2̄, is dominated by both Design 5 [trace(A′A) =

20.5 = 14 + 6.5] and Design 33 [trace(A′A) = 18.61 = 9.5 + 9.1]. Design 33 is

preferred over Design 5, both for triplet model robustness (9.5 < 14) and with

respect to all two-factor interactions (18.61 < 20.5). The ranking of these designs

based on trace(A′A) coincides with the ranking in Voelkel’s Table 4, based on

his minimum moment aberration criterion (Sim3), as well as his average (χ2
ave,3)

and fraction with perfect (F03) balance for sets of three PWO factors.

Augmenting any of these 24-run OofA-OA by folding over would produce

an alias matrix A = 0. However, none of the foldovers of Designs 5, 33, or 65

produce a design that supports an estimation of the triplets model (2.2). For

instance, the foldover of Design 65 has 48 distinct treatment combinations, but

rank(D2) = 19, which is less than 21, as required. Yet, there do exist OofA-

OA(n = 24,m = 5, t = 2) for which the n = 48 foldover has rank(D2) = 21. One

such design is given in Table 9. Its D-efficiency for the triplets model, relative to



1556 MEE

Table 9. OofA-OA(24,5,2) for which foldover supports estimation of the triplet model.

12354 31425 43251
12453 31542 45213
13524 32145 51243
14352 32541 51342
21543 34512 52314
23415 41253 53241
24351 41532 54231
25134 42135 54312

the full 5! design, is only 83.76%, and its largest VIF is 9.47. In addition, although

foldover designs are fully efficient for main effects and the alias matrix (4.1) is

null, they have at most n/2 − 1 degrees of freedom for two-factor interactions.

As a result, if two-factor interactions involving four components are active, but

omitted from the model, these will bias estimates for the two-factor interactions

involving three components.

We can improve on the D-efficiency of the Table 9, n = 48 triplets design by

increasing the run size. SAS’s Proc Optex readily generates D-optimal designs of

size 31 or 36 for the triplets model (n = 31 is the minimum size for this model).

Two advantages of n = 36 are that this size may result in an OofA-OA, and

its foldover is potentially able to estimate all two-factor interactions, even those

involving four components. Repeated searches using Proc Optex yielded triplet

designs of size 31 and 36 with D-efficiencies of 79.4% and 87.2%, relative to the

full 5! = 120-run design. Note that the 36-run has a higher D-efficiency than the

Table 9 design with 48 runs. Folding over these 31- and 36-run designs yields

D-efficiencies of 92.1% and 95.4%, respectively, for the resulting 62- and 72-run

designs. The online Supplementary Material lists each of these designs.

For triplet designs, the alias matrix should be redefined to measure the po-

tential bias caused by omitting quadruplet terms, corresponding to the columns

of X2 and D3, where D3 is the matrix of three-factor interactions that involve ex-

actly four components. There are 16m!/[4!(m− 4)!] columns in D3. Ignoring the

block effect, the Table 4 design is very efficient for estimating the triplet model

(2.2). Its D-efficiency, relative to that of the full 5! design, is 0.6004/0.6613 =

90.8%. An alias matrix for this design would entail 30 rows, one for each effect

in the full triplet model, and 95 columns: 15 for X2, and 80 for D3.



ORDER-OF-ADDITION MODELING 1557

5. Applications with Constrained Orderings

Consider an assay that involves four components, where the first two can

be combined in either order, and the last two can be combined in either order.

However, the second pair always follows the first pair. In such a case, rather

than having 4! orderings to consider, there are only four possible orderings: 1234,

2134, 1243, and 2143. To generalize this, suppose that the components appear in

g groups, with m1,m2, . . . ,mg components, respectively. The number of possible

sequences, assuming no constraints within a group, is m1! m2! · · ·mg! < (m1 +

m2 + · · · + mg)!. Depending on the application, the groups may be performed

sequentially, or in parallel and then combined. Let I be a component from group

1 and J a component from group 2. If group 1 always precedes group 2, then

XI.J = +1 for all runs. However, if the groups are done in parallel and then

combined, XI.J = 0 for all runs. As long as the relationship between the groups

is fixed, this does not impact which terms are estimable, because XI.J is constant

in either case.

The degrees of freedom for the main effects PWO model with g groups is

df2 =
∑g

i=1 0.5mi(mi − 1). For instance, if m1 = m2 = 2 and m3 = 3, there are

only 24 sequences rather than 7! = 5,040 for the unconstrained case. Given these

constraints, the PWO model has just 5 df, whereas the triplets model would add

just 2 df more to account for the lone triplet in Group 3. Thus, such restrictions

greatly reduce the number of orderings to be considered, and will often make it

reasonable to perform all of the reduced set of feasible sequences.

In many applications, such as in mixing pesticides, the sequence may be

largely specified. In this case, experiments are used only to vary the order within

small groups of steps. The advantage of such restrictions is that sequences known

to be incompatible or inferior are avoided. The resulting, smaller experiments

are focused on answering a more limited set of questions involving order within

groups.

6. Applications with Additional Factors

Consider an assay where, in addition to different orderings of the components,

we vary the quantities of components and the incubation times following each

addition. Varying the quantities makes this a mixture proportion experiment,

whereas varying the incubation times includes additional quantitative factors. If

the order of addition were fixed, such an experiment would be a mixture design

with additional quantitative factors; see Piepel and Cornell (1994). To the best
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of our knowledge, the mixture experiment literature has not considered order-of-

addition aspects, but this is a natural extension.

Let O denote the set of feasible addition orderings expressed in terms of

the PWO factors, let P denote the set of component mixture proportions to

be considered, and let F be the treatment combinations for the other numerical

factors. Then, an experiment involving order of addition, component proportions,

and other factors might conceivably sample from the set of conditions formed by

the product array O×P ×F . Taking this as a candidate set of points, one might

use standard software such as SAS’ Proc Optex to select an efficient design for a

given specified model. See Voelkel (2019, Sec.6) for design construction examples

from O × F .

7. Conclusion

This study extends the modeling of order-of-addition experiments beyond

the simplistic model that assumes that the response depends additively on pair-

wise effects. The triplets model provides an extension to the standard PWO

model for applications where Van Nostrand’s model exhibits a lack of fit. If nec-

essary, interactions involving four components (terms in a quadruplets model)

can be added, although our examples do not demonstrate a need for higher-order

terms than two factor interactions sharing a common component. The alias

matrix-based measure (4.2) improves on one of Voelkel (2019) criteria for rank-

ing order-of-addition designs. Section 5 showed how the standard PWO model

and the triplets model are simplified for cases where the steps can be partitioned

into groups, with the order of groups fixed, and only the order within groups

varying. Most of this article has focused on proposing more versatile models

and comparing the fit of these models with other models in the literature for

actual order-of-addition experiments. Given that these new models are useful,

more work is needed related to design construction, the results of which will be

reported elsewhere.

Supplementary Material

The online Supplementary Material contains the D-efficient designs men-

tioned in Section 4.
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