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Lemmas and Technical Proofs

Lemma 5. Under Condition 1 or conditions of Theorem 3, we have
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(Klz}"tyg&2 — ALyyiAs) = o0y(1). (S0.1)
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Proof. We first show the case with fixed p. Since {x,f;, &} is a mixing

with mixing coefficients «,, satisfying

Z a7 < oo, (50.2)

m=1

it follows that {Vy;} is a a mixing process with mixing coefficients satis-
fying (S0.2). Thus, by Theorem 3.2.3 of Lin and Lu (1997), there exists a
p-dimensional Gaussian process g(t) such that

Y/ V0 = g(#), on D0, 1]. (S0.3)
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From (S0.3) and the continuous mapping theorem, it follows that

1 - / ! /
Yoy [egar (0.4
t=1 0

Further, by E||xs||*” < oo for some v > 1, we have

1 n
max |[xe - Expal|/v/n = 0,(1), and ~ > " [lxi2 — Expal| = O,(1). (S0.5)

t=1

Combining (S0.3) and (S0.5) (see Lemma 7 of ZRY) yields

1 n
—7l1 D yixiall = 0,(1). (50.6)
t=1

On the other hand, by Vx;; = A Vy,, we know (Vxy1,Xs2) is also a mix-
ing with mixing coefficients satisfying (S0.2). As a result, by the proof of
Theorem 1 in ZRY,

|As — Aslls = O,(1/n). (S0.7)

y (S0.4), (S0.6) and (S0.7), we have

n—1
|I—Z( LyiyiAs — ALy As)l
t=1
n—1 n—1
. A/ / A/ / Y
_ ||(A2_A)/Zt:1 yt( 2yt) + t:l( 2yt>yt(A2_A2)

n n

_i_(;&z )/Zt 1 yl‘Yt (A AQ)H2

2 —

~ x! Xy~ ~
||(A2 . )/Zt lnyt 12 Ztln 12yt (Ag . Ag) + (A
= op(1).
Next, consider the case p = o(n°). Let ¢; be a k-dimensional I(1)

process such that V¢; = v;. By Remark 2 of ZRY, we know that Condition
3 (i) and Remark 3 of ZRY hold for ¢;. Let M, My be kx (p—r) and k xr

)Zt 1Yth(A A)

2

(S0.8)
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matrices such that M given in (i) of Condition 3 satistfying M’ = (IM;, Ms).
Let F(t) = (F'(t),--- , F*(t))' be defined as in ZRY and ¢ = £ >"1' | ¢, then

n

5 D x = 5) = 50)' = M [ F(OF(6) v

n

= ™ (%Z(g—cxct—c)'— / F<t>F'<t>dt> Milz = o, (8019

t=1

By Remark 3 of ZRY, we have A ( JIROF (1) dt) > 1/k in probability.

Since ¢1 < Amin(M) < Amax (M) < ¢, it follows Apin (M/1 JEFRF(2) dtmg) >
1/k in probability. Further, for any given j > 0,

n—j

1 )
||ﬁ Z(Xt+j,2 — X)(Xp2 — X2)" — Cov(Xyyj2, Xs2)|[2
t=1
/ 1 - — =\/
= M5 D [(Vies = 9)(ve = 9 = Covl(viay, vi)] ) Ml |2 = o, (066}

t=1

1 & _ ) 1 & . .
15 D (xeja = %) (X2 — %a)'[la = ||M} (W D (st —9)(vi - V)') M|l

t=1 t=1

= O,(k/n'?), (S0.11)

where v; is given in (i) of Condition 3.
By (S0.9)—(S0.11), similar to the proof of Theorem 3 in ZRY, it can be
shown that when k = o(n'/2=1/7),

1As — Aslls = O, (k). (S0.12)

Similar to (S0.9), there exists a k-dimensional Gaussian process w(t) such
that

1 & 1
||ﬁZYtYZ—A1M’1/O w(t)W'(t) dEM ALl = 0,(1)  (S0.13)
t=1
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and similar to (S0.11), we can show (S0.6) holds provided k/n'/? — 0 as
n — oo. Thus, by (S0.12) and (S0.13), we also have (S0.8) and complete
the proof of Lemma 5. O

Lemma 6. Under Condition 1,
1 ;o
Hﬁ D Vyiyi 1 (Az = As)ll2 = 0,(1),
=1
and under the conditions of Theorem 3,
1 ¢ ~
|7 D0 Tyia(Be — Aa)lla = O,V ). (S014)
=1
Proof. When p is fixed, similar to (50.6), we have
1« ,
WH Z Vyi¥i-illz = 0p(1).
t=1
As a result, it follows from (S0.7) that
I ~
||% D Vyiyii(As = As)|l> = 0,(1). (S0.15)
=1

When p tends to infinity as n — oo, using the same idea as in (S0.11),

we can show
7l 2 Tl = Otk (8016
Thus, by (S0.12) and p < k = o(n!/?), it follows that
- Z Vi (R — Al = 0,028 01,

Thus, we have Lemma 6. O]

Lemma 7. Let ¥ = E{(f{_,,--- ,£_.)(f_,,--- ,f_,)}. Under Condition 1
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, for any given positive integer s,

S Ey B @ ) - M) B (S0a7)

t=s+1

1

and under the condition of Theorem 3, in probability

n

1 ~ ~ ~ ~
E |: Z (ft/—h T aft,—s)/(ft{—la e 7f£—s> - M} >0, (8018)
t=s+1

where A > 0 means that A is a positive definition matriz.

Proof. By some elementary computation, we have

A~

f, = [f,+Be]+[(B-B)(Bf,+¢&) + [B(D—D)xp] + [B'D(As — Ay)'y;_1]

4
= ) i (S0.19)
=1

Next, we first show (S0.17) holds for fixed p. By (S0.33) (see below), we

have
1B — Bl|s = 0,(n"/?), (S0.20)

which gives

n

1 / / 1l /
1= D (Conar 2 Gis) (a5 Gl = 0p(1)- (S0.21)

t=s+1
Similarly, by (S0.29) (see below) and (S0.7), we have

n

4
]‘ /! ! / /!
Z HE Z (C;fl,iv T Jths,i) (thl,iv T aths,i)H2 =0p(1).  (S0.22)

=3 t=s+1

On the other hand, by law of large numbers for a-mixing process, we get

17 < »
LD o G G+ oGt = M| 25 B (80.23)

t=s+1
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Combining (S0.21)—(S0.23) yields that

S IE Y B VG B

1 n 4 4 4 4
= =D Qi G Qo s Y )
t=s+1 =1 =1 =1 1=1

1 n
= E Z (Cgfl,lﬂ T 76275,1)/(6271,17 T 7<;fs,1) + Op(l) L> 3
t=s+1
and (S0.17) follows.
Now, we turn to show the case with p varying with n. Since p = o(n'/?),
(8023) still holds. Note that % Z?:s(cg—l,iv ) C:}—s,i)/(cg—l,zﬁ ) C:ﬁ—s,i) >

0 for i = 1,--- ,4. For the proof of (S0.18), it is enough to show for all
1<i#j <4,

n

1
1= D G G (€l Chglla = 0p(1)- (S0.24)

t=s+1

We only give i = 1,7 = 4 in details, other cases can be shown similarly.
Since y; = Axy, it follows from (2.1) that

Ct,l = B/(vyt—Dthl’g) = B/Aet—B/<D+A2>Xt,1’2 = B/AMVt—B/<D+A2)M/2Vt,1.

Thus, by the fact that for any —s — 1< j < s+ 1,

1)) Vevirylla = Op(kn) (50.25)

t=1 s=1

and (S0.12), we have the left-hand side of (S0.24) is of order O, (p'/?k?/n) =
0p(1), where (S0.25) holds because the components of v; are independent.
Thus, we have (50.18) and complete the proof of Lemma 7. O

Proof of Theorem 1. Let b;,7 = 1,--- ,p be the rows of B. Lemmas 5
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and 6 implies that for any 1 <i <p,

\/ﬁ(‘i -d;) = (% Z(bift + Ei)y;—1A2> (% Z (ASy:—1) 2Yt1)/> + 0p(1)

—1
1 = AN 1 — /
= (ﬁ ;(blft + Et)Xt1,2> (ﬁ ; Xt2xt2> + 0p(1>. (SOZG)

Since {x2} is o mixing with mixing coefficients satisfying (S0.2), it follows
that

n—1
1
- Z XXy — B(X19X},) =: I (50.27)

1=0

On the other hand, by central limit theory (CLT) for a-mixing process
{(bif; + €)x}_1 5, 1 < i < p}, there exists a pr x pr matrix A such that

n n

1
NG (Z(blft +E)X] g9 ) (byfi + af)x;_LQ) —%5 N(0, A)(S0.28)
t=1 t=1

Thus, by (S0.27) and (S0.28), we have
Vn(vech(D) — vech(D)) —& N (0, TT'AIT ). (S0.29)
Further, by (50.29) and (S0.7), it is easy to show that
IC — Clls = [|(D = D)A} + D(A} — Aj)[|2 = Op(n~ 7).

Next, we show (b) of Theorem 1. Observe that

v =Vy; — f);‘;,z}ft—l = (Vy: —Dxy_12) — (f) — D)[(;‘\Q - AZ)/Yt—I + X¢—1.]

- D(K2 - A2)IYt—17
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which means that

1<
" [Vir Vi — E(Vyir; — Dxepj1)(Vy: — Dx; )]
1

t=

]' = / !/
ﬁ Z [(V}’t+j - DXt+j—1)(V}’t - Dthl) - E(V}’t+j - Dxt+j71)(v}’t - DXt71> ]
t=1
. 12 - .
+(D - D) <— Z[(A2 = A9)'yiyj1 + Xepj12)[(Ar — Ag)yi 1 + Xt—l,Q],> (D -DY

n
t=1

N 1 nd N
+D(A; — Ay)' (5 > yt+j—lY§1> (Az — Ap)D'
t=1
n—j

1 ~ ~ ~
> (Vyir; = Dxpy1o){yi1(Az — A) +x1_1,](D — D) +yi_,(A; — Ay)D'}
t=1

n

1l ~ ~
- Z{(D —D)[(As — Ag)'yirj1 +Xepj12] + D(As — Ay)yirj 1 H(Vy: — Dx; 1)
=1

12~ -
o D (A= Ao)yirj1yios +Xisj10yi1](As — Ay)D

t=1

12~ ~ ~
+E Z D(Az — Ag)[yijo1yi—1 (A2 — Ag) + Yt+j—1X;—1,2](D - D).

t=1

By (S0.7), (S0.29) and the law of large numbers, we have that the spectral
norm of the last six terms of the right-hand side in (S0.30) is O,(n~!). And
by CLT of a mixing process, for any given j, the first term of the right-hand

side of (S0.30) is O,(n~'/2). Similarly, we can show

Thus,

1Z.() = 202 = Op(n™'72),

where 3,(j) = E(Vy; — Dx¢j-1)(Vy: — Dxy_q)'.

(S0.31)

(S0.32)

Since jo is fixed, it

(S0.30)
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follows from (S0.32) that
A Jo
W= 2.0l = Op(n"?). (S0.33)
j=1

Note that D(M(B), M(B)) = O,(|[W — 32, 8,(5) 2, (5)ll2) (see for ex-
ample, Chang, Guo and Yao (2015)), we have (b) of Theorem 1 as desired.
Now, we turn to show (c¢). By (S0.19), we get

n

SO B E D B
t=s+1 i=1

= Z |:ft/—1 + €;—1B7 e 7fi,{—s + sé—sB}, [e; + EQB]

t=s+1
- Z [ft/—l + s;—lB7 ) ft/—s + 82_8B}/ [Z €2_ZBE;]
t=s+1 i=1
n 4
+ Z [ft,_1 +e B, f + 5::—3B}/ [Z(Ct] - Z Eithi,jﬂ/
t=s+1 j=2 i=1

n 4 s 4
+ Z Z[C;,Lj, T ,CQ,S,j]/[et + B'e; — Z EB'e; ; + Z(Ct,j - Z EiCt—i,j)]l
i=1 j=2 i=1

t=s+1 j=2
4
= Y A (S0.34)
=1

By (S0.7), (S0.20) and (S0.29), we can show that for any given positive
integer s,

[Ansll2 + [[Anll = Op(Vn). (S0.35)

On the other hand, since for any 1 < i,j5 < s and | # i, vech{(f,_; +
Be, )(e; +¢€;B), fi_ie; ;B, B'v,_;&; B} is a a mixing process with finite
27v-moment and mixing coefficients satisfying (S0.2), it follows from the
CLT of o mixing process (see for example Corollary 3.2.1 of Lin and Lu)
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that for some matrix I'y,

1 n
NG > vech{(f,_; + Be,)(€} + &/B), f,_i; B, B'v, e, B} = N(0,T[$0.36)
t=s+1

Set 2 = [Z?:Hl(/ft’_l, o BV, ) — M|. By the definition of

A~

E;,i=1,2---,s, we have
B - B, DARICED Dy Y B
: = Q! : + M (503
B, - E, DA R Dy 2] B
Thus, by Lemma 7 and (S0.34)—(S0.36), we have conclusion (c¢) and com-
plete the proof of Theorem 1. n

Next, we first develop bounds for the estimated eigenvalues Xj, J =

1,2,---p.

Lemma 8. Let A\, j = 1,--- ,p be the eigenvalues of W,,. Under Condition

1 or conditions of Theorem 3,
A = Am| = Op(pn™?)  and | Ania| = Op(pn~"?). (S0.38)
Proof. By (b) of Theorem 1 and (b) of Theorem 3, we have for any 1 < i < p,
N = N| < [[Wy = Wolla = Op(pn~?) and  Apyy =--- = A, = 0.
This gives Lemma 8 as desired. [
Proof of Theorem 2. It is enough to show that
nh_>nolo P{m <m} =0. (S0.39)

Suppose m < m is true, then by Lemma 8, there exists a positive constant
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¢y such that
lim P{Ami1/dm >t =1, and lim P{ni1/Am < c1/2} = 1.
This implies that
lim P{ii1/Mm > Amst/Am} = 1,
which contradicts the definition of m. Thus, (S0.39) holds. O

Proof of Theorem 3. Since p = o(n'/?) and {x;,} is a a mixing process
with mixing coefficients satisfying (S0.2), it follows that (S0.27) also holds
for this case. Further, note that for any 1 <7 < pand 1 < j <r, applying
CLT of mixing process to {(b;f; + 6%)33{_172}, which is a a mixing process
with coefficients satisfying (3.2), we get

| Z(bift + 5i)$g—1,z| = Op(\/ﬁ)a

t=1

which implies

1 — ) -
123 (B + e)x 5]l = O, 2(pr) ). (80.40)

t=1

Thus, by Lemmas 5 and 6,

~1
I 1 — ~
ID-DJ; = ;ZVYtYMAz)( ZAzYt 1Yi1 > -D

t=1
2

-1

n n—1
1 1
= " ; VYtX£1,2> <ﬁ ; Xt1,2X£1,2> - Dj| + Op(p1/2k2/”>

2
. -1
= —Z Bft+€t Xt 12) <nZXt 12Xt 12) +Op(p1/2k2/n)
t=1
2

= Op(n™2(pr)'? + p'/2k? /n), (S0.41)
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this combining with (S0.12) yields
IC = Cll2 = [|(D = D)A} + D'(A} — Ap)ll = Op(n(pr)* + p'/2k? [i50.42)

Thus, (a) of Theorem 3 follows from (S0.41) and (S0.42).
Next, we show (b). It is easy to see that

1
||E Z Yi-1¥i-1ll2 = Op(p). (50.43)
=1

Thus, by (S0.12), (S0.41) and (iii) of Condition 3, it can be shown that
|| - ||2 norm of the last six terms of the right-hand side in (50.30) are of
order o(pn~'/2), provided k = o(n'/?) and p = O(n'/*). On the other hand,
applying CLT of o mixing process to the first term of the right-hand side of
(S0.30), we get for any given j, this term is of order O,(pn—'/2). Similarly,

we can show n~' S1~7 vV, = O,(n""/?p). Thus,
1507) = Zu(i)lls = Opn~ ). (50.44)

Since jg is fixed, it follows from (S0.44) that

Jo

W =3 Su)Z0) = Opln2p). (80.45)

Note that D(M(B), M(B)) = O,(|[W — 32, ,(5) 2, (j)ll2) (see for ex-
ample, Chang, Guo and Yao (2015)), we have (b) of Theorem 3 as desired.

In the following, we give the proof of (c¢). Let A,;, ¢ = 1,2,3,4 be
defined as in (S0.34). By conclusions (a), (b) of Theorem 3 and (S0.12), we
can show that

ALz + Andll = O, (711/2(]97’)1/2 (=2 (pr) 2 + p'2K2 4+ pn V2 +p1/2k€$().46)

On the other hand, applying CLT of @ mixing to the elements of vech{ (f;_;+
Be; )(e; +€,B), fi_ie; ;B, B'v, el B, 1 #1i,1<1i,j <s}, we get

1A + Anz — M|z = O,((pmn)'/?). (50.47)
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Combining equations (S0.46)—(S0.47) with Lemma 7 and p = o(n'/?) yield
(B, Ey)|la = O(Y2k*n =" 4 pm!/2n~1/2), (50.48)

this gives (c¢) and completes the proof of Theorem 3. [

Proof of Theorem 4. By Lemma 8, Theorem 4 can be shown similarly
as for Theorem 2. Therefore, we omit the detailed proofs. n

Proof of Remark 1. Since the proofs are similar, we only show the case

with fixed p in details. It follows from the definition of m that

p p
SN Hiw, < N+ muwy. (S0.49)
j=m+1 j=m

Suppose that m > m, it follows from (S0.49) that

m

(M — m)w, < X < (M — m) At (S0.50)
+1

j=m

Since wy, /n"'/? — oo, it follows from Lemma 8 that equation (S0.50) holds
with probability zero. This gives that

lim P{m > m} = 0. (S0.51)

n—oo

On the other hand, if m < m, equation (50.49) yields

(m—m)An < Y A < (m — i)w,. (S0.52)
j=m+1

Lemma 8 implies Xm > A\pn/2 > 0. Thus, by (S0.52) and w,, — 0 as n — oo,
we have

lim P{m <m} = 0. (50.53)

n—oo

Equation (S0.51) together with (S0.53) give the consistency of m as desired.
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