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Lemmas and Technical Proofs

Lemma 5. Under Condition 1 or conditions of Theorem 3, we have

1

n

n−1∑
t=1

(Â′2yty
′
tÂ2 −A′2yty

′
tA2) = op(1). (S0.1)

Proof. We first show the case with fixed p. Since {xt2, ft, εt} is α mixing

with mixing coefficients αm satisfying

∞∑
m=1

α1−1/γ
m <∞, (S0.2)

it follows that {∇yt} is a α mixing process with mixing coefficients satis-

fying (S0.2). Thus, by Theorem 3.2.3 of Lin and Lu (1997), there exists a

p-dimensional Gaussian process g(t) such that

y[nt]/
√
n

d−→ g(t), on D[0, 1]. (S0.3)
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From (S0.3) and the continuous mapping theorem, it follows that

1

n2

n∑
t=1

yty
′
t

d−→
∫ 1

0

g(t)g′(t) dt. (S0.4)

Further, by E||xt2||2γ <∞ for some γ > 1, we have

max
1≤t≤n

||xt2 − Ext2||/
√
n = op(1), and

1

n

n∑
t=1

||xt2 − Ext2|| = Op(1). (S0.5)

Combining (S0.3) and (S0.5) (see Lemma 7 of ZRY) yields

1

n3/2
||

n∑
t=1

ytx
′
t2||2 = op(1). (S0.6)

On the other hand, by ∇xt1 = A′1∇yt, we know (∇xt1,xt2) is also α mix-

ing with mixing coefficients satisfying (S0.2). As a result, by the proof of

Theorem 1 in ZRY,

||Â2 −A2||2 = Op(1/n). (S0.7)

By (S0.4), (S0.6) and (S0.7), we have

|| 1
n

n−1∑
t=1

(Â′2yty
′
tÂ2 −A′2yty

′
tA2)||2

= ||(Â2 −A2)
′
∑n−1

t=1 yt(A
′
2yt)

′

n
+

∑n−1
t=1 (A′2yt)y

′
t

n
(Â2 −A2)

+(Â2 −A2)
′
∑n−1

t=1 yty
′
t

n
(Â2 −A2)||2

= ||(Â2 −A2)
′
∑n−1

t=1 ytx
′
t2

n
+

∑n−1
t=1 xt2y

′
t

n
(Â2 −A2) + (Â2 −A2)

∑n−1
t=1 yty

′
t

n
(Â2 −A2)

′||2
= op(1). (S0.8)

Next, consider the case p = o(nc). Let ς t be a k-dimensional I(1)

process such that ∇ς t = vt. By Remark 2 of ZRY, we know that Condition

3 (i) and Remark 3 of ZRY hold for ς t. Let M1,M2 be k× (p−r) and k×r
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matrices such that M given in (i) of Condition 3 satisfying M′ = (M1,M2).

Let F(t) = (F 1(t), · · · , F k(t))′ be defined as in ZRY and ς̄ = 1
n

∑n
t=1 ς t, then

|| 1

n2

n∑
t=1

(xt1 − x̄1)(xt1 − x̄1)
′ −M′

1

∫ 1

0

F(t)F′(t) dtM1||2

= ||M′
1

(
1

n2

n∑
t=1

(ς t − ς̄)(ς t − ς̄)′ −
∫ 1

0

F(t)F′(t) dt

)
M1||2 = op(1).(S0.9)

By Remark 3 of ZRY, we have λmin

(∫ 1

0
F(t)F′(t) dt

)
≥ 1/k in probability.

Since c1 ≤ λmin(M) ≤ λmax(M) ≤ c2, it follows λmin

(
M′

1

∫ 1

0
F(t)F′(t) dtM′

1

)
≥

1/k in probability. Further, for any given j ≥ 0,

|| 1
n

n−j∑
t=1

(xt+j,2 − x̄2)(xt2 − x̄2)
′ − Cov(xt+j,2,xt2)||2

= ||M′
2

( 1

n

n∑
t=1

[(vt+j − v̄)(vt − v̄)′ − Cov(vt+j,vt)]
)
M2||2 = op(1), and(S0.10)

|| 1

n3/2

n−j∑
t=1

(xt+j,1 − x̄2)(xt2 − x̄2)
′||2 = ||M′

1

(
1

n3/2

n∑
t=1

(ς t+j − ς̄)(vt − v̄)′

)
M2||2

= Op(k/n
1/2), (S0.11)

where vt is given in (i) of Condition 3.

By (S0.9)–(S0.11), similar to the proof of Theorem 3 in ZRY, it can be

shown that when k = o(n1/2−1/η),

||Â2 −A2||2 = Op(p
1/2k/n). (S0.12)

Similar to (S0.9), there exists a k-dimensional Gaussian process w(t) such

that

|| 1

n2

n∑
t=1

yty
′
t −A1M

′
1

∫ 1

0

w(t)w′(t) dtM1A
′
1||2 = op(1) (S0.13)
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and similar to (S0.11), we can show (S0.6) holds provided k/n1/2 → 0 as

n → ∞. Thus, by (S0.12) and (S0.13), we also have (S0.8) and complete

the proof of Lemma 5.

Lemma 6. Under Condition 1,

|| 1√
n

n∑
t=1

∇yty
′
t−1(Â2 −A2)||2 = op(1),

and under the conditions of Theorem 3,

|| 1√
n

n∑
t=1

∇yty
′
t−1(Â2 −A2)||2 = Op(p

1/2k2/n1/2). (S0.14)

Proof. When p is fixed, similar to (S0.6), we have

1

n3/2
||

n∑
t=1

∇yty
′
t−1||2 = op(1).

As a result, it follows from (S0.7) that

|| 1√
n

n∑
t=1

∇yty
′
t−1(Â2 −A2)||2 = op(1). (S0.15)

When p tends to infinity as n→∞, using the same idea as in (S0.11),

we can show

1

n3/2
||

n∑
t=1

∇yty
′
t−1||2 = Op(k/n

1/2). (S0.16)

Thus, by (S0.12) and p ≤ k = o(n1/2), it follows that

|| 1√
n

n∑
t=1

∇yty
′
t−1(Â2 −A2)||2 = Op(p

1/2k2/n1/2).

Thus, we have Lemma 6.

Lemma 7. Let Σ = E{(f ′t−1, · · · , f ′t−s)′(f ′t−1, · · · , f ′t−s)}. Under Condition 1
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, for any given positive integer s,

1

n

[ n∑
t=s+1

(f̂ ′t−1, · · · , f̂ ′t−s)′(f̂ ′t−1, · · · , f̂ ′t−s)−M
]

p−→ Σ (S0.17)

and under the condition of Theorem 3, in probability

1

n

[ n∑
t=s+1

(f̂ ′t−1, · · · , f̂ ′t−s)′(f̂ ′t−1, · · · , f̂ ′t−s)−M
]
> 0, (S0.18)

where A > 0 means that A is a positive definition matrix.

Proof. By some elementary computation, we have

f̂t = [ft + B′εt] + [(B̂−B)′(Bft + εt)] + [B̂′(D− D̂)xt2] + [B̂′D̂(A2 − Â2)
′yt−1]

≡
4∑
i=1

ζt,i. (S0.19)

Next, we first show (S0.17) holds for fixed p. By (S0.33) (see below), we

have

||B̂−B||2 = Op(n
−1/2), (S0.20)

which gives

|| 1
n

n∑
t=s+1

(ζ ′t−1,2, · · · , ζ ′t−s,2)′(ζ ′t−1,2, · · · , ζ ′t−s,2)||2 = op(1). (S0.21)

Similarly, by (S0.29) (see below) and (S0.7), we have

4∑
i=3

|| 1
n

n∑
t=s+1

(ζ ′t−1,i, · · · , ζ ′t−s,i)′(ζ ′t−1,i, · · · , ζ ′t−s,i)||2 = op(1). (S0.22)

On the other hand, by law of large numbers for α-mixing process, we get

1

n

[ n∑
t=s+1

(ζ ′t−1,1, · · · , ζ ′t−s,1)′(ζ ′t−1,1, · · · , ζ ′t−s,1)−M
]

p−→ Σ. (S0.23)
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Combining (S0.21)–(S0.23) yields that

1

n

n∑
t=s

[(f̂t−1)
′, · · · , (f̂t−s)′]′[(f̂t−1)′, · · · , (f̂t−s)′]

=
1

n

n∑
t=s+1

(
4∑
i=1

ζ ′t−1,i, · · · ,
4∑
i=1

ζ ′t−s,i)
′(

4∑
i=1

ζ ′t−1,i, · · · ,
4∑
i=1

ζ ′t−s,i)

=
1

n

n∑
t=s+1

(ζ ′t−1,1, · · · , ζ ′t−s,1)′(ζ ′t−1,1, · · · , ζ ′t−s,1) + op(1)
p−→ Σ

and (S0.17) follows.

Now, we turn to show the case with p varying with n. Since p = o(n1/2),

(S0.23) still holds. Note that 1
n

∑n
t=s(ζ

′
t−1,i, · · · , ζ ′t−s,i)′(ζ ′t−1,i, · · · , ζ ′t−s,i) ≥

0 for i = 1, · · · , 4. For the proof of (S0.18), it is enough to show for all

1 ≤ i 6= j ≤ 4,

|| 1
n

n∑
t=s+1

(ζ ′t−1,i, · · · , ζ ′t−s,i)′(ζ ′t−1,j, · · · , ζ ′t−s,j)||2 = op(1). (S0.24)

We only give i = 1, j = 4 in details, other cases can be shown similarly.

Since yt = Axt, it follows from (2.1) that

ζt,1 = B′(∇yt−Dxt−1,2) = B′Aet−B′(D+A2)xt−1,2 = B′AMvt−B′(D+A2)M
′
2vt−1.

Thus, by the fact that for any −s− 1 ≤ j ≤ s+ 1,

||
n∑
t=1

t∑
s=1

vsvt+j||2 = Op(kn) (S0.25)

and (S0.12), we have the left-hand side of (S0.24) is of order Op(p
1/2k2/n) =

op(1), where (S0.25) holds because the components of vt are independent.

Thus, we have (S0.18) and complete the proof of Lemma 7.

Proof of Theorem 1. Let bi, i = 1, · · · , p be the rows of B. Lemmas 5
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and 6 implies that for any 1 ≤ i ≤ p,

√
n(d̂i − di) =

(
1√
n

n∑
t=1

(bift + εit)y
′
t−1A2

)(
1

n

n∑
i=1

(A′2yt−1)(A
′
2yt−1)

′

)−1
+ op(1)

=

(
1√
n

n∑
t=1

(bift + εit)x
′
t−1,2

)(
1

n

n−1∑
i=0

xt2x
′
t2

)−1
+ op(1). (S0.26)

Since {xt2} is α mixing with mixing coefficients satisfying (S0.2), it follows

that

1

n

n−1∑
i=0

xt2x
′
t2

p−→ E(xt2x
′
t2) =: Π. (S0.27)

On the other hand, by central limit theory (CLT) for α-mixing process

{(bift + εit)x
′
t−1,2, 1 ≤ i ≤ p}, there exists a pr × pr matrix Λ such that

1√
n

(
n∑
t=1

(b1ft + ε1t )x
′
t−1,2, · · · ,

n∑
t=1

(bpft + εpt )x
′
t−1,2

)
d−→ N(0,Λ).(S0.28)

Thus, by (S0.27) and (S0.28), we have

√
n(vech(D̂)− vech(D))

d−→ N(0,Π−1ΛΠ−1). (S0.29)

Further, by (S0.29) and (S0.7), it is easy to show that

||Ĉ−C||2 = ||(D̂−D)A′2 + D̂(Â′2 −A′2)||2 = Op(n
−1/2).

Next, we show (b) of Theorem 1. Observe that

v̂t = ∇yt − D̂Â′2yt−1 = (∇yt −Dxt−1,2)− (D̂−D)[(Â2 −A2)
′yt−1 + xt−1,2]−D(Â2 −A2)

′yt−1,
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which means that

1

n

n−j∑
t=1

[v̂t+jv̂
′
t − E(∇yt+j −Dxt+j−1)(∇yt −Dxt−1)

′]

=
1

n

n−j∑
t=1

[(∇yt+j −Dxt+j−1)(∇yt −Dxt−1)
′ − E(∇yt+j −Dxt+j−1)(∇yt −Dxt−1)

′]

+(D̂−D)

(
1

n

n−j∑
t=1

[(Â2 −A2)
′yt+j−1 + xt+j−1,2][(Â2 −A2)

′yt−1 + xt−1,2]
′

)
(D̂−D)′

+D(Â2 −A2)
′

(
1

n

n−j∑
t=1

yt+j−1y
′
t−1

)
(Â2 −A2)D

′

− 1

n

n−j∑
t=1

(∇yt+j −Dxt+j−1,2){[y′t−1(Â2 −A2) + x′t−1,2](D̂−D)′ + y′t−1(Â2 −A2)D
′}

− 1

n

n−j∑
t=1

{(D̂−D)[(Â2 −A2)
′yt+j−1 + xt+j−1,2] + D(Â2 −A2)

′yt+j−1}(∇yt −Dxt−1,2)
′

+
1

n

n−j∑
t=1

[(Â2 −A2)
′yt+j−1y

′
t−1 + xt+j−1,2y

′
t−1](Â2 −A2)D

′

+
1

n

n−j∑
t=1

D(Â2 −A2)
′[yt+j−1y

′
t−1(Â2 −A2) + yt+j−1x

′
t−1,2](D̂−D)′. (S0.30)

By (S0.7), (S0.29) and the law of large numbers, we have that the spectral

norm of the last six terms of the right-hand side in (S0.30) is Op(n
−1). And

by CLT of α mixing process, for any given j, the first term of the right-hand

side of (S0.30) is Op(n
−1/2). Similarly, we can show

∣∣∣∣∣∣ 1
n

n−j∑
t=1

v̄v̂′t

∣∣∣∣∣∣
2

= Op(n
−1). (S0.31)

Thus,

||Σ̂v(j)−Σv(j)||2 = Op(n
−1/2), (S0.32)

where Σv(j) = E(∇yt+j − Dxt+j−1)(∇yt − Dxt−1)
′. Since j0 is fixed, it
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follows from (S0.32) that

||Ŵ −
j0∑
j=1

Σv(j)Σ
′
v(j)||2 = Op(n

−1/2). (S0.33)

Note that D(M(B̂),M(B)) = Op(||Ŵ −
∑j0

j=1 Σv(j)Σ
′
v(j)||2) (see for ex-

ample, Chang, Guo and Yao (2015)), we have (b) of Theorem 1 as desired.

Now, we turn to show (c). By (S0.19), we get

n∑
t=s+1

[̂f ′t−1, · · · , f̂ ′t−s]′ [̂ft −
s∑
i=1

Eif̂t−i]
′

=
n∑

t=s+1

[
f ′t−1 + ε′t−1B, · · · , f ′t−s + ε′t−sB

]′
[e′t + ε′tB]

−
n∑

t=s+1

[
f ′t−1 + ε′t−1B, · · · , f ′t−s + ε′t−sB

]′
[
s∑
i=1

ε′t−iBE′i]

+
n∑

t=s+1

[
f ′t−1 + ε′t−1B, · · · , f ′t−s + ε′t−sB

]′
[

4∑
j=2

(ζt,j −
∑
i=1

Eiζt−i,j)]
′

+
n∑

t=s+1

4∑
j=2

[ζ ′t−1,j, · · · , ζ ′t−s,j]′[et + B′εt −
s∑
i=1

EiB
′εt−i +

4∑
j=2

(ζt,j −
∑
i=1

Eiζt−i,j)]
′

=:
4∑
i=1

∆ni. (S0.34)

By (S0.7), (S0.20) and (S0.29), we can show that for any given positive

integer s,

||∆n3||2 + ||∆n4||2 = Op(
√
n). (S0.35)

On the other hand, since for any 1 ≤ i, j ≤ s and l 6= i, vech{(ft−i +

Bεt−i)(e
′
t + ε′tB), ft−iε

′
t−jB, B′vt−iε

′
t−lB} is a α mixing process with finite

2γ-moment and mixing coefficients satisfying (S0.2), it follows from the

CLT of α mixing process (see for example Corollary 3.2.1 of Lin and Lu)
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that for some matrix Γ1,

1√
n

n∑
t=s+1

vech{(ft−i + Bεt−i)(e
′
t + ε′tB), ft−iε

′
t−jB, B′vt−iε

′
t−lB}

d−→ N(0,Γ1).(S0.36)

Set Ω =
[∑n

t=s+1(f̂
′
t−1, · · · , f̂ ′t−s)′(f̂ ′t−1, · · · , f̂ ′t−s)−M

]
. By the definition of

Êi, i = 1, 2, · · · , s, we have Ê′1 − E′1
...

Ê′s − E′s

 = Ω−1




∑n
t=s f̂t−1(f̂t −

∑s
i=1 Eif̂t−i)

′

...∑n
t=s f̂t−s(f̂t −

∑s
i=1 Eif̂t−i)

′

+M

 E′1
...

E′s

 .

(S0.37)

Thus, by Lemma 7 and (S0.34)–(S0.36), we have conclusion (c) and com-

plete the proof of Theorem 1.

Next, we first develop bounds for the estimated eigenvalues λ̂j, j =

1, 2, · · · p.

Lemma 8. Let λj, j = 1, · · · , p be the eigenvalues of Wv. Under Condition

1 or conditions of Theorem 3,

|λ̂m − λm| = Op(pn
−1/2) and |λ̂m+1| = Op(pn

−1/2). (S0.38)

Proof. By (b) of Theorem 1 and (b) of Theorem 3, we have for any 1 ≤ i ≤ p,

|λ̂i − λi| ≤ ||Ŵv −Wv||2 = Op(pn
−1/2) and λm+1 = · · · = λp = 0.

This gives Lemma 8 as desired.

Proof of Theorem 2. It is enough to show that

lim
n→∞

P{m̃ < m} = 0. (S0.39)

Suppose m̃ < m is true, then by Lemma 8, there exists a positive constant
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c1 such that

lim
n→∞

P{λ̂m̃+1/λ̂m̃ ≥ c1} = 1, and lim
n→∞

P{λ̂m+1/λ̂m < c1/2} = 1.

This implies that

lim
n→∞

P{λ̂m̃+1/λ̂m̃ > λ̂m+1/λ̂m} = 1,

which contradicts the definition of m̃. Thus, (S0.39) holds.

Proof of Theorem 3. Since p = o(n1/2) and {xt2} is a α mixing process

with mixing coefficients satisfying (S0.2), it follows that (S0.27) also holds

for this case. Further, note that for any 1 ≤ i ≤ p and 1 ≤ j ≤ r, applying

CLT of mixing process to {(bift + εit)x
j
t−1,2}, which is a α mixing process

with coefficients satisfying (3.2), we get

|
n∑
t=1

(bift + εit)x
j
t−1,2| = Op(

√
n),

which implies

|| 1
n

n∑
t=1

(Bft + εt)x
′
t−1,2||2 = Op(n

−1/2(pr)1/2). (S0.40)

Thus, by Lemmas 5 and 6,

||D̂−D||2 =

∥∥∥∥∥∥
(

1

n

n∑
t=1

∇yty
′
t−1Â2

)(
1

n

n∑
i=1

Â′2yt−1y
′
t−1Â2

)−1
−D

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
(

1

n

n∑
t=1

∇ytx
′
t−1,2

)(
1

n

n−1∑
i=0

xt−1,2x
′
t−1,2

)−1
−D

∥∥∥∥∥∥
2

+Op(p
1/2k2/n)

=

∥∥∥∥∥∥
(

1

n

n∑
t=1

(Bft + εt)x
′
t−1,2

)(
1

n

n−1∑
i=0

xt−1,2x
′
t−1,2

)−1∥∥∥∥∥∥
2

+Op(p
1/2k2/n)

= Op(n
−1/2(pr)1/2 + p1/2k2/n), (S0.41)
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this combining with (S0.12) yields

||Ĉ−C||2 = ||(D̂−D)A′2 + D̂′(Â′2 −A′2)||2 = Op(n
−1/2(pr)1/2 + p1/2k2/n).(S0.42)

Thus, (a) of Theorem 3 follows from (S0.41) and (S0.42).

Next, we show (b). It is easy to see that

‖ 1

n2

n−j∑
t=1

yt−1y
′
t−1‖2 = Op(p). (S0.43)

Thus, by (S0.12), (S0.41) and (iii) of Condition 3, it can be shown that

|| · ||2 norm of the last six terms of the right-hand side in (S0.30) are of

order o(pn−1/2), provided k = o(n1/2) and p = O(n1/4). On the other hand,

applying CLT of α mixing process to the first term of the right-hand side of

(S0.30), we get for any given j, this term is of order Op(pn
−1/2). Similarly,

we can show n−1
∑n−j

t=1 v̄v̄′t = Op(n
−1/2p). Thus,

||Σ̂v(j)−Σv(j)||2 = Op(n
−1/2p). (S0.44)

Since j0 is fixed, it follows from (S0.44) that

||Ŵ −
j0∑
j=1

Σv(j)Σ
′
v(j)||2 = Op(n

−1/2p). (S0.45)

Note that D(M(B̂),M(B)) = Op(||Ŵ −
∑j0

j=1 Σv(j)Σ
′
v(j)||2) (see for ex-

ample, Chang, Guo and Yao (2015)), we have (b) of Theorem 3 as desired.

In the following, we give the proof of (c). Let ∆ni, i = 1, 2, 3, 4 be

defined as in (S0.34). By conclusions (a), (b) of Theorem 3 and (S0.12), we

can show that

||∆n3 + ∆n4||2 = Op

(
n1/2(pr)1/2[n−1/2(pr)1/2 + p1/2k2/n+ pn−1/2] + p1/2k2

)
.(S0.46)

On the other hand, applying CLT of α mixing to the elements of vech{(ft−i+
Bεt−i)(e

′
t + ε′tB), ft−iε

′
t−jB, B′vt−iε

′
t−lB, l 6= i, 1 ≤ i, j ≤ s}, we get

||∆n1 + ∆n2 −M ||2 = Op((pmn)1/2). (S0.47)
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Combining equations (S0.46)–(S0.47) with Lemma 7 and p = o(n1/2) yield

||(E1, · · · ,Es)||2 = O(p1/2k2n−1 + pm1/2n−1/2), (S0.48)

this gives (c) and completes the proof of Theorem 3.

Proof of Theorem 4. By Lemma 8, Theorem 4 can be shown similarly

as for Theorem 2. Therefore, we omit the detailed proofs.

Proof of Remark 1. Since the proofs are similar, we only show the case

with fixed p in details. It follows from the definition of m̂ that

p∑
j=m̂+1

λ̂j + m̂ωn ≤
p∑

j=m

λ̂p+1−j +mωn. (S0.49)

Suppose that m̂ > m, it follows from (S0.49) that

(m̂−m)ωn ≤
m̂∑

j=m+1

λ̂j ≤ (m̂−m)λ̂m+1. (S0.50)

Since ωn/n
−1/2 →∞, it follows from Lemma 8 that equation (S0.50) holds

with probability zero. This gives that

lim
n→∞

P{m̂ > m} = 0. (S0.51)

On the other hand, if m̂ < m, equation (S0.49) yields

(m− m̂)λ̂m ≤
m∑

j=m̂+1

λ̂j ≤ (m− m̂)ωn. (S0.52)

Lemma 8 implies λ̂m ≥ λm/2 > 0. Thus, by (S0.52) and ωn → 0 as n→∞,

we have

lim
n→∞

P{m̂ < m} = 0. (S0.53)

Equation (S0.51) together with (S0.53) give the consistency of m̂ as desired.
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