Error-Correction Factor Models for High-dimensional

Cointegrated Time Series

Yundong Tu, Qiwei Yao and Rongmao Zhang

Peking University, London School of Economics and Zhejiang University

Supplementary Material

Lemmas and Technical Proofs

Lemma 5. Under Condition 1 or conditions of Theorem 3, we have

$$\frac{1}{n}\sum_{t=1}^{n-1} (\widehat{\mathbf{A}}_2' \mathbf{y}_t \mathbf{y}_t' \widehat{\mathbf{A}}_2 - \mathbf{A}_2' \mathbf{y}_t \mathbf{y}_t' \mathbf{A}_2) = o_p(1).$$
(S0.1)

Proof. We first show the case with fixed p. Since $\{\mathbf{x}_{t2}, \mathbf{f}_t, \boldsymbol{\varepsilon}_t\}$ is α mixing with mixing coefficients α_m satisfying

$$\sum_{m=1}^{\infty} \alpha_m^{1-1/\gamma} < \infty, \tag{S0.2}$$

it follows that $\{\nabla \mathbf{y}_t\}$ is a α mixing process with mixing coefficients satisfying (S0.2). Thus, by Theorem 3.2.3 of Lin and Lu (1997), there exists a *p*-dimensional Gaussian process $\mathbf{g}(t)$ such that

$$\mathbf{y}_{[nt]}/\sqrt{n} \stackrel{d}{\longrightarrow} \mathbf{g}(t), \text{ on } D[0,1].$$
 (S0.3)

From (S0.3) and the continuous mapping theorem, it follows that

$$\frac{1}{n^2} \sum_{t=1}^n \mathbf{y}_t \mathbf{y}_t' \stackrel{d}{\longrightarrow} \int_0^1 \mathbf{g}(t) \mathbf{g}'(t) \, dt.$$
(S0.4)

Further, by $\mathbf{E}||\mathbf{x}_{t2}||^{2\gamma} < \infty$ for some $\gamma > 1$, we have

$$\max_{1 \le t \le n} ||\mathbf{x}_{t2} - \mathbf{E}\mathbf{x}_{t2}|| / \sqrt{n} = o_p(1), \text{ and } \frac{1}{n} \sum_{t=1}^n ||\mathbf{x}_{t2} - \mathbf{E}\mathbf{x}_{t2}|| = O_p(1).$$
(S0.5)

Combining (S0.3) and (S0.5) (see Lemma 7 of ZRY) yields

$$\frac{1}{n^{3/2}} || \sum_{t=1}^{n} \mathbf{y}_t \mathbf{x}'_{t2} ||_2 = o_p(1).$$
(S0.6)

On the other hand, by $\nabla \mathbf{x}_{t1} = \mathbf{A}'_1 \nabla \mathbf{y}_t$, we know $(\nabla \mathbf{x}_{t1}, \mathbf{x}_{t2})$ is also α mixing with mixing coefficients satisfying (S0.2). As a result, by the proof of Theorem 1 in ZRY,

$$||\widehat{\mathbf{A}}_2 - \mathbf{A}_2||_2 = O_p(1/n).$$
 (S0.7)

By (S0.4), (S0.6) and (S0.7), we have

$$\begin{aligned} ||\frac{1}{n}\sum_{t=1}^{n-1} (\widehat{\mathbf{A}}_{2}'\mathbf{y}_{t}\mathbf{y}_{t}'\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2}'\mathbf{y}_{t}\mathbf{y}_{t}'\mathbf{A}_{2})||_{2} \\ &= ||(\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})'\frac{\sum_{t=1}^{n-1}\mathbf{y}_{t}(\mathbf{A}_{2}'\mathbf{y}_{t})'}{n} + \frac{\sum_{t=1}^{n-1} (\mathbf{A}_{2}'\mathbf{y}_{t})\mathbf{y}_{t}'}{n} (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2}) \\ &+ (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})'\frac{\sum_{t=1}^{n-1}\mathbf{y}_{t}\mathbf{y}_{t}'}{n} (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})||_{2} \\ &= ||(\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})'\frac{\sum_{t=1}^{n-1}\mathbf{y}_{t}\mathbf{x}_{t2}'}{n} + \frac{\sum_{t=1}^{n-1}\mathbf{x}_{t2}\mathbf{y}_{t}'}{n} (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2}) + (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})\frac{\sum_{t=1}^{n-1}\mathbf{y}_{t}\mathbf{y}_{t}'}{n} (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})'||_{2} \\ &= o_{p}(1). \end{aligned}$$
(S0.8)

Next, consider the case $p = o(n^c)$. Let ς_t be a k-dimensional I(1) process such that $\nabla \varsigma_t = \mathbf{v}_t$. By Remark 2 of ZRY, we know that Condition 3 (i) and Remark 3 of ZRY hold for ς_t . Let $\mathbf{M}_1, \mathbf{M}_2$ be $k \times (p-r)$ and $k \times r$

matrices such that **M** given in (i) of Condition 3 satisfying $\mathbf{M}' = (\mathbf{M}_1, \mathbf{M}_2)$. Let $\mathbf{F}(t) = (F^1(t), \dots, F^k(t))'$ be defined as in ZRY and $\bar{\mathbf{\varsigma}} = \frac{1}{n} \sum_{t=1}^n \mathbf{\varsigma}_t$, then

$$||\frac{1}{n^2} \sum_{t=1}^n (\mathbf{x}_{t1} - \bar{\mathbf{x}}_1) (\mathbf{x}_{t1} - \bar{\mathbf{x}}_1)' - \mathbf{M}_1' \int_0^1 \mathbf{F}(t) \mathbf{F}'(t) dt \mathbf{M}_1 ||_2$$

= $||\mathbf{M}_1' \left(\frac{1}{n^2} \sum_{t=1}^n (\boldsymbol{\varsigma}_t - \bar{\boldsymbol{\varsigma}}) (\boldsymbol{\varsigma}_t - \bar{\boldsymbol{\varsigma}})' - \int_0^1 \mathbf{F}(t) \mathbf{F}'(t) dt \right) \mathbf{M}_1 ||_2 = o_p(\mathbf{S}) 0.9$

By Remark 3 of ZRY, we have $\lambda_{\min} \left(\int_0^1 \mathbf{F}(t) \mathbf{F}'(t) dt \right) \ge 1/k$ in probability. Since $c_1 \le \lambda_{\min}(\mathbf{M}) \le \lambda_{\max}(\mathbf{M}) \le c_2$, it follows $\lambda_{\min} \left(\mathbf{M}'_1 \int_0^1 \mathbf{F}(t) \mathbf{F}'(t) dt \mathbf{M}'_1 \right) \ge 1/k$ in probability. Further, for any given $j \ge 0$,

$$\begin{aligned} &||\frac{1}{n}\sum_{t=1}^{n-j}(\mathbf{x}_{t+j,2}-\bar{\mathbf{x}}_{2})(\mathbf{x}_{t2}-\bar{\mathbf{x}}_{2})'-\operatorname{Cov}(\mathbf{x}_{t+j,2},\mathbf{x}_{t2})||_{2} \\ &= ||\mathbf{M}_{2}'\Big(\frac{1}{n}\sum_{t=1}^{n}[(\mathbf{v}_{t+j}-\bar{\mathbf{v}})(\mathbf{v}_{t}-\bar{\mathbf{v}})'-\operatorname{Cov}(\mathbf{v}_{t+j},\mathbf{v}_{t})]\Big)\mathbf{M}_{2}||_{2} = o_{p}(\mathbf{1}) \end{aligned}$$

$$\begin{aligned} ||\frac{1}{n^{3/2}} \sum_{t=1}^{n-j} (\mathbf{x}_{t+j,1} - \bar{\mathbf{x}}_2) (\mathbf{x}_{t2} - \bar{\mathbf{x}}_2)'||_2 &= ||\mathbf{M}_1' \left(\frac{1}{n^{3/2}} \sum_{t=1}^n (\boldsymbol{\varsigma}_{t+j} - \bar{\boldsymbol{\varsigma}}) (\mathbf{v}_t - \bar{\mathbf{v}})' \right) \mathbf{M}_2||_2 \\ &= O_p(k/n^{1/2}), \end{aligned}$$
(S0.11)

where \mathbf{v}_t is given in (i) of Condition 3.

By (S0.9)–(S0.11), similar to the proof of Theorem 3 in ZRY, it can be shown that when $k = o(n^{1/2-1/\eta})$,

$$||\widehat{\mathbf{A}}_2 - \mathbf{A}_2||_2 = O_p(p^{1/2}k/n).$$
 (S0.12)

Similar to (S0.9), there exists a k-dimensional Gaussian process $\mathbf{w}(t)$ such that

$$||\frac{1}{n^2} \sum_{t=1}^n \mathbf{y}_t \mathbf{y}_t' - \mathbf{A}_1 \mathbf{M}_1' \int_0^1 \mathbf{w}(t) \mathbf{w}'(t) \, dt \mathbf{M}_1 \mathbf{A}_1' ||_2 = o_p(1)$$
(S0.13)

and similar to (S0.11), we can show (S0.6) holds provided $k/n^{1/2} \to 0$ as $n \to \infty$. Thus, by (S0.12) and (S0.13), we also have (S0.8) and complete the proof of Lemma 5.

Lemma 6. Under Condition 1,

$$\left|\left|\frac{1}{\sqrt{n}}\sum_{t=1}^{n}\nabla \mathbf{y}_{t}\mathbf{y}_{t-1}'(\widehat{\mathbf{A}}_{2}-\mathbf{A}_{2})\right|\right|_{2}=o_{p}(1),$$

and under the conditions of Theorem 3,

$$||\frac{1}{\sqrt{n}}\sum_{t=1}^{n}\nabla \mathbf{y}_{t}\mathbf{y}_{t-1}'(\widehat{\mathbf{A}}_{2}-\mathbf{A}_{2})||_{2} = O_{p}(p^{1/2}k^{2}/n^{1/2}).$$
(S0.14)

Proof. When p is fixed, similar to (S0.6), we have

$$\frac{1}{n^{3/2}} || \sum_{t=1}^{n} \nabla \mathbf{y}_t \mathbf{y}'_{t-1} ||_2 = o_p(1).$$

As a result, it follows from (S0.7) that

$$||\frac{1}{\sqrt{n}}\sum_{t=1}^{n}\nabla \mathbf{y}_{t}\mathbf{y}_{t-1}'(\widehat{\mathbf{A}}_{2}-\mathbf{A}_{2})||_{2} = o_{p}(1).$$
(S0.15)

When p tends to infinity as $n \to \infty$, using the same idea as in (S0.11), we can show

$$\frac{1}{n^{3/2}} || \sum_{t=1}^{n} \nabla \mathbf{y}_t \mathbf{y}_{t-1}' ||_2 = O_p(k/n^{1/2}).$$
 (S0.16)

Thus, by (S0.12) and $p \leq k = o(n^{1/2})$, it follows that

$$||\frac{1}{\sqrt{n}}\sum_{t=1}^{n}\nabla \mathbf{y}_{t}\mathbf{y}_{t-1}'(\widehat{\mathbf{A}}_{2}-\mathbf{A}_{2})||_{2} = O_{p}(p^{1/2}k^{2}/n^{1/2}).$$

Thus, we have Lemma 6.

Lemma 7. Let $\Sigma = E\{(\mathbf{f}'_{t-1}, \cdots, \mathbf{f}'_{t-s})'(\mathbf{f}'_{t-1}, \cdots, \mathbf{f}'_{t-s})\}$. Under Condition 1

, for any given positive integer s,

$$\frac{1}{n} \Big[\sum_{t=s+1}^{n} (\widehat{\mathbf{f}}'_{t-1}, \cdots, \widehat{\mathbf{f}}'_{t-s})' (\widehat{\mathbf{f}}'_{t-1}, \cdots, \widehat{\mathbf{f}}'_{t-s}) - M \Big] \xrightarrow{p} \mathbf{\Sigma}$$
(S0.17)

and under the condition of Theorem 3, in probability

$$\frac{1}{n} \Big[\sum_{t=s+1}^{n} (\widehat{\mathbf{f}}'_{t-1}, \cdots, \widehat{\mathbf{f}}'_{t-s})' (\widehat{\mathbf{f}}'_{t-1}, \cdots, \widehat{\mathbf{f}}'_{t-s}) - M \Big] > 0, \qquad (S0.18)$$

where $\mathbf{A} > 0$ means that \mathbf{A} is a positive definition matrix.

Proof. By some elementary computation, we have

$$\widehat{\mathbf{f}}_{t} = [\mathbf{f}_{t} + \mathbf{B}' \boldsymbol{\varepsilon}_{t}] + [(\widehat{\mathbf{B}} - \mathbf{B})'(\mathbf{B}\mathbf{f}_{t} + \boldsymbol{\varepsilon}_{t})] + [\widehat{\mathbf{B}}'(\mathbf{D} - \widehat{\mathbf{D}})\mathbf{x}_{t2}] + [\widehat{\mathbf{B}}'\widehat{\mathbf{D}}(\mathbf{A}_{2} - \widehat{\mathbf{A}}_{2})'\mathbf{y}_{t-1}] \\ \equiv \sum_{i=1}^{4} \boldsymbol{\zeta}_{t,i}.$$
(S0.19)

Next, we first show (S0.17) holds for fixed p. By (S0.33) (see below), we have

$$||\widehat{\mathbf{B}} - \mathbf{B}||_2 = O_p(n^{-1/2}),$$
 (S0.20)

which gives

$$||\frac{1}{n}\sum_{t=s+1}^{n} (\boldsymbol{\zeta}'_{t-1,2}, \cdots, \boldsymbol{\zeta}'_{t-s,2})'(\boldsymbol{\zeta}'_{t-1,2}, \cdots, \boldsymbol{\zeta}'_{t-s,2})||_{2} = o_{p}(1).$$
(S0.21)

Similarly, by (S0.29) (see below) and (S0.7), we have

$$\sum_{i=3}^{4} ||\frac{1}{n} \sum_{t=s+1}^{n} (\boldsymbol{\zeta}'_{t-1,i}, \cdots, \boldsymbol{\zeta}'_{t-s,i})' (\boldsymbol{\zeta}'_{t-1,i}, \cdots, \boldsymbol{\zeta}'_{t-s,i})||_{2} = o_{p}(1). \quad (S0.22)$$

On the other hand, by law of large numbers for α -mixing process, we get

$$\frac{1}{n} \Big[\sum_{t=s+1}^{n} (\boldsymbol{\zeta}'_{t-1,1}, \cdots, \boldsymbol{\zeta}'_{t-s,1})' (\boldsymbol{\zeta}'_{t-1,1}, \cdots, \boldsymbol{\zeta}'_{t-s,1}) - M \Big] \stackrel{p}{\longrightarrow} \boldsymbol{\Sigma}. \quad (S0.23)$$

Combining (S0.21)–(S0.23) yields that

$$\frac{1}{n} \sum_{t=s}^{n} [(\widehat{\mathbf{f}}_{t-1})', \cdots, (\widehat{\mathbf{f}}_{t-s})']' [(\widehat{\mathbf{f}}_{t-1})', \cdots, (\widehat{\mathbf{f}}_{t-s})'] \\
= \frac{1}{n} \sum_{t=s+1}^{n} (\sum_{i=1}^{4} \zeta'_{t-1,i}, \cdots, \sum_{i=1}^{4} \zeta'_{t-s,i})' (\sum_{i=1}^{4} \zeta'_{t-1,i}, \cdots, \sum_{i=1}^{4} \zeta'_{t-s,i}) \\
= \frac{1}{n} \sum_{t=s+1}^{n} (\zeta'_{t-1,1}, \cdots, \zeta'_{t-s,1})' (\zeta'_{t-1,1}, \cdots, \zeta'_{t-s,1}) + o_p(1) \xrightarrow{p} \Sigma$$

and (S0.17) follows.

Now, we turn to show the case with p varying with n. Since $p = o(n^{1/2})$, (S0.23) still holds. Note that $\frac{1}{n} \sum_{t=s}^{n} (\zeta'_{t-1,i}, \cdots, \zeta'_{t-s,i})' (\zeta'_{t-1,i}, \cdots, \zeta'_{t-s,i}) \geq$ **0** for $i = 1, \cdots, 4$. For the proof of (S0.18), it is enough to show for all $1 \leq i \neq j \leq 4$,

$$||\frac{1}{n}\sum_{t=s+1}^{n} (\boldsymbol{\zeta}'_{t-1,i}, \cdots, \boldsymbol{\zeta}'_{t-s,i})'(\boldsymbol{\zeta}'_{t-1,j}, \cdots, \boldsymbol{\zeta}'_{t-s,j})||_{2} = o_{p}(1).$$
(S0.24)

We only give i = 1, j = 4 in details, other cases can be shown similarly. Since $\mathbf{y}_t = \mathbf{A}\mathbf{x}_t$, it follows from (2.1) that

$$\boldsymbol{\zeta}_{t,1} = \mathbf{B}'(\nabla \mathbf{y}_t - \mathbf{D}\mathbf{x}_{t-1,2}) = \mathbf{B}'\mathbf{A}\mathbf{e}_t - \mathbf{B}'(\mathbf{D} + \mathbf{A}_2)\mathbf{x}_{t-1,2} = \mathbf{B}'\mathbf{A}\mathbf{M}\mathbf{v}_t - \mathbf{B}'(\mathbf{D} + \mathbf{A}_2)\mathbf{M}_2'\mathbf{v}_{t-1,2}$$

Thus, by the fact that for any $-s - 1 \le j \le s + 1$,

$$||\sum_{t=1}^{n}\sum_{s=1}^{t}\mathbf{v}_{s}\mathbf{v}_{t+j}||_{2} = O_{p}(kn)$$
(S0.25)

and (S0.12), we have the left-hand side of (S0.24) is of order $O_p(p^{1/2}k^2/n) = o_p(1)$, where (S0.25) holds because the components of \mathbf{v}_t are independent. Thus, we have (S0.18) and complete the proof of Lemma 7.

Proof of Theorem 1. Let \mathbf{b}_i , $i = 1, \dots, p$ be the rows of **B**. Lemmas 5

and 6 implies that for any $1 \le i \le p$,

$$\sqrt{n}(\widehat{\mathbf{d}}_{i} - \mathbf{d}_{i}) = \left(\frac{1}{\sqrt{n}} \sum_{t=1}^{n} (\mathbf{b}_{i} \mathbf{f}_{t} + \varepsilon_{t}^{i}) \mathbf{y}_{t-1}^{\prime} \mathbf{A}_{2}\right) \left(\frac{1}{n} \sum_{i=1}^{n} (\mathbf{A}_{2}^{\prime} \mathbf{y}_{t-1}) (\mathbf{A}_{2}^{\prime} \mathbf{y}_{t-1})^{\prime}\right)^{-1} + o_{p}(1)$$

$$= \left(\frac{1}{\sqrt{n}} \sum_{t=1}^{n} (\mathbf{b}_{i} \mathbf{f}_{t} + \varepsilon_{t}^{i}) \mathbf{x}_{t-1,2}^{\prime}\right) \left(\frac{1}{n} \sum_{i=0}^{n-1} \mathbf{x}_{t2} \mathbf{x}_{t2}^{\prime}\right)^{-1} + o_{p}(1). \quad (S0.26)$$

Since $\{\mathbf{x}_{t2}\}$ is α mixing with mixing coefficients satisfying (S0.2), it follows that

$$\frac{1}{n}\sum_{i=0}^{n-1}\mathbf{x}_{t2}\mathbf{x}'_{t2} \xrightarrow{p} \mathbf{E}(\mathbf{x}_{t2}\mathbf{x}'_{t2}) =: \mathbf{\Pi}.$$
(S0.27)

On the other hand, by central limit theory (CLT) for α -mixing process $\{(\mathbf{b}_i \mathbf{f}_t + \varepsilon_t^i) \mathbf{x}'_{t-1,2}, 1 \leq i \leq p\}$, there exists a $pr \times pr$ matrix $\mathbf{\Lambda}$ such that

$$\frac{1}{\sqrt{n}} \left(\sum_{t=1}^{n} (\mathbf{b}_1 \mathbf{f}_t + \varepsilon_t^1) \mathbf{x}'_{t-1,2}, \cdots, \sum_{t=1}^{n} (\mathbf{b}_p \mathbf{f}_t + \varepsilon_t^p) \mathbf{x}'_{t-1,2} \right) \xrightarrow{d} N(0, \mathbf{\Lambda}) (S0.28)$$

Thus, by (S0.27) and (S0.28), we have

$$\sqrt{n}(\operatorname{vech}(\widehat{\mathbf{D}}) - \operatorname{vech}(\mathbf{D})) \xrightarrow{d} N(0, \mathbf{\Pi}^{-1} \mathbf{\Lambda} \mathbf{\Pi}^{-1}).$$
 (S0.29)

Further, by (S0.29) and (S0.7), it is easy to show that

$$||\widehat{\mathbf{C}} - \mathbf{C}||_2 = ||(\widehat{\mathbf{D}} - \mathbf{D})\mathbf{A}_2' + \widehat{\mathbf{D}}(\widehat{\mathbf{A}}_2' - \mathbf{A}_2')||_2 = O_p(n^{-1/2}).$$

Next, we show (b) of Theorem 1. Observe that

$$\widehat{\mathbf{v}}_t = \nabla \mathbf{y}_t - \widehat{\mathbf{D}}\widehat{\mathbf{A}}_2'\mathbf{y}_{t-1} = (\nabla \mathbf{y}_t - \mathbf{D}\mathbf{x}_{t-1,2}) - (\widehat{\mathbf{D}} - \mathbf{D})[(\widehat{\mathbf{A}}_2 - \mathbf{A}_2)'\mathbf{y}_{t-1} + \mathbf{x}_{t-1,2}] - \mathbf{D}(\widehat{\mathbf{A}}_2 - \mathbf{A}_2)'\mathbf{y}_{t-1},$$

which means that

$$\frac{1}{n} \sum_{t=1}^{n-j} \left[\widehat{\mathbf{v}}_{t+j} \widehat{\mathbf{v}}_{t}' - \mathbf{E}(\nabla \mathbf{y}_{t+j} - \mathbf{D} \mathbf{x}_{t+j-1}) (\nabla \mathbf{y}_{t} - \mathbf{D} \mathbf{x}_{t-1})' \right]$$

$$= \frac{1}{n} \sum_{t=1}^{n-j} \left[(\nabla \mathbf{y}_{t+j} - \mathbf{D} \mathbf{x}_{t+j-1}) (\nabla \mathbf{y}_{t} - \mathbf{D} \mathbf{x}_{t-1})' - \mathbf{E}(\nabla \mathbf{y}_{t+j} - \mathbf{D} \mathbf{x}_{t+j-1}) (\nabla \mathbf{y}_{t} - \mathbf{D} \mathbf{x}_{t-1})' \right]$$

$$+ (\widehat{\mathbf{D}} - \mathbf{D}) \left(\frac{1}{n} \sum_{t=1}^{n-j} \left[(\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})' \mathbf{y}_{t+j-1} + \mathbf{x}_{t+j-1,2} \right] \left[(\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})' \mathbf{y}_{t-1} + \mathbf{x}_{t-1,2} \right]' \right) (\widehat{\mathbf{D}} - \mathbf{D})'$$

$$+ \mathbf{D} (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})' \left(\frac{1}{n} \sum_{t=1}^{n-j} \mathbf{y}_{t+j-1} \mathbf{y}_{t-1}' \right) (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2}) \mathbf{D}'$$

$$- \frac{1}{n} \sum_{t=1}^{n-j} (\nabla \mathbf{y}_{t+j} - \mathbf{D} \mathbf{x}_{t+j-1,2}) \{ [\mathbf{y}_{t-1}' (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2}) + \mathbf{x}_{t-1,2}'] (\widehat{\mathbf{D}} - \mathbf{D})' + \mathbf{y}_{t-1}' (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2}) \mathbf{D}' \}$$

$$- \frac{1}{n} \sum_{t=1}^{n-j} \{ (\widehat{\mathbf{D}} - \mathbf{D}) [(\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})' \mathbf{y}_{t+j-1} + \mathbf{x}_{t+j-1,2}] + \mathbf{D} (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})' \mathbf{y}_{t+j-1} \} (\nabla \mathbf{y}_{t} - \mathbf{D} \mathbf{x}_{t-1,2})'$$

$$+ \frac{1}{n} \sum_{t=1}^{n-j} [(\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})' \mathbf{y}_{t+j-1} \mathbf{y}_{t-1}' + \mathbf{x}_{t+j-1,2} \mathbf{y}_{t-1}'] (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2}) \mathbf{D}'$$

$$+ \frac{1}{n} \sum_{t=1}^{n-j} [(\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})' \mathbf{y}_{t+j-1} \mathbf{y}_{t-1}' + \mathbf{x}_{t+j-1,2} \mathbf{y}_{t-1}'] (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2}) \mathbf{D}'$$

$$+ \frac{1}{n} \sum_{t=1}^{n-j} \mathbf{D} (\widehat{\mathbf{A}}_{2} - \mathbf{A}_{2})' [\mathbf{y}_{t+j-1} \mathbf{y}_{t-1}' + \mathbf{x}_{t+j-1,2} \mathbf{y}_{t-1}'] (\widehat{\mathbf{D}} - \mathbf{D})'. \quad (S0.30)$$

By (S0.7), (S0.29) and the law of large numbers, we have that the spectral norm of the last six terms of the right-hand side in (S0.30) is $O_p(n^{-1})$. And by CLT of α mixing process, for any given j, the first term of the right-hand side of (S0.30) is $O_p(n^{-1/2})$. Similarly, we can show

$$\left\| \left| \frac{1}{n} \sum_{t=1}^{n-j} \bar{\mathbf{v}} \hat{\mathbf{v}}_t' \right| \right\|_2 = O_p(n^{-1}).$$
(S0.31)

Thus,

$$||\widehat{\Sigma}_{v}(j) - \Sigma_{v}(j)||_{2} = O_{p}(n^{-1/2}), \qquad (S0.32)$$

where $\Sigma_v(j) = E(\nabla \mathbf{y}_{t+j} - \mathbf{D}\mathbf{x}_{t+j-1})(\nabla \mathbf{y}_t - \mathbf{D}\mathbf{x}_{t-1})'$. Since j_0 is fixed, it

follows from (S0.32) that

$$||\widehat{\mathbf{W}} - \sum_{j=1}^{j_0} \Sigma_v(j) \Sigma_v'(j)||_2 = O_p(n^{-1/2}).$$
(S0.33)

Note that $D(\mathcal{M}(\widehat{\mathbf{B}}), \mathcal{M}(\mathbf{B})) = O_p(||\widehat{\mathbf{W}} - \sum_{j=1}^{j_0} \Sigma_v(j) \Sigma'_v(j)||_2)$ (see for example, Chang, Guo and Yao (2015)), we have (b) of Theorem 1 as desired.

Now, we turn to show (c). By (S0.19), we get

$$\sum_{t=s+1}^{n} [\widehat{\mathbf{f}}'_{t-1}, \cdots, \widehat{\mathbf{f}}'_{t-s}]' [\widehat{\mathbf{f}}_{t} - \sum_{i=1}^{s} \mathbf{E}_{i} \widehat{\mathbf{f}}_{t-i}]'$$

$$= \sum_{t=s+1}^{n} [\mathbf{f}'_{t-1} + \varepsilon'_{t-1} \mathbf{B}, \cdots, \mathbf{f}'_{t-s} + \varepsilon'_{t-s} \mathbf{B}]' [\mathbf{e}'_{t} + \varepsilon'_{t} \mathbf{B}]$$

$$- \sum_{t=s+1}^{n} [\mathbf{f}'_{t-1} + \varepsilon'_{t-1} \mathbf{B}, \cdots, \mathbf{f}'_{t-s} + \varepsilon'_{t-s} \mathbf{B}]' [\sum_{i=1}^{s} \varepsilon'_{t-i} \mathbf{B} \mathbf{E}'_{i}]$$

$$+ \sum_{t=s+1}^{n} [\mathbf{f}'_{t-1} + \varepsilon'_{t-1} \mathbf{B}, \cdots, \mathbf{f}'_{t-s} + \varepsilon'_{t-s} \mathbf{B}]' [\sum_{j=2}^{4} (\zeta_{t,j} - \sum_{i=1}^{s} \mathbf{E}_{i} \zeta_{t-i,j})]'$$

$$+ \sum_{t=s+1}^{n} \sum_{j=2}^{4} [\zeta'_{t-1,j}, \cdots, \zeta'_{t-s,j}]' [\mathbf{e}_{t} + \mathbf{B}' \varepsilon_{t} - \sum_{i=1}^{s} \mathbf{E}_{i} \mathbf{B}' \varepsilon_{t-i} + \sum_{j=2}^{4} (\zeta_{t,j} - \sum_{i=1}^{s} \mathbf{E}_{i} \zeta_{t-i,j})]'$$

$$=: \sum_{i=1}^{4} \Delta_{ni}.$$
(S0.34)

By (S0.7), (S0.20) and (S0.29), we can show that for any given positive integer s,

$$||\Delta_{n3}||_2 + ||\Delta_{n4}||_2 = O_p(\sqrt{n}).$$
(S0.35)

On the other hand, since for any $1 \leq i, j \leq s$ and $l \neq i$, $\operatorname{vech}\{(\mathbf{f}_{t-i} + \mathbf{B}\boldsymbol{\varepsilon}_{t-i})(\mathbf{e}'_t + \boldsymbol{\varepsilon}'_t\mathbf{B}), \mathbf{f}_{t-i}\boldsymbol{\varepsilon}'_{t-j}\mathbf{B}, \mathbf{B}'\mathbf{v}_{t-i}\boldsymbol{\varepsilon}'_{t-l}\mathbf{B}\}$ is a α mixing process with finite 2γ -moment and mixing coefficients satisfying (S0.2), it follows from the CLT of α mixing process (see for example Corollary 3.2.1 of Lin and Lu)

that for some matrix Γ_1 ,

$$\frac{1}{\sqrt{n}} \sum_{t=s+1}^{n} \operatorname{vech}\{(\mathbf{f}_{t-i} + \mathbf{B}\boldsymbol{\varepsilon}_{t-i})(\mathbf{e}'_{t} + \boldsymbol{\varepsilon}'_{t}\mathbf{B}), \mathbf{f}_{t-i}\boldsymbol{\varepsilon}'_{t-j}\mathbf{B}, \mathbf{B}'\mathbf{v}_{t-i}\boldsymbol{\varepsilon}'_{t-l}\mathbf{B}\} \xrightarrow{d} N(0, \mathrm{I}(S)0.36)$$
Set $\Omega = \left[\sum_{t=s+1}^{n} (\widehat{\mathbf{f}}'_{t-1}, \cdots, \widehat{\mathbf{f}}'_{t-s})'(\widehat{\mathbf{f}}'_{t-1}, \cdots, \widehat{\mathbf{f}}'_{t-s}) - M\right].$ By the definition of $\widehat{\mathbf{E}}_{i}, i = 1, 2, \cdots, s$, we have
$$\begin{pmatrix} \widehat{\mathbf{E}}'_{1} - \mathbf{E}'_{1} \\ \vdots \\ \widehat{\mathbf{E}}'_{s} - \mathbf{E}'_{s} \end{pmatrix} = \Omega^{-1} \left[\begin{pmatrix} \sum_{t=s}^{n} \widehat{\mathbf{f}}_{t-1}(\widehat{\mathbf{f}}_{t} - \sum_{i=1}^{s} \mathbf{E}_{i}\widehat{\mathbf{f}}_{t-i})' \\ \vdots \\ \sum_{t=s}^{n} \widehat{\mathbf{f}}_{t-s}(\widehat{\mathbf{f}}_{t} - \sum_{i=1}^{s} \mathbf{E}_{i}\widehat{\mathbf{f}}_{t-i})' \end{pmatrix} + M \begin{pmatrix} \mathbf{E}'_{1} \\ (S0, 37) \\ \mathbf{E}'_{s} \end{pmatrix} \right]$$

Thus, by Lemma 7 and (S0.34)–(S0.36), we have conclusion (c) and complete the proof of Theorem 1.

Next, we first develop bounds for the estimated eigenvalues $\widehat{\lambda}_j$, $j = 1, 2, \dots p$.

Lemma 8. Let λ_j , $j = 1, \dots, p$ be the eigenvalues of \mathbf{W}_v . Under Condition 1 or conditions of Theorem 3,

$$|\widehat{\lambda}_m - \lambda_m| = O_p(pn^{-1/2}) \quad and \quad |\widehat{\lambda}_{m+1}| = O_p(pn^{-1/2}). \tag{S0.38}$$

Proof. By (b) of Theorem 1 and (b) of Theorem 3, we have for any $1 \le i \le p$,

$$|\widehat{\lambda}_i - \lambda_i| \le ||\widehat{\mathbf{W}}_v - \mathbf{W}_v||_2 = O_p(pn^{-1/2}) \text{ and } \lambda_{m+1} = \dots = \lambda_p = 0.$$

This gives Lemma 8 as desired.

Proof of Theorem 2. It is enough to show that

$$\lim_{n \to \infty} P\{\tilde{m} < m\} = 0. \tag{S0.39}$$

Suppose $\tilde{m} < m$ is true, then by Lemma 8, there exists a positive constant

 c_1 such that

 $\lim_{n \to \infty} P\{\widehat{\lambda}_{\tilde{m}+1} / \widehat{\lambda}_{\tilde{m}} \ge c_1\} = 1, \text{ and } \lim_{n \to \infty} P\{\widehat{\lambda}_{m+1} / \widehat{\lambda}_m < c_1/2\} = 1.$

This implies that

$$\lim_{n \to \infty} P\{\widehat{\lambda}_{\tilde{m}+1} / \widehat{\lambda}_{\tilde{m}} > \widehat{\lambda}_{m+1} / \widehat{\lambda}_m\} = 1,$$

which contradicts the definition of \tilde{m} . Thus, (S0.39) holds.

Proof of Theorem 3. Since $p = o(n^{1/2})$ and $\{\mathbf{x}_{t2}\}$ is a α mixing process with mixing coefficients satisfying (S0.2), it follows that (S0.27) also holds for this case. Further, note that for any $1 \le i \le p$ and $1 \le j \le r$, applying CLT of mixing process to $\{(\mathbf{b}_i \mathbf{f}_t + \varepsilon_t^i) x_{t-1,2}^j\}$, which is a α mixing process with coefficients satisfying (3.2), we get

$$\left|\sum_{t=1}^{n} (\mathbf{b}_{i} \mathbf{f}_{t} + \varepsilon_{t}^{i}) x_{t-1,2}^{j}\right| = O_{p}(\sqrt{n}),$$

which implies

$$||\frac{1}{n}\sum_{t=1}^{n} (\mathbf{B}\mathbf{f}_{t} + \boldsymbol{\varepsilon}_{t})\mathbf{x}_{t-1,2}'||_{2} = O_{p}(n^{-1/2}(pr)^{1/2}).$$
(S0.40)

Thus, by Lemmas 5 and 6,

$$\begin{aligned} \|\widehat{\mathbf{D}} - \mathbf{D}\|_{2} &= \left\| \left(\frac{1}{n} \sum_{t=1}^{n} \nabla \mathbf{y}_{t} \mathbf{y}_{t-1}' \widehat{\mathbf{A}}_{2} \right) \left(\frac{1}{n} \sum_{i=1}^{n} \widehat{\mathbf{A}}_{2}' \mathbf{y}_{t-1} \mathbf{y}_{t-1}' \widehat{\mathbf{A}}_{2} \right)^{-1} - \mathbf{D} \right\|_{2} \\ &= \left\| \left(\frac{1}{n} \sum_{t=1}^{n} \nabla \mathbf{y}_{t} \mathbf{x}_{t-1,2}' \right) \left(\frac{1}{n} \sum_{i=0}^{n-1} \mathbf{x}_{t-1,2} \mathbf{x}_{t-1,2}' \right)^{-1} - \mathbf{D} \right\|_{2} + O_{p}(p^{1/2}k^{2}/n) \\ &= \left\| \left(\frac{1}{n} \sum_{t=1}^{n} (\mathbf{B}\mathbf{f}_{t} + \boldsymbol{\varepsilon}_{t}) \mathbf{x}_{t-1,2}' \right) \left(\frac{1}{n} \sum_{i=0}^{n-1} \mathbf{x}_{t-1,2} \mathbf{x}_{t-1,2}' \right)^{-1} \right\|_{2} + O_{p}(p^{1/2}k^{2}/n) \\ &= O_{p}(n^{-1/2}(pr)^{1/2} + p^{1/2}k^{2}/n), \end{aligned}$$
(S0.41)

this combining with (S0.12) yields

$$||\widehat{\mathbf{C}} - \mathbf{C}||_2 = ||(\widehat{\mathbf{D}} - \mathbf{D})\mathbf{A}_2' + \widehat{\mathbf{D}}'(\widehat{\mathbf{A}}_2' - \mathbf{A}_2')||_2 = O_p(n^{-1/2}(pr)^{1/2} + p^{1/2}k^2) ||_2 = O_p(n^{-1/2}(pr)^{1/2} + p^{1/2}k^2) ||_2$$

Thus, (a) of Theorem 3 follows from (S0.41) and (S0.42).

Next, we show (b). It is easy to see that

$$\|\frac{1}{n^2} \sum_{t=1}^{n-j} \mathbf{y}_{t-1} \mathbf{y}'_{t-1}\|_2 = O_p(p).$$
 (S0.43)

Thus, by (S0.12), (S0.41) and (iii) of Condition 3, it can be shown that $|| \cdot ||_2$ norm of the last six terms of the right-hand side in (S0.30) are of order $o(pn^{-1/2})$, provided $k = o(n^{1/2})$ and $p = O(n^{1/4})$. On the other hand, applying CLT of α mixing process to the first term of the right-hand side of (S0.30), we get for any given j, this term is of order $O_p(pn^{-1/2})$. Similarly, we can show $n^{-1} \sum_{t=1}^{n-j} \bar{\mathbf{v}} \bar{\mathbf{v}}'_t = O_p(n^{-1/2}p)$. Thus,

$$||\widehat{\Sigma}_{v}(j) - \Sigma_{v}(j)||_{2} = O_{p}(n^{-1/2}p).$$
(S0.44)

Since j_0 is fixed, it follows from (S0.44) that

$$||\widehat{\mathbf{W}} - \sum_{j=1}^{j_0} \Sigma_v(j) \Sigma_v'(j)||_2 = O_p(n^{-1/2}p).$$
(S0.45)

Note that $D(\mathcal{M}(\widehat{\mathbf{B}}), \mathcal{M}(\mathbf{B})) = O_p(||\widehat{\mathbf{W}} - \sum_{j=1}^{j_0} \Sigma_v(j) \Sigma'_v(j)||_2)$ (see for example, Chang, Guo and Yao (2015)), we have (b) of Theorem 3 as desired.

In the following, we give the proof of (c). Let Δ_{ni} , i = 1, 2, 3, 4 be defined as in (S0.34). By conclusions (a), (b) of Theorem 3 and (S0.12), we can show that

$$||\Delta_{n3} + \Delta_{n4}||_2 = O_p \left(n^{1/2} (pr)^{1/2} [n^{-1/2} (pr)^{1/2} + p^{1/2} k^2 / n + pn^{-1/2}] + p^{1/2} k^2 \right) 0.46$$

On the other hand, applying CLT of α mixing to the elements of vech { $(\mathbf{f}_{t-i} + \mathbf{B}\boldsymbol{\varepsilon}_{t-i})(\mathbf{e}'_t + \boldsymbol{\varepsilon}'_t\mathbf{B}), \mathbf{f}_{t-i}\boldsymbol{\varepsilon}'_{t-j}\mathbf{B}, \mathbf{B}'\mathbf{v}_{t-i}\boldsymbol{\varepsilon}'_{t-l}\mathbf{B}, l \neq i, 1 \leq i, j \leq s$ }, we get

$$||\Delta_{n1} + \Delta_{n2} - M||_2 = O_p((pmn)^{1/2}).$$
(S0.47)

Combining equations (S0.46)–(S0.47) with Lemma 7 and $p = o(n^{1/2})$ yield

$$||(\mathbf{E}_1, \cdots, \mathbf{E}_s)||_2 = O(p^{1/2}k^2n^{-1} + pm^{1/2}n^{-1/2}),$$
 (S0.48)

this gives (c) and completes the proof of Theorem 3. $\hfill \Box$

Proof of Theorem 4. By Lemma 8, Theorem 4 can be shown similarly as for Theorem 2. Therefore, we omit the detailed proofs. \Box

Proof of Remark 1. Since the proofs are similar, we only show the case with fixed p in details. It follows from the definition of \hat{m} that

$$\sum_{j=\widehat{m}+1}^{p}\widehat{\lambda}_{j} + \widehat{m}\omega_{n} \le \sum_{j=m}^{p}\widehat{\lambda}_{p+1-j} + m\omega_{n}.$$
 (S0.49)

Suppose that $\widehat{m} > m$, it follows from (S0.49) that

$$(\widehat{m} - m)\omega_n \le \sum_{j=m+1}^{\widehat{m}} \widehat{\lambda}_j \le (\widehat{m} - m)\widehat{\lambda}_{m+1}.$$
 (S0.50)

Since $\omega_n/n^{-1/2} \to \infty$, it follows from Lemma 8 that equation (S0.50) holds with probability zero. This gives that

$$\lim_{n \to \infty} P\{\widehat{m} > m\} = 0. \tag{S0.51}$$

On the other hand, if $\hat{m} < m$, equation (S0.49) yields

$$(m-\widehat{m})\widehat{\lambda}_m \le \sum_{j=\widehat{m}+1}^m \widehat{\lambda}_j \le (m-\widehat{m})\omega_n.$$
 (S0.52)

Lemma 8 implies $\widehat{\lambda}_m \ge \lambda_m/2 > 0$. Thus, by (S0.52) and $\omega_n \to 0$ as $n \to \infty$, we have

$$\lim_{n \to \infty} P\{\widehat{m} < m\} = 0. \tag{S0.53}$$

Equation (S0.51) together with (S0.53) give the consistency of \hat{m} as desired.

References

- Lin, Z. and Lu, C. (1997). Limit Theory on Mixing Dependent Random Variables. Kluwer Academic Publishers, New York.
- Zhang, R. M., Robinosn, P. and Yao, Q. (2015). Identifying Cointegration by Eigenanalysis. A Manuscript.