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Abstract: Cointegration inferences often rely on a correct specification for the short-

run dynamic vector autoregression. However, this specification is unknown, a priori.

A lag length that is too small leads to an erroneous inference as a result of the

misspecification. In contrast, using too many lags leads to a dramatic increase in

the number of parameters, especially when the dimension of the time series is high.

In this paper, we develop a new methodology which adds an error-correction term

for the long-run equilibrium to a latent factor model in order to model the short-

run dynamic relationship. The inferences use the eigenanalysis-based methods to

estimate the cointegration and latent factor process. The proposed error-correction

factor model does not require an explicit specification of the short-run dynamics,

and is particularly effective for high-dimensional cases, in which the standard error-

correction suffers from overparametrization. In addition, the model improves the

predictive performance of the pure factor model. The asymptotic properties of the

proposed methods are established when the dimension of the time series is either

fixed or diverging slowly as the length of the time series goes to infinity. Lastly, the

performance of the model is evaluated using both simulated and real data sets.

Key words and phrases: Cointegration, eigenanalysis, factor models, nonstationary

processes, vector time series.

1. Introduction

Cointegration refers to the existence of a long-run equilibrium among several

distinct nonstationary series, as illustrated in, for example, Box and Tiao (1977).

Since the seminal work of Granger (1981); Granger and Weiss (1983); Engle and

Granger (1987), cointegration has attracted increasing attention in the fields of

econometrics and statistics. An excellent survey on early works on cointegration

can be found in Johansen (1995).

To date, considerable effort has been devoted to inferences on the long-run

trend (cointegration) restrictions in vector autoregressions (VARs); see, among

others, Engle and Granger (1987); Johansen (1991); Phillips (1991), for estima-
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tion and testing, and Engle and Yoo (1987); Lin and Tsay (1996) for forecasting.

As shown in Engle and Granger (1987), a VAR with cointegration restrictions

can be represented by a vector error-correction model (VECM) that reflects the

correction on the long-run relationship using short-run dynamics. One of the

remarkable features of a VECM is that it identifies clearly the gain in predic-

tion from using the cointegrated variables over that of the standard ARIMA

approach, as noted by Engle and Yoo (1987); Lin and Tsay (1996); Peña and

Poncela (2004). However, it does require that we specify a finite autoregressive

order for the short-run dynamic before an inference can be carried out on the

cointegration part of the model. In many applications, using different orders for

the VAR results in different conclusions on the cointegration. In particular, when

the VAR order is under-specified or the process lies outside the VAR class, the

optimal inference on the unknown cointegration will lose validity (Hualde and

Robinson (2010)). To overcome this shortcoming, information criteria such as

the AIC, BIC, and HQIC have been applied to determine both the autoregres-

sive order and the cointegration rank; see, for example, Chao and Phillips (1999);

Athanasopoulos et al. (2011). While appealing to practitioners, these methods

are nevertheless subject to pre-test biases and post model selection inferential

errors (Liao and Phillips (2015)). Furthermore, a VECM is ineffective when the

dimension of the time series is high, largely as a result of the overparametrization

of the VAR specification.

Relative to the considerable number of studies on long-run restrictions, one

may argue that the importance of short-run restrictions has not received due

attention in the cointegration literature. On the other hand, common cyclical

movements exist extensively in the field of macroeconomics. For example, Engle

and Kozicki (1993) found common international cycles in GNP data for OECD

countries. Issler and Vahid (2001) reported common cycles for macroeconomic

aggregates and sectoral and regional outputs in the United States. It has been

shown that using (short-run) rank restrictions in a stationary VAR can improve

its short-term forecasting ability, as documented by Ahn and Reinsel (1988);

Vahid and Issler (2002); Athanasopoulos and Vahid (2008); Athanasopoulos et

al. (2011). Hence, it is reasonable to expect that imposing appropriate short-run

structures will improve the model performance in cointegrated systems. Note

that Athanasopoulos et al. (2011) recognized the factor structure in the short-

run dynamics, but did not utilize it in their subsequent inference procedure.

Issler and Vahid (2001) used a similar argument to cointegration for the short-

run effect. Based on a VECM, they proposed modeling the common cycles using
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sample squared canonical correlations. In addition, they use Johansen’s likeli-

hood method to identify the cointegration relationship.

When the dimension of a time series is high, VAR models suffer from hav-

ing too many parameters, even after imposing rank restrictions. Furthermore,

most classical inference methods for cointegration, including Johansen’s likeli-

hood method, either do not work, or do not work effectively; see the numerical

studies reported in Gonzalo and Pitarakis (1995); Ho and Sørensen (1996). Al-

though high-dimensional problems exist extensively in macroeconomic and finan-

cial data, the development of related theory and methodologies in the context of

cointegration is still in its infancy.

We propose an error-correction factor model (ECFM) that identifies the

linear dynamic structures, in a parsimonious and robust fashion, in a high-

dimensional cointegrated series. Specifically, the long-run equilibrium relation-

ship among all nonstationary components is represented by a cointegration vec-

tor, that is, the correction term to the equilibrium. This term is then utilized

to improve a factor representation for the short-run dynamics of the differenced

processes. In contrast to the classical VECM, our setting does not require ex-

plicitly specifying the short-run dynamics, thus avoiding erroneous inferences on

cointegration due to, for example, a misspecification of the autoregressive order.

Factor models have beome a popular way of modeling high-dimensional time

series in order to achieve dimension reduction; see, for example, Bai (2004); Bai

and Ng (2004); Banerjee, Marcellino and Masten (2014a,b); Barigozzi, Lippi and

Luciani (2016a,b). In this paper, we adopt a latent and low-dimensional factor

process to represent the high-dimensional short-run dynamics. Compared with

the pure factor model, the cointegration term improves the modelling and the pre-

diction for short run dynamics. For inferences, we first adopt the eigenanalysis-

based method of Zhang, Robinosn and Yao (2019) (ZRY, hereafter) to iden-

tify both the cointegration rank and space; no prespecification on the short-run

dynamics is required. We then calculate the regression estimation for the error-

correction term, and recover the latent factor process from the resulting residuals

using the eigenanalysis-based method of Lam and Yao (2012). Once the latent

factor process has been recovered, we can model separately its linear dynamics

using an appropriate time series model. Owning to the errors that accumulate

during the estimation, fitting a dynamic model for the factor process turns out

to be an error-in-observation problem in autoregression. This problem has not

been thoroughly investigated in the literature; thus we propose a version of the

corrected Yule-Walker method (see Section 2.2.3).
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The proposed methodology is further supported by the newly established

asymptotic theory and numerical evidence. In particular, our numerical results

corroborate the findings from the asymptotic theory. The results of Monte Carlo

simulation show that the cointegration rank, cointegration space, number of fac-

tors, and factor co-feature space can all be estimated reasonably well with typical

sizes of observed samples. Our empirical example on forecasting 12 U.S. indus-

trial production indices shows that the proposed ECFM outperforms both the

VECM and the univariate AR models for each component in the post-sample

forecasting, for most forecast horizons considered.

The rest of the paper is organized as follows. We describe the proposed

ECFM and the associated estimation methods in Section 2. In Section 3, the

asymptotic properties of the estimation methods are established with the dimen-

sion of the time series fixed or diverging slowly, as the length of the time series

goes to infinity. The proposed methodology is illustrated numerically in Section

4 using both simulated and real data sets. Furthermore, we compare the fore-

casting performance of the proposed ECFM to that of the reduced-rank VECM

and the univariate AR models for each component. The forecasting performance

for the real data is evaluated for different forecast horizons based on the criterion

of Clements and Hendry (1993). Section 5 concludes the paper. All technical

lemmas and proofs are provided in the online Supplementary Material.

2. Methodology

2.1. ECFMs

We call a vector process ut weakly stationary if (i) Eut is a constant vector

independent of t, and (ii) E‖ut‖2 <∞ and Cov(ut,ut+s) depends on s only for

any integers t, s, where ‖·‖ denotes the Euclidean norm. We denote the difference

operator as ∇, that is, ∇ut = ut − ut−1. We use the convention ∇0ut = ut. A

process ut is said to be a weakly integrated process with order 1, abbreviated as

weak I(1), if∇ut is weakly stationary with a finite spectral density and is positive

definite at frequency 0, but ut itself is not. Because we deal only with weak I(1)

processes in this study, we refer to them as weakly integrated processes.

Let yt be an observable p×1 weak I(1) process with initial values yt = 0, for

t ≤ 0. Suppose that cointegration exists; that is, there are r (≥ 1) stationary lin-

ear combinations of yt, where r is the cointegration rank, and is often unknown.
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The ECFM is defined as

∇yt = Cyt−1 + Bft + εt, (2.1)

where C is a p× p matrix with rank r, Cyt is weakly stationary, ft is an m× 1

weakly stationary process, B is a p × m matrix, and εt is a p × 1 white noise

with mean zero and covariance matrix Σε, and uncorrelated with yt−1 and {ft}.
In contrast to VECM, (2.1) represents the short-run dynamics using the latent

process ft. Its linear dynamic structure is completely unspecified. Note that ft
does not enter the inference for the error-correction term Cyt−1. Model (2.1)

is particularly useful when p is large and m is small, which is often the case

with many real data sets, because it leads to effective dimension reduction when

modeling high-dimensional time series.

Without loss of generality, in (2.1), we assume B is an orthogonal matrix,

that is, B′B = Im, where Im denotes the m × m identity matrix. This is be-

cause any non-orthogonal B admits the decomposition B = QU, where Q is an

orthogonal matrix and U is an upper-triangular matrix. Thus we can replace

(B, ft) in (2.1) with (Q,Uft).

2.2. Estimation

In model (2.1), C is a p× p matrix with the reduced rank r(< p). Hence, it

can be expressed as C = DA′2, where D, A2 are p × r matrices. Furthermore,

the columns of A2 are the cointegration vectors, and r is the cointegration rank.

Although A2 is not unique, the coefficient matrix C is uniquely determined by

(2.1). Once we specify an A2 such that A′2yt−1 is weakly stationary, D can then

be uniquely determined. Thus, to fit model (2.1), we need to estimate r, A2,

the factor dimension m, and the factor loading matrix B. Then, the coefficient

matrix D can be estimated by a multiple regression, the latent factors ft can be

recovered easily, and forecasting can be based on a fitted time series model for

ft.

To simplify the inference, we always assume that Cyt−1 and ft are uncorre-

lated. This avoids possible identification issues related to endogeneity. Note that

this condition is always fulfilled if we replace (C, ft) in (2.1) with (C∗, f∗t ), where

C∗ = {D + BE[ft(A
′
2yt−1)

′][E((A′2yt−1)(A
′
2yt−1)

′)]−1}A′2,
f∗t = ft − E(ft(A

′
2yt−1)

′)[E((A′2yt−1)(A
′
2yt−1)

′)]−1(A′2yt−1).
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2.2.1. Estimation for cointegration

While the representation of the cointegration vector A′2yt is not unique, the

cointegration space M(A2), that is, the linear space spanned by the columns of

A2, is uniquely determined by the process yt; see ZRY. In fact, we can always

assume that A2 is a half-orthogonal matrix in the sense that A′2A2 = Ir. Let

A1 be a p × (p − r) half-orthogonal matrix, such that A = (A1,A2) is a p × p
orthogonal matrix. Let xt,i = A′iyt, for i = 1, 2. Then, xt,2 is a weakly stationary

process, and all components of xt,1 are weak I(1).

We adopt the eigenanalysis-based method proposed by ZRY to estimate r

and A2. To this end, let

Ŵ =

j0∑
j=0

Σ̂jΣ̂
′
j ,

where j0 ≥ 1 is a prescribed and fixed integer, and

Σ̂j =
1

n

n−j∑
t=1

(yt+j − ȳ)(yt − ȳ)′, ȳ =
1

n

n∑
t=1

yt.

We use the product Σ̂jΣ̂
′
j instead of Σ̂j to ensure that each term in the sum is

nonnegative definite, and that there is no information cancellation over different

lags. Let λ̃1 ≥ · · · ≥ λ̃p be the eigenvalues of Ŵ, and let γ̃1, . . . , γ̃p be the

corresponding eigenvectors. Then, A2 is estimated by Â2 = (γ̃p−r+1, . . . , γ̃p),

and the cointegration rank is estimated by

r̂ = arg min
1≤l≤p

IC(l), (2.2)

where IC(l) =
∑l

j=1 λ̃p+1−j + (p− l)ωn, and ωn →∞ and ωn/n
2 → 0 in proba-

bility (because we allow ωn to be data dependent). ZRY has shown thatM(Â2)

and r̂ are consistent estimators for M(A2) and r, respectively.

Having obtained the estimated cointegration vector Â′2yt−1, the coefficient

matrix D can be estimated using the standard least squares estimation. Let di,

for i = 1, . . . , p be a row vector of D, and let ∇yt = (∇y1t , . . . ,∇y
p
t )
′. The least

squares estimator for di is defined as

d̂i = arg min
di

n∑
t=1

(∇yit − diÂ
′
2yt−1)

2, (2.3)
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which leads to d̂i =
∑n

t=1∇yti(Â′2yt−1)′
(∑n

i=1(Â
′
2yt−1)(Â

′
2yt−1)

′
)−1

. Conse-

quently, the estimator for the coefficient matrix D can be written as

D̂ =

n∑
t=1

∇yt(Â
′
2yt−1)

′

(
n∑
i=1

(Â′2yt−1)(Â
′
2yt−1)

′

)−1
.

2.2.2. Estimation for latent factors

We adopt the eigenanalysis-based method of Lam and Yao (2012) to estimate

the factor loading spaceM(B) and the latent factor process ft using the residuals

v̂t ≡ ∇yt − D̂Â′2yt−1, for t = 1, . . . , n. To this end, let

Ŵv =

j0∑
j=1

Σ̂v(j)Σ̂
′
v(j), (2.4)

where j0 ≥ 1 is a prespecified and fixed integer, and

Σ̂v(j) =
1

n

n−j∑
t=1

(v̂t+j − v̄)(v̂t − v̄)′, v̄ =
1

n

n∑
t=1

v̂t.

One advantage of using the quadratic form Σ̂v(j)Σ̂v(j)
′ instead of Σ̂v(j) in (2.4)

is that there is no information cancellation over different lags. Therefore, this

approach is insensitive to the choice of j0 in (2.4). Often, small values, such

as j0 = 5, are sufficient to identify the relevant characteristics, because serial

dependence is usually predominant at small lags; see Lam and Yao (2012); Chang,

Guo and Yao (2015). Let (γ̂1, . . . , γ̂m) be the orthonormal eigenvectors of Ŵv

corresponding to the m largest eigenvalues. Consequently, we estimate B and ft
by

B̂ = (γ̂1, . . . , γ̂m), and f̂t = B̂′v̂t. (2.5)

Because m is usually unknown and the last p −m eigenvalues of Ŵv may

not be exactly zero owning to the random fluctuation, we need to determine m.

We propose doing so using the ratio-based method of Lam and Yao (2012). In

particular, let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p be the eigenvalues of Ŵv. We define an

estimator for the number of factors m as follows:

m̃ = arg min
1≤i≤R

λ̂i+1

λ̂i
, (2.6)
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where m < R < p. In practice, we may pick, for example, R = p/2, following the

recommendation of Lam and Yao (2012).

Remark 1. Although the above ratio estimator ofm is not necessarily consistent,

it works well in practice. See Lam and Yao (2012), and also Tables 1, 2 and 3

in Section 4.1 below. To establish consistency, we can estimate m using the

information criterion defined as

m̂ = arg min
1≤i≤p

IC(l),

where IC(l) =
∑p

j=l+1 λ̂j+lωn is the information criterion, and ωn is the turning

parameter. Then it can be shown that as ωn → 0 and ωnn
1/2/p → ∞, m̂ is

consistent for m.

2.2.3. Fitting linear dynamics for factors

Once we have recovered the factor process f̂t, we can fit an appropriate model

to represent its linear dynamic structure. As an illustration, below we fit ft with

a VAR model.

Let

ft =

s∑
i=1

Eift−i + et, (2.7)

where Ei, for 1 ≤ i ≤ s is an m×m matrix and {et} is a sequence of independent

vectors with mean zero and that are independent of {x′t2, f ′t , ε′t}. In our setting,

ft contains unobservable latent factors, and is estimated by f̂t = B̂′v̂t as given in

(2.5). It can be shown that

f̂t = ft + B′εt +

4∑
i=2

ζt,i.

If we ignore the term
∑4

i=2 ζt,i, f̂t can be viewed as the observation of ft with a

measurement error. Thus, Ei can be estimated using a VAR model with observa-

tions in errors. This is an interesting and important topic, and has been actively

pursued in various contexts; seex for example, Carroll, Ruppert and Stefanski

(1995). However, time series models with measurement errors have not received

sufficient attention. Note that when f̂t = ft + B′εt, (2.7) can be written as a

vector ARMA model (VARMA) with the same order of AR and MA parts. We

can estimate Ei using a VARMA model. An alternative method is to use the
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classic least squares procedure, which estimates Ei based on {f̂}; that is,

(Ẽ1, . . . , Ẽs) = argminE1,...,Es

n∑
t=s+1

||̂ft −
s∑
i=1

Eif̂t−i||2. (2.8)

However, just as in a simple linear regression for independent data, Ẽi can not

be used to estimate Ei consistently when the spectral norm of the covariance

of B′εt +
∑4

i=2 ζt,i has the same order as that of f̂t and a correcting factor is

required. To see this, we simply assume f̂t = ft + B′εt and s = 1; then,

Ẽ′1 −E′1 = (

n∑
t=2

f̂t−1f̂ ′t−1)
−1

n∑
t=1

(ft−1 + B′εt−1)(et + B′εt −E1B
′εt−1)

′

= (

n∑
t=2

f̂t−1f̂ ′t−1)
−1

n∑
t=1

[(ft−1 + B′εt−1)e
′
t + ft−1(ε

′
tB− εt−1BE′1)]

−(

n∑
t=2

f̂t−1f̂ ′t−1)
−1

n∑
t=1

B′εt−1ε
′
t−1BE′1.

Under some regular condition, (
∑n−1

t=1 f̂tf̂ ′t)
−1∑n−1

t=1 B′εtε
′
tB

p−→ [Var(f1+B′ε1)]
−1

Var(B′ε1). Thus, a corrected factor is required, and we can use the modified LSE:

Ê′1 = [Var(f1)]
−1[Var(f1 +B′ε1)]Ẽ

′
1 to estimate E′1. One simple method is to cor-

rect the LSE given in (2.8) by

(Ê1, . . . , Ês)
′ =

[
n∑

t=s+1

(f̂ ′t−1, . . . , f̂
′
t−s)

′(f̂ ′t−1, . . . , f̂
′
t−s)−M

]−1
[

n∑
t=s+1

f̂t(f̂
′
t−1, . . . , f̂

′
t−s)

]′
,

(2.9)

where M = diag(Σ̂Bε(1), . . . , Σ̂Bε(s)) and Σ̂Bε(i) =
∑n

t=s+1 B′εt−iε
′
t−iB. This

is in the same spirit as the corrected Yule–Walker estimator proposed by Stau-

denmayer and Buonaccorsi (2005) for the AR model with a measurement error.

The autoregressive order s can be determined using standard criteria such as the

AIC or BIC; see, for example, Section 4.2.3 of Fan and Yao (2015).

Combining (2.1), (2.7) and (2.9), we have the following h-step-ahead forecast,
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for h = 1, 2:

yt+1|t = (I + Ĉ)yt + B̂f̂t+1 = (I + Ĉ)yt + B̂

(
s∑
i=1

Êif̂t+1−i

)
,

yt+2|t = (I + Ĉ)yt+1|t + B̂f̂t+2|t

= (I + Ĉ)2yt + (I + Ĉ)B̂

(
s∑
i=1

Êif̂t+1−i

)
(2.10)

+B̂

[
s−1∑
i=1

Êif̂t+1−i + Ê1

(
s∑
i=1

Êif̂t+1−i

)]
.

We can similarly deduce any h-step-ahead forecast yt+h|t, for h ≥ 3, by recursive

iteration.

3. Asymptotic Theory

In this section, we investigate the asymptotic properties of the proposed

estimators. For a given m, we calculate the distance between the co-feature

space M(B) and its estimate as

D(M(B̂),M(B)) =

√
1− 1

m
tr(B̂B̂′BB′). (3.1)

Then, D(M(B̂),M(B)) ∈ [0, 1], taking the value zero if and only if M(B̂) =

M(B), and one if and only ifM(B̂) andM(B) are orthogonal. We consider two

asymptotic modes: (i) p is fixed and n→∞; and (ii) both p and n diverge, but

r is fixed.

3.1. When n→∞ and p is fixed

We introduce the regularity conditions first.

Condition 1. The process {x′t2,∇y′t, ε
′
t} is a stationary α-mixing process with

mean zero, E‖(x′t2,∇y′t, ε
′
t)‖

4γ
∞ < ∞ for some constant γ > 1, and the mixing

coefficients αt satisfy the condition
∑∞

t=1 α
1−1/γ
t < ∞, where ‖x‖∞ denotes the

maximum norm of a vector x = (x1, . . . , xn), that is, ‖x‖∞ = max(|x1|, . . . , |xn|).

Condition 2. The characteristic polynomial of VAR model (2.7) has no roots

on or outside of the unit circle so that it is a causal VAR model.

Theorem 1. Let Condition 1 hold.
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(a) Let vech(D) = (d1, . . . ,dp)
′. As n→∞ and p is fixed, it holds that

√
n(vech(D̂)− vech(D))

d−→ N(0,Ω1),

where Ω1 is an rp×rp positive-definite matrix, ||Ĉ−C||2 = Op(n
−1/2), and

|| · ||2 denotes the spectral norm of a matrix.

(b) Let m be known; then, D(M(B̂),M(B)) = Op(n
−1/2).

(c) In addition, if Condition 2 and E‖et‖2γ <∞ hold, then

||(Ê1 −E1, . . . , Ês −Es)||2 = Op(n
−1/2).

Theorem 2. Let 1 ≤ m < p and Condition 1 hold. For m̃ defined in (2.6),

lim
n→∞

P ( m̃ ≥ m ) = 1.

3.2. When n→∞ and p = o(nc)

Let zjt ≡ ∇x
j
t , for j = 1, . . . , p − r, and let zt = (z1t , . . . , z

p−r
t )′ and νt =

(z′t,x
′
t2)
′. In this subsection, we extend the asymptotic results of the previous

section to the cases when p → ∞ and p = o(nc), for some c ∈ (0, 1/2). Techni-

cally, we employ a normal approximation method to establish the results.

Condition 3.

(i) Let M be a p × k constant matrix with k ≥ p and c1 ≤ λmin(M) ≤
λmax(M) ≤ c2, where c1, c2 are two positive constants. Suppose that

νt = Mvt, and all components of vt = (v1t , . . . , v
k
t )′ are independent and

have mean zero.

(ii) The process {v′t,∇y′t, ε
′
t} is a stationary α-mixing process with E‖(v′t,∇y′t,

ε′t)‖2θ∞ <∞, for some θ > η ∈ (2, 4], and mixing coefficients αm that satisfy

∞∑
m=1

α(θ−η)/(θη)
m <∞. (3.2)

(iii) c3 ≤ λmin(D) ≤ λmax(D) ≤ c4, for some positive constants c3, c4.

Theorem 3. Let m be known. Suppose Condition 3 holds with k = o(n1/2−1/η),

and p = O
(
n1/2−1/η/(log n)2

)
. Then, the following assertions hold.

(a) max{||D̂−D||2, ||Ĉ−C||2} = Op((pr)
1/2n−1/2 + p1/2k2n−1).
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(b) D(M(B̂),M(B)) = Op(pn
−1/2).

(c) ||(Ê1 − E1, . . . , Ês − Es)||2 = Op((pm)1/2n−1/2 + p1/2k2n−1), provided

that Condition 2 and E||et||θ <∞ also hold.

Theorem 4. Let 1 ≤ m < p and Condition 3 hold with k = o(n1/2−1/η) and

p = O
(
n1/2−1/η/(log n)2

)
. Then, for m̃ defined in (2.6), we have

lim
n→∞

P ( m̃ ≥ m ) = 1.

Remark 2. The above asymptotic theorems can be generalized to other station-

ary noise νt considered by ZRY.

4. Numerical Studies

In this section, we first evaluate the finite sample performance of our pro-

posed inference procedure using a Monte Carlo simulation. We then illustrate

the forecasting ability of the proposed ECFM using a real data example.

4.1. Monte Carlo simulation

In our simulation, we let yt = Axt, where A = (A1,A2) is an orthogonal

matrix that is first drawn elementwise from U [0, 1] independently, and is then

orthogonalized. In addition, xt = (x′t1,x
′
t2)
′, where the r components of xt2 are

independent Gaussian AR(1) processes with identical autoregressive coefficients

equal to 0.5, and the (p− r) vector xt1 is I(1), according to a factor-augmented

AR(1) defined as

xt1 = xt−1,1 + Υft + et. (4.1)

In the above expression, Υ is a (p−r)×m half-orthogonal matrix (i.e., Υ′Υ = Im)

generated in the same manner as A. Furthermore, the components of ft are

independent stationary Gaussian AR(1) with identical autoregressive coefficients

equal to 0.5, and et is independent and N(0, Ip−r). Then, it is easy to see that

yt satisfies equation (2.1), with C = 0.5A2A
′
2 and B = A1Υ.

With p = 5, 10, 20, 40, 60, r = 1, 2, 4, 6, 8, 10, and m = 1, 2, 4, 6, 8, 10 (m ≤
p−r), we generate a time series yt with length n = 100, 200, 400, 800, 1,200, 1,600,

2,000, 2,400, and then estimate r,C,m and B. To estimate r, we use the IC crite-

rion (2.2) with the penalty wn = log nλ̃p. The number of factors m is estimated

using the ratio method (2.6), with j0 = 5. For each setting, we replicated the

experiment 1,000 times.

Tables 1–3 list the relative frequencies of the occurrence of the events (r̂ = r)
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Table 1. Relative frequencies (×100) of the occurrences of events r̂ = r (first entries in
parentheses) and m̃ = m (second entries in parentheses).

p = 5 n = 100 n = 200 n = 400 n = 800
m = 1 r = 1 (92.0, 93.5) (100 , 99.3) (100 , 99.9) (100 ,100)

r = 2 (44.6, 89.3) (68.5, 96.6) (83.7, 99.8) (98.6,100)
p = 10 n = 200 n = 400 n = 800 n = 1, 200

m = 1 r = 1 (85.3,100) (100 ,100) (100 ,100) (100 ,100)
r = 2 (65.4,100) (82.0,100) (95.4,100) (99.6,100)

m = 2 r = 1 (86.5, 82.2) (100 , 97.7) (100 , 99.9) (100 ,100)
r = 2 (62.4, 83.4) (75.1, 97.8) (94.3,100) (98.8,100)

p = 20 n = 400 n = 800 n = 1, 200 n = 1, 600
m = 2 r = 2 (85.5, 99.7) (92.8,100) (96.7,100) (98.9,100)

r = 4 (20.5, 95.0) (43.3, 99.8) (68.8,100) (86.3,100)
m = 4 r = 2 (82.0, 93.2) (89.5, 99.9) (93.8, 99.9) (96.3,100)

Table 2. Relative frequencies (×100) of the occurrences of events r̂ = r (first entries in
parentheses) and m̃ = m (second entries in parentheses).

p = 40 n = 800 n = 1, 200 n = 1, 600 n = 2, 000
m = 2 r = 2 (72.8,100) (94.7,100) (100 ,100) (100 ,100)

r = 4 (64.0, 99.9) (99.5,100) (99.3,100) (99.7,100)
r = 6 (86.4, 93.8) (95.2, 98.9) (96.2, 99.7) (97.5,100)
r = 8 (53.8,100) (77.4,100) (82.2,100) (89.6,100)

m = 4 r = 2 (73.3,100) (89.5,100) (99.9,100) (100 ,100)
r = 4 (66.8, 99.9) (99.3,100) (99.5,100) (99.2,100)
r = 6 (75.1, 99.5) (88.3,100) (89.5,100) (91.0,100)
r = 8 (27.1, 99.7) (59.0,100) (64.4,100) (75.9,100)

m = 6 r = 2 (72.7, 99.6) (86.2,100) (99.6,100) (100 ,100)
r = 4 (69.2, 96.5) (98.6, 99.4) (98.3,100) (98.4,100)
r = 6 (65.6, 99.7) (83.1,100) (86.1,100) (88.8,100)
r = 8 (16.9, 98.7) (41.3,100) (50.8,100) (62.4,100)

m = 8 r = 2 (73.7, 99.9) (81.1,100) (99.8,100) (100 ,100)
r = 4 (71.0, 89.1) (98.3, 99.2) (98.2, 99.9) (98.0,100)
r = 6 (60.8, 98.7) (82.1, 99.9) (82.1,100) (87.0,100)
r = 8 (12.7, 83.7) (37.0, 96.5) (45.3, 98.5) (52.6, 99.6)

and (m̃ = m) in a simulation with 1,000 replications. We make the following ob-

servations from Table 1 which contains the results for p = 5, 10 and 20. First, for

p = 5 or 10, the relative frequencies for the correct specification of the cointegra-

tion rank r and the number of factors m are as high as 85%, even for a sample

size n as small as 200. When n increases to 400, those relative frequencies in-

crease to 100%. Second, with fixed n and r, the correct estimation rates for m

increases as the dimension p increases, a phenomenon known as the “blessing of
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Table 3. Relative frequencies (×100) of the occurrences of events r̂ = r (first entries in
parentheses) and m̃ = m (second entries in parentheses).

p = 60 n = 1, 200 n = 1, 600 n = 2, 000 n = 2, 400
m = 2 r = 2 (20.8,100) (34.3,100) (97.3,100) (100 ,100)

r = 4 (16.2,100) (87.3,100) (100 ,100) (99.9,100)
r = 6 (63.4,100) (99.1,100) (99.5,100) (99.5,100)
r = 8 (88.4,100) (98.9,100) (97.5,100) (97.1,100)
r = 10 (72.0,100) (92.4,100) (89.7,100) (89.6,100)

m = 4 r = 2 (19.8,100) (23.3,100) (94.3,100) (99.9,100)
r = 4 (16.7,100) (78.4,100) (100 ,100) (100 ,100)
r = 6 (59.3,100) (97.7,100) (99.1,100) (98.7,100)
r = 8 (80.1,100) (95.3,100) (92.7,100) (92.5,100)
r = 10 (51.0,100) (77.8,100) (73.4,100) (71.5,100)

m = 6 r = 2 (20.4,100) (29.6,100) (86.6,100) (99.5,100)
r = 4 (13.4,100) (72.5,100) (99.8,100) (100 ,100)
r = 6 (58.9,100) (97.2,100) (98.6,100) (98.1,100)
r = 8 (73.3,100) (91.7,100) (87.0,100) (87.0,100)
r = 10 (29.9,100) (62.5,100) (59.2,100) (57.2,100)

m = 8 r = 2 (20.7,100) (24.9,100) (79.3,100) (99.3,100)
r = 4 (33.2,100) (70.1,100) (99.5,100) (99.7,100)
r = 6 (59.3,100) (95.6,100) (98.8,100) (98.2,100)
r = 8 (67.9,100) (89.9,100) (84.3,100) (85.4,100)
r = 10 (23.7, 99.7) (54.0,100) (50.9,100) (51.6,100)

m = 10 r = 2 (20.3,100) (21.2,100) (76.6,100) (98.5,100)
r = 4 (33.8,100) (65.8,100) (99.4,100) (100 ,100)
r = 6 (60.0,100) (94.7,100) (98.7,100) (98.3,100)
r = 8 (61.6,100) (87.6,100) (84.7,100) (85.4,100)
r = 10 (18.6, 99.9) (49.5,100) (48.0,100) (48.2,100)

dimensionality”. This is consistent with the findings of Lam and Yao (2012), who

dealt with purely stationary processes only. Third, the inference on r tends to

become more challenging as p increases. For example, the relative frequency for

a correct estimation of r(= 2) when m = 1 and n = 200 decreases from 68.5% to

65.4%, with p increasing from 5 to 10. This is in line with the findings of ZRY.

Lastly, note that an increase in p, r and/or m would generally demand a larger

n to maintain the same level of estimation accuracy. This is consistent with our

theory that requires p = o(nc), for c ∈ (0, 1/2).

Similar conclusions can be drawn from the results reported in Table 2–3.

In particular, the inference on the number of factors (when m is relatively small

compared to p) is relatively easy when p = 40 and 60, with a sample size equal to

800. Unreported results for n = 200, 400 corroborate this conclusion. However,
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Figure 1. Box plot of D(M(Â2),M(A2)) (left panel) and D(M(B̂),M(B)) (right
panel), 400 ≤ n ≤ 3,200.
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the inference on the cointegration rank is more difficult when n is small and/or

r is large.

To evaluate the performance of the estimation for both the cointegration

space and the factor cofeature space, we present the box plots for D(M(Â2),

M(A2)) and D(M(B̂),M(B)) in Figure 1 for a few (selected) combinations of

p, r and m, with n = 400, 800, 1,600, 3,200. The overall profile of the estimation

accuracy is similar to those in Tables 1–3. For example, when p increases, the

estimation accuracy of cointegration space becomes worse, while that of factor

co-feature space tends to improve. That is, the “curse of dimensionality” in

inferring the cointegration space is coupled with the “blessing of dimensionality”

in estimating the factor co-feature space. Furthermore, in general the estimation

improves as n increases, which confirms our consistency theory.

Next, we investigate how the autoregressive coefficient for the process of xt,2,

denoted by ρ, and the error variance of this autoregressive process, denoted by σ2,

affect the performance of the proposed method. For brevity, we report only the

results for the case with p = 60, m = 2, 4, 6, r = 2, 4, ρ = 0.8, 0.93, and σ2 = 4, 8

in Table 4. We observe the following. First, the error variance σ2 increases,

the selection for the factor seems to deteriorate. Second, as ρ increases, the

performance of the cointegration rank selection procedure deteriorates, especially

when ρ reaches 0.93. This drawback is inherent to the problem, and is one from

which most methods suffer. Nevertheless, we observe that the performance of

our procedure generally improves as the sample size increases.

4.2. A real data example

To further illustrate the proposed approach, we apply the proposed ECFM

to 12 U.S. industrial production (manufacturing nondurable) monthly indices in

January 1972 – August 2010, extracted from Stock and Watson (2008)1: namely,

food, beverage, tobacco, textile mills, textile product mills, apparel, leather and

allied product, paper, printing and related support activities, petroleum and coal

products, chemical, plastics and rubber products. The estimated cointegration

rank is r̂ = 2, and the number of factors is m̃ = 3. We also fit the data using a

VECM and Johansen’s trace test to determine the cointegration rank r for each

given autoregressive order between 1 and 8, and then using the AIC to select the

optimal autoregressive order. The corresponding estimated cointegration rank is

also 2. Hence, both fitted models suggest the same cointegration rank of 2, and

the VECM represents the short-run dynamics in terms of a 12-dimensional vector

1The data are available at http://www.princeton.edu/~mwatson/.

http://www.princeton.edu/~mwatson/
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Table 4. Relative frequencies (×100) of the occurrences of events r̂ = r (first entries in
parentheses) and m̃ = m (second entries in parentheses).

n = 1, 200 n = 2, 400 n = 1, 200 n = 2, 400
p = 60 ρ = 0.5, σ2 = 4 ρ = 0.5, σ2 = 8

m = 2 r = 2 (19.9,100) (88.9,100) (22.3, 99.7) (20.7,100)
r = 4 (26.2,100) (62.3,100) (25.5, 99.8) (46.1,100)

m = 4 r = 2 (23.4,100) (86.8,100) (21.9, 93.9) (23.3, 98.1)
r = 4 (26.4, 99.9) (52.4,100) (23.8, 96.1) (40.1, 99.7)

m = 6 r = 2 (23.4,100) (79.9,100) (25.1, 81.9) (26.0, 98.6)
r = 4 (28.2, 99.7) (50.4,100) (21.9, 81.5) (39.3, 99.9)

ρ = 0.8, σ2 = 1 ρ = 0.93, σ2 = 1
m = 2 r = 2 (21.3,100) (44.4,100) (20.4,100) (40.6,100)

r = 4 (27.0,100) (89.9,100) (25.1,100) (31.0,100)
m = 4 r = 2 (24.3,100) (46.5,100) (22.5,100) (39.2,100)

r = 4 (24.6,100) (89.0,100) (25.0,100) (30.2,100)
m = 6 r = 2 (24.8,100) (49.6,100) (24.2,100) (40.7,100)

r = 4 (27.3,100) (90.1,100) (23.2,100) (31.5,100)

AR(3) process (with reduced rank 2). In contrast, the newly proposed ECFM

captures these dynamics in a three-dimensional latent-factor process, achieving a

significant reduction in the number of parameters required, as can be seen from

(2.1). The difference between the cointegration space estimated by our ECFM

and that produced by Johansen’s method is computed as

D(M(Â2),M(Ã2))
2 = 1− 1

2
tr{Â2Â

′
2(Ã2(Ã

′
2Ã2)

−1Ã2)
′} = 0.0009,

where the columns of Â2 denote the loadings of the five cointegrated variables

identified by our method and those of Ã2 by Johansen’s method. This suggests

that the cointegration spaces estimated by the two approaches are effectively

equivalent.

We further examine the forecasting performance of the proposed ECFM. To

this end, we compare the out-of-sample forecasting performance of our ECFM

with that of (i) univariate AR (UAR) models, with the lag length for each com-

ponent selected using the standard Schwarz criterion, and (ii) the reduced-rank

VECM with the rank and lag length selected simultaneously using the Hannan–

Quinn criterion, and the cointegration rank chosen using PIC (Athanasopoulos

et al. (2011)). For each of the last 10% of the data points, we fit the mod-

els using the data up to the previous month, and forecast the values using the

three fitted models. Following Athanasopoulos et al. (2011), we measure the
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Table 5. Percentage improvement in forecast accuracy measures: US IP indices.

Horizon (h) ECFM versus VECM ECFM versus UAR
|MSFE| TMSFE GFESM |MSFE| TMSFE GFESM

1 -1.0 -1.9 -0.9 68.2 -3.5 68.2
4 61.2 2.5 12.4 94.8 32.6 90.8
8 40.6 -0.3 -2.1 97.2 47.5 97.1
12 83.5 2.6 55.4 98.8 54.0 98.5
16 93.9 9.0 83.3 99.1 56.7 99.3

forecast accuracy using the traditional trace of the mean-squared forecast error

matrix (TMSFE) and the determinant of the mean-squared forecast error matrix

|MSFE| at each forecast horizon, for h = 1, . . . , 16. We also calculate the gener-

alized forecast error second moment (GFESM), that is, the determinant of the

expected value of the outer product of the vector of stacked forecast errors of all

future times up to the horizon of interest, as proposed by Clements and Hendry

(1993). The GFESM is invariant to elementary operations that involve different

variables, as well as to elementary operations that involve the same variable at

different horizons. The forecasting comparison results are presented in Table

5, with the maximum lag lengths for order selection set as 4. The results for

the maximum lag length set as 8 or 12 are very similar, and therefore are not

presented here.

Table 5 shows that the ECFM provides forecasts that are more accurate than

those of the reduced-rank VECM and the univariate AR models for most hori-

zons. For example, for a 12-month-ahead forecast, the ECFM achieves improve-

ment in the TMSFE, |MSFE| and GFESM of 98.8%, 54.0%, 98.5%, respectively,

compared with those of the univariate AR models. In addition, the improvement

from using ECFM over univariate AR models tends to increase as the forecast

horizon increases. The improvement from using the ECFM over the reduced-rank

VECM is obvious, especially for long horizons, but seems to be insignificant for

short horizon predictions. These findings together illustrate the superiority of

the ECFM in terms of forecasting.

5. Conclusion

Traditionally, cointegration inferences are built on a correct specification for

the short-run dynamic vector auto-regression. It is known that choosing too short

a lag length leads to size distortions, whereas choosing too many lags leads to a

significant increase in the number of parameters, especially in high-dimensional
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systems. To avoid this misspecification, and to address the co-feature information

in the short-run dynamic, we propose modeling the dynamic relationship using a

dynamic factor model and estimating the VECM using a two-step eigenanalysis:

the first step estimates the long-run coefficients using the estimated cointegration

space (Zhang, Robinosn and Yao (2019)); the second step estimates the loading

matrix and the common factors for the short-run dynamic using a principle com-

ponent analysis. The asymptotic theory and numerical studies show that the

proposed procedure performs well.

The following shortcomings will be addressed in future research. First, in

order to apply the result of Zhang, Robinosn and Yao (2019), the dimension

p cannot be too large (i.e., not greater than O(n1/4)). It would be interesting

and more challenging to consider cases with larger p. Note that the rank of the

matrix C is r. One possible solution is to replace the first step in the procedure

with the sparse shrinkage technique by solving the following optimal problem:

Ĉ = argminC∈Rp×p

{
n∑
t=1

||∇yt −Cyt−1||2 + λn|||C|||s1

}
, (5.1)

where ||C||s1 =
∑p

j=1 λj(C), and λ1(C), λ2(C), . . . , λp(C) denote the singular

values of C.

Second, because the focus of this paper is on predictions and inferences for the

co-features, we can impose the condition that Cyt−1 and ft are uncorrelated; see

the beginning of Section 2.2. However, for some applications, the main concern

may be the original C and ft. Because Cyt−1 and ft may be correlated, the

inference method proposed here will lead to inconsistent estimators. It would be

interesting to consider an inference based on iterative equations as in Bai (2009).

That is, estimate {C,F,B} using the least squares loss, defined as

SSR(C,F,B) =

n∑
t=1

(∇yt −Cyt−1 −Bft)
′(∇yt −Cyt−1 −Bft), (5.2)

subject to the constraint B′B = Im.

Finally, our approach is relevant only if there exists a low-dimensional factor

structure. Thus, it is pertinent to develop appropriate tests for the existence of

such structure.
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Supplementary Material

The online supplementary material contains useful lemmas and the proofs of

the main theorems.
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