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1. Two Lemmas

To establish the claimed theoretical results in Theorems 1, 2, and 3, we need the following two lemmas. We

provide proofs of the two lemmas in this section.

Lemma 1. For the n dimensional standard normal random vector Z = (Z1, . . . , Zn) ∈ Rn, and n × n di-

mensional symmetric matrix M = (mij). If there exist some constants C1 > 0 and C2 > 0, such that

λmax(M) ≤ C1, and n−1tr(M2) > C2, as n → ∞, where λmax(M) denotes the biggest eigenvalue of M , we

have
{
Z⊤MZ− tr(M)

}
/tr 1

2 (2M2)
d−→ N(0, 1).

Proof of Lemma 1. Denote the eigen values of M by λ1, λ2, · · · , λn. We find by a spectral decompo-

sition of M as M = Q⊤diag(λ1, λ2, · · · , λn)Q where the column vectors of Q are the eigenvectors of M ,

and they are orthonormal. Further, if U = QZ, we know that U is a standard normal random vector,

and R = Z⊤MZ =
∑n

i=1 λiU
2
i is the sum of these independent variables. From easy calculations, we have

E(R) =
∑n

i=1 λi = tr(M), and Var(R) = 2
∑n

i=1 λ
2
i = 2tr(M2) that is bounded below by 2nC2. Mean-

while, we have
∑n

i=1 E(λiU
2
i − λi)

4 = E(U2
1 − 1)4tr(M4) ≤ E(U2

1 − 1)4 · nC4
1 . This leads to

∑n
i=1 E(λiU

2
i −



2

λi)
4/[Var(R)]2 ≤ E(U2

1 − 1)4 · C4
1/(4nC

2
2 ) → 0, as n → ∞ This verifies the Lyapunov condition, and the

Central Limit Theorem immediately leads to Lemma 1.

Lemma 2. (Asymptotic normality of the estimation equation) Denote dℓ(θ)/dθ =
(
(dℓ(θ)/dβ)⊤, dℓ(θ)/dρ, dℓ(θ)/dσ2

)⊤
.

Assuming conditions (C1) and (C2), we have n−1/2 · dℓ(θ)/dθ d−→ N(0,Λ), where Λ is defined in the following

proof of this lemma.

Proof of Lemma 2. From easy calculations of the first derivative of ℓ(θ), we obtain the estimation equation,

with its components specified as

dℓ(θ)

dβ
=

1

σ2
X⊤

1 Ω(ρ)(Y1 − X1β),

dℓ(θ)

dρ
=

1

2
tr
[
Ω(ρ)−1Ω̇(ρ)

]
− 1

2σ2
(Y1 − X1β)

⊤Ω̇(ρ)(Y1 − X1β),

dℓ(θ)

dσ2
=

1

2σ4
(Y1 − X1β)

⊤Ω(ρ)(Y1 − X1β)−
n

2σ2
.

The components of the estimation equation are linear or quadratic functions of the multivariate standard

normal vector Σ
− 1

2
11 (Y1 − X1β). Under conditions C1 and C2, we derive the asymptotic normal distri-

bution of n−1/2dℓ(θ)/dθ from the central limit theorem for linear-quadratic functions. We can see that

E
[
dℓ(θ)/dβ

]
= 0. Denoting Σ

− 1
2

11 (Y1−X1β) by Z = (Z1, · · · , Zn)
⊤, we have E

[
dℓ(θ)/dρ

]
= tr

[
Ω(ρ)−1Ω̇(ρ)

]
/2−

E
[
Z⊤Σ

1
2
11Ω̇(ρ)Σ

1
2
11Z

]
/(2σ2) = 0 and E

[
dℓ(θ)/dσ2

]
= −n/(2σ2)+E(Z⊤Z)/(2σ2) = 0. Thus, the estimation equa-

tion n−1/2dℓ(θ)/dθ is unbiased, and its covariance matrix is E
[
(dℓ(θ)/dθ) · (dℓ(θ)/dθ⊤)

]
/n, which is equal to

the (p+ 2)× (p+ 2) symmetric information matrix Λn = −n−1E
[ d2ℓ(θ)
dθdθ⊤

]
.

To derive the asymptotic covariance matrix of n−1/2dℓ(θ)/dθ, we first denote H1 and H2 as H1 =[
4ρ(W⊤

11W12+W⊤
21W22)−2(W⊤

21+W12)
]
Υ−1

22 (ρ) and H2 = Υ−1
22 (ρ)

[
−(W⊤

22+W22)+2ρ(W⊤
12W12+W⊤

22W22)
]
Υ−1

22 (ρ),

respectively. Then, we consider Λn = [Λn11,Λn12,Λn13; Λn21,Λn22,Λn23; Λn31,Λn32,Λn33], and calculate each
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of its components, respectively

Λn11 = −n−1E
[ d2ℓ(θ)

dβdβ⊤

]
= (nσ2)−1X⊤

1 Ω(ρ)X1 → Λ11,

Λn12 = −n−1E
[d2ℓ(θ)
dβdρ

]
= (nσ2)−1E

[
X⊤

1 Ω̇(ρ)(Y1 − X1β)
]

= 0,

Λn13 = −n−1E
[ d2ℓ(θ)
dβdσ2

]
= (nσ4)−1E

[
X⊤

1 Ω(ρ)(Y1 − X1β)
]

= 0,

Λn22 = −n−1E
[d2ℓ(θ)

dρ2

]
= (2n)−1tr

[
(Ω−1(ρ)Ω̇(ρ))2

]
− (2n)−1tr

[
Ω−1(ρ)Ω̈(ρ)

]
+ (2nσ2)−1E

[
(Y1 − X1β)

⊤Ω̈(ρ)(Y1 − X1β)
]

= (2n)−1tr
[
(Ω−1(ρ)Ω̇(ρ))2

]
→ Λ22,

Λn23 = −n−1E
[d2ℓ(θ)
dσ2dρ

]
= −(2nσ4)−1E

[
(Y1 − X1β)

⊤Ω̇(ρ)(Y1 − X1β)
]

→ Λ23,

Λn33 = −n−1E
[ d2ℓ(θ)

dσ2dσ2

]
= −(2σ4)−1 + (nσ4)−1E

[
(Y1 − X1β)

⊤Σ−1
11 (Y1 − X1β)

]
= (2σ4)−1

where Ω̈(ρ) is defined as

Ω̈(ρ) = H1

[
2ρ(W⊤

12W12 +W⊤
22W22)Υ

−1
22 (ρ)Υ21(ρ)− (W⊤

22 +W22)Υ
−1
22 (ρ)Υ21(ρ)

]
+ H1

[
(W⊤

12 +W21)− ρ(W⊤
12W11 +W⊤

22W21)− ρ(W⊤
11W11 +W⊤

12W21)
]

+ 2(W⊤
11W11 +W⊤

21W21)− 2(W⊤
11W12 +W⊤

21W22)Υ
−1
22 (ρ)Υ21(ρ)

−
[
ρ2(W⊤

11W12 +W⊤
21W22)− ρ(W⊤

21 +W12)
]
D(ρ).
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The quantity D(ρ) in Ω̈(ρ) is specified as

D(ρ) = −2ρΥ−1
22 (ρ)(W

⊤
12W12 +W⊤

22W21)Υ
−1
22 (ρ)

[
2ρ(W⊤

12W11 +W⊤
22W21)− (W⊤

12 +W21)
]

+ 2ρΥ−1
22 (ρ)(W

⊤
12W12 +W⊤

22W21)H2Υ21(ρ)−Υ−1
22 (ρ)(W

⊤
22 +W22)H2Υ21(ρ)

−Υ−1
22 (ρ)(W

⊤
22 +W22)Υ

−1
22 (ρ)

[
2ρ(W⊤

12W11 +W⊤
22W21)− (W⊤

12 +W21)
]

+H2

[
2ρ(W⊤

12W12 +W⊤
22W22)− (W⊤

22 +W22)Υ
−1
22 (ρ)Υ21(ρ)

]
+H2

[
(W⊤

12 +W21)− 2ρ(W⊤
11W11 +W⊤

12W21)
]
.

Moreover, note that Λn31 = Λn13 and Λn32 = Λn23. This leads to the specified asymptotic variance matrix of

n−1/2dℓ(θ)/dθ as

Λ = lim
n→∞

Λn =


Λ11 0 0

0 Λ22 Λ23

0 Λ23 Λ33

 .

This completes the proof of Lemma 1.

2. Proof of Theorem 1

Our proof of Theorem 1 includes two steps. We show the
√
n− consistency of θ̂ in step 1 and then prove the

limiting normal distribution of the estimator in step 2.

Step 1. To show the
√
n−consistency of θ̂, we first show that there exists some constant C > 0, such that

sup
∥t∥=C

ℓ(θ + n−1/2t) < ℓ(θ), (1)

with a probability tending to one, as n → ∞, and t ∈ Rp+2. We obtain (1) by Taylor’s expansion of ℓ(θ+n−1/2t),
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which leads to

Rn(θ) = ℓ(θ + n−1/2t)− ℓ(θ) = n−1/2t⊤
dℓ(θ)

dθ
+ (2n)−1t⊤

d2ℓ(θ)

dθdθ⊤
t+ op(1). (2)

From Lemma 1, we know that n−1/2dℓ(θ)/dθ = Op(1). On the other hand, by the law of large numbers,

we obtain n−1 d
2ℓ(θ)

dθdθ⊤
= −Λn + op(1) → −Λ, which is a negative definite matrix. Thus, the second term of

(2), which is quadratic and negative, would dominate the first term, which is linear, for a sufficiently large

C. We have (1) with a probability tending to one, as n → ∞. From the convexity of ℓ(θ), this leads to

sup∥t∥≥C ℓ(θ + n−1/2t) < ℓ(θ) with a probability tending to one, as n → ∞. Note that ℓ(θ) is maximized at θ̂,

implying that θ̂ lies in the ball {θ + n−1/2t :∥ u ∥≤ C}; that is, ∥ θ̂ ∥= Op(n
−1/2).

Step 2. We next prove Theorem 1 through a routine Taylor expansion of the estimation equation

dℓ(θ̂)/dθ = 0 at the true value of θ, which easily leads to

√
n(θ̂ − θ) =

[
− 1

n

d2ℓ(θ̆)

dθdθ⊤

]−1 1√
n

dℓ(θ)

dθ
,

with θ̆ lying between θ̂ and θ. To derive Theorem 1, we have only to show that

1

n

d2ℓ(θ̆)

dθdθ⊤
=

1

n

d2ℓ(θ)

dθdθ⊤
+ op(1). (3)

Finally, we consider each block of the two related matrices, respectively. First, we show that

1

n

d2ℓ(θ̆)

dρ2
=

1

n

d2ℓ(θ)

dρ2
+ op(1). (4)
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Denote d3Ω(ρ)/dρ3 by
...
Ω. By the mean value theorem, we have

Ω̈(ρ̆) = Ω̈(ρ) +
...
Ω(ρ̄)(ρ̆− ρ), (5)

Ω−1(ρ̆)Ω̈(ρ̆) = Ω−1(ρ)Ω̈(ρ) + Ω−1(ρ̄)
[
I − Ω̇(ρ̄)Ω−1(ρ̄)

]...
Ω(ρ̄)(ρ̆− ρ), (6)

[
Ω−1(ρ̆)Ω̇(ρ̆)

]2
=

[
Ω−1(ρ)Ω̇(ρ)

]2
+ 2

{
Ω−1(ρ̄)

[
I − Ω̇(ρ̄)Ω−1(ρ̄)

]
Ω̈(ρ̄)

}
(ρ̆− ρ), (7)

with ρ̄ lying between ρ̆ and ρ. Then, we obtain

Ln1 = n−1 d
2ℓ(θ̆)

dρ2
− n−1 d

2ℓ(θ)

dρ2
= (2n)−1

[
tr
{
Ω−1(ρ̆)Ω̇(ρ̆)

}2

− tr
{
Ω−1(ρ)Ω̇(ρ)

}2
]

− (2n)−1

[
tr
{
Ω−1(ρ̆)Ω̈(ρ̆)

}
− tr{Ω−1(ρ)Ω̈(ρ)}

]

+ (2n)−1(σ̆−2 − σ−2)(Y1 − X1β̆)
⊤Ω̈(ρ̆)(Y1 − X1β̆)

+ (2nσ2)−1

[
(Y1 − X1β̆)

⊤Ω̈(ρ̆)(Y1 − X1β̆)− (Y1 − X1β)
⊤Ω̈(ρ)(Y1 − X1β)

]
.
= Ln11 + Ln12 + Ln13 + Ln14.

Because n−1
[
Ω−1(ρ̄)Ω̈(ρ̄)−Ω−1(ρ̄)Ω̇(ρ̄)Ω−1(ρ̄)Ω̈

]
= Op(1), we know from (7) that Ln11 = op(1). Similarly, we

have Ln12 = op(1) from (6).
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For Ln13, we have

Ln13 = (2n)−1(σ̆−2 − σ−2)(Y1 − X1β)
⊤Ω̈(ρ)(Y1 − X1β)

+ (2n)−1(σ̆−2 − σ−2)(ρ̆− ρ)(Y1 − X1β)
⊤...
Ω(ρ̄)(Y1 − X1β)

− (2n)−1(σ̆−2 − σ−2)(β̆ − β)⊤X⊤
1 Ω̈(ρ)(Y1 − X1β)

− 1

2n
(σ̆−2 − σ−2)(ρ̆− ρ)(β̆ − β)⊤X⊤

1

...
Ω(ρ̄)(Y1 − X1β)

− (2n)−1(σ̆−2 − σ−2)(Y1 − X1β)
⊤Ω̈(ρ)(Y1 − X1β)

− (2n)−1(σ̆−2 − σ−2)(ρ̆− ρ)(Y1 − X1β)
⊤...
Ω(ρ̄)(Y1 − X1β)

+ (2n)−1(σ̆−2 − σ−2)(β̆ − β)⊤X⊤
1 Ω̈(ρ)X1(β̆ − β)

+ (2n)−1(σ̆−2 − σ−2)(ρ̆− ρ)(β̆ − β)⊤X⊤
1

...
Ω(ρ̄)X1(β̆ − β).

Ln13 is op(1) because n−1(Y1 − X1β)
⊤Ω̈(ρ)(Y1 − X1β) = Op(1), n

−1(Y1 − X1β)
⊤...
Ω(ρ̄)(Y1 − X1β) = Op(1),

n−1X⊤
1 Ω̈(ρ)X1 = Op(1), and n−1X⊤

1

...
Ω(ρ̄)X1 = Op(1). A similar calculation implies that Ln14 = op(1). Then,

Ln1 = op(1) and other blocks of n−1 d
2ℓ(θ̆)

dθdθ⊤
−n−1 d

2ℓ(θ)

dθdθ⊤
are also op(1). Thus, (3) holds, and this with Lemma

2 leads to Theorem 1.

3. Proof of Theorem 2.

We first denote the lth row of Υ−1
22 (ρ) by Υ−1

22,l(ρ), for l = 1, · · · , N − n. By a routine calculation, we divide

the difference Ŷn+l − Yn+l as follows:
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Ŷn+l − Yn+l

= X⊤
n+l(β̂ − β)−Υ−1

22,l(ρ̂)Υ21(ρ̂)(Y1 − X1β) + Υ−1
22,l(ρ̂)Υ21(ρ̂)X1(β̂ − β)− Vn+l

= E(Vn+l|V1)− Vn+l +
[
X⊤

n+l +Υ−1
22,l(ρ)Υ21(ρ)X1

]
(β̂ − β)

+
[
Υ−1

22,l(ρ̂)Υ21(ρ̂)−Υ−1
22,l(ρ)Υ21(ρ)

]
X1(β̂ − β)−

[
Υ−1

22,l(ρ̂)Υ21(ρ̂)−Υ−1
22,l(ρ)Υ21(ρ)

]
V1

= E(Vn+l|V1)− Vn+l +
[
X⊤

n+l +Υ−1
22,l(ρ)Υ21(ρ)X1

]
(β̂ − β)

+
[
dΥ−1

22,l(ρ̆)/dρ ·Υ21(ρ̆) + Υ−1
22,l(ρ̆)dΥ21(ρ)/dρ

]
X1(β̂ − β)(ρ̂− ρ)

−
[
dΥ−1

22,l(ρ̆)/dρ ·Υ21(ρ̆) + Υ−1
22,l(ρ̆)dΥ21(ρ)/dρ

]
V1(ρ̂− ρ)

.
= E(Vn+l|V1)− Vn+l + Ln21 + Ln22 + Ln23.

From Theorem 1, we have

β̂ − β = Op(n
− 1

2 ), (8)

and

ρ̂− ρ = Op(n
− 1

2 ). (9)

Moreover, note that their corresponding coefficients in Ln21, Ln22 , and Ln23 are all Op(1), we have Ln2i =

Op(1), i = 1, 2, 3. This leads to Ŷn+l − Yn+l →d E(Vn+l|V1) − Vn+l. Additionally, V1 and Vn+l are nor-

mally distributed, and hence E(Vn+l|V1) − Vn+l is normally distributed. Theorem 2 follows by stating

Φ = E
[
E(Vn+l|V1)− Vn+l

]2
. This completes the proof.
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4. Proof of Theorem 3

By a routine calculation, we have

√
N(µ̂N − µ) = N− 1

2 1⊤N (Xβ − µ) +N− 1
2 1⊤NV+N− 1

2 1⊤N−nX2(β̂ − β)

−N− 1
2 1⊤N−n

[
Υ−1

22 (ρ̂)Υ21(ρ̂)−Υ−1
22 (ρ)Υ21(ρ)

]
V1

−N− 1
2 1⊤N−nΥ

−1
22 (ρ)Υ21(ρ)V1 −N− 1

2 1⊤N−nV2

+N− 1
2 1⊤N−n

[
Υ−1

22 (ρ̂)Υ21(ρ̂)−Υ−1
22 (ρ)Υ21(ρ)

]
X1(β̂ − β)

+N− 1
2 1⊤N−nΥ

−1
22 (ρ)Υ21(ρ)X1(β̂ − β)

= N− 1
2 1⊤N (Xβ − µ) +N− 1

2 1⊤N−n

[
X2 +Υ−1

22 (ρ)Υ21(ρ)X1

]
(β̂ − β)

+N− 1
2

[
1⊤n − 1⊤N−nΥ

−1
22 (ρ)Υ21(ρ)

]
V1

−N− 1
2 1⊤N−n

[
dΥ−1

22 (ρ̆)/dρ ·Υ21(ρ̆) + Υ−1
22 (ρ̆)dΥ21(ρ)/dρ

]
V1(ρ̂− ρ)

+N− 1
2 1⊤N−n

[
dΥ−1

22 (ρ̆)/dρ ·Υ21(ρ̆) + Υ−1
22 (ρ̆)dΥ21(ρ)/dρ

]
X1(β̂ − β)(ρ̂− ρ)

.
=

5∑
i=1

L3ni.

(10)

Moreover, from Theorem 1, we have β̂ − β =
[
X⊤

1 Ω(ρ)X1

]−1

X⊤
1 Ω(ρ)V1 + op(1), and ρ̂− ρ is independent of

Σ
− 1

2
11 V1. Thus, we obtain

L3n2 =
1√
N

1⊤N−n

[
X2 +Υ−1

22 (ρ)Υ21(ρ)X1

][
X⊤

1 Ω(ρ)X1

]−1

X⊤
1 Ω(ρ)V1 + op(1), (11)
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With (8) and (9), we have

L3ni = op(1), (12)

for i = 4 and 5. Combining (10),(11), and (12), we get

√
N(µ̂N − µ) =

1√
N

1⊤N (Xβ − µ) +
1√
N

[
1⊤n − 1⊤N−nΥ

−1
22 (ρ)Υ21(ρ)

]
V1

+
1√
N

1⊤N−n

[
X2 +Υ−1

22 (ρ)Υ21(ρ)X1

][
X⊤

1 Ω(ρ)X1

]−1

X⊤
1 Ω(ρ)V1 + op(1)

=
1√
N

1⊤N (Xβ − µ) +
1√
n

√
r
[
1⊤n − 1⊤N−nΥ

−1
22 (ρ)Υ21(ρ)

]
V1

+
1√
n

√
r1⊤N−n

[
X2 +Υ−1

22 (ρ)Υ21(ρ)X1

][
X⊤

1 Ω(ρ)X1

]−1

X⊤
1 Ω(ρ)V1 + op(1)

=
1√
N

1⊤N (Xβ − µ) +
1√
n

√
r
[
1⊤n − 1⊤N−nΥ

−1
22 (ρ)Υ21(ρ) +B

]
V1 + op(1)

d−→ N(0, ϕ). (13)

Thus, Theorem 3 follows from (13). This completes the proof.


	Two Lemmas
	Proof of Theorem 1
	Proof of Theorem 2.
	Proof of Theorem 3

