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Abstract: Numerous imputation methods have been developed for missing data.

However, these methods apply mainly to independent data, and the assumption

of independence disregards connections of units through social relationships (e.g.,

friendship, follower−followee relationship). In fact, observed responses from con-

nected friends should provide valuable information for missing responses. This

motivates us to conduct an imputation by borrowing information from connected

friends using a network structure. With the missing−at−random assumption and

using observed information only, we propose a partial likelihood approach and de-

velop the corresponding maximum partial likelihood estimator (MPLE). The esti-

mator’s consistency and asymptotic normality are established. Using the MPLE, we

then develop a novel regression imputation method. The method utilizes both aux-

iliary information and connected complete units (i.e., network information); using

the imputed data, we can compute the sample mean of the responses. We show this

method to be consistent and asymptotically normal. Compared with the imputa-

tion method using auxiliary information only (i.e., ignoring network information),

the proposed estimator is statistically more efficient. Extensive simulation stud-

ies are conducted to demonstrate the finite−sample performance of the proposed

method. We then analyze a real example about QQ in mainland China.

Key words and phrases: Incomplete data, network imputation, QQ, spatial autore-

gression.

1. Introduction

Researchers encounter missing data when sampled units fail to provide values

for the main variable (Kalton and Kasprzyk (1986)). There are typically three

missing data mechanisms: missing completely at random (MCR), missing at

random (MAR), and nonignorable missing (NM); see Rubin (1987). In the MCR

case, a statistical analysis based on complete units remains asymptotically valid,

although its statistical efficiency might be suboptimal. However, in either an

MAR or an NM situation, a statistical analysis based on complete units may

suffer from significant bias (Shao and Wang (2002)). To address this problem,

various imputation methods have been developed and are widely accepted in
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practice (Little and Rubin (2002); Schafer (1997)). The most straightforward

imputation method is the hot-deck imputation (Rao and Shao (1992)), but its

simplicity means it ignores valuable information provided by auxiliary variables.

Hence, it can not correct for an estimation bias when the missing data mechanism

is not MCR. Moreover, even for MCR, the resulting estimates are statistically

inefficient.

As a result, the regression imputation method has become a popular choice

(Shao and Wang (2002)). This method builds a regression relationship between

auxiliary information and the missing value, and then predicts the missing value

accordingly. Parametric regression imputation methods have been studied thor-

oughly (Srivastava and Cater (1986); Shao and Wang (2002)), whereas semi-

parametric methods of this type are more recent, having been developed in the

past decade. For example, Wang, Linton and Hardle (2004) considered partial

linear models for imputations. Liang, Wang and Carroll (2007) studied the mea-

surement errors in covariates. Zhao and Tang (2016) considered an imputation-

based statistical inference method for partially linear quantile regression models

with missing responses. With the MAR assumption, both methods can provide

asymptotically unbiased estimates.

Similar methods have also been developed for NM. For example, Alho (1990)

used a logistic regression model to describe the conditional response probabil-

ity, which led to the maximum conditional likelihood estimation approach. The

method requires one or more callbacks to nonrespondents. By assuming a para-

metric model for the response mechanism and a nonparametric model for the

data distribution, Qin, Leung and Shao (2002) proposed a semiparametric like-

lihood estimation procedure to handle the nonignorable nonresponse problem.

Assuming that the missing data mechanism is covariate-dependent, and that the

propensity function can be properly specified, Qin, Shao and Zhang (2008) de-

veloped a regression imputation procedure that is efficient and robust against

a regression model misspecification. Wang, Shao and Kim (2014) proposed an

instrumental variable approach for identification and estimation in the case of

a nonignorable nonresponse. Wang, Ding and Geng (2016) demonstrated the

identifiability of the normal distribution under a monotone missing−data mech-

anism. They then extended this to normal mixture and t−mixture models with

a nonmonotone missing−data mechanism.

Although the aforementioned imputation methods are helpful, they apply

mainly to independent data. The assumption of independence basically indi-

cates that different units live in isolated social environments, and thus do not
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affect one another. This is obviously incorrect. In fact, most often, the sam-

pled units live in the same social environment and are connected through various

social relationships (e.g., friendship, follower−followee relationship). See, for ex-

ample, Scott (1992), Wasserman and Faust (1994), Cohendet et al. (1998), and

LeSage and Pace (2009) for several interesting discussions. Thus, we have a

rather complex social network. Previous studies fail to account for this, mainly

owing to a lack of network structure data, that is, data on inter-node social rela-

tionships. However, following the rapid growth of various social networks (e.g.,

Facebook, Twitter, QQ, Weibo, and WeChat), data on network structures are

becoming increasingly available. Intuitively, socially connected units should be

statistically correlated. Thus, observed responses from connected friends should

provide valuable information on missing responses. This immediately leads to an

extremely valuable prospect for imputation.

Classical imputation methods (as reviewed above) impute a unit’s missing

value based on its own characteristics. In contrast, with network structure infor-

mation, we should be able to provide a more accurate imputation by borrowing

information from connected friends. Specifically, for each sampled unit, we as-

sume an interested response and a set of auxiliary variables. We assume a linear

regression relationship between the response and the auxiliary variables (Srivas-

tava and Cater (1986); Shao and Wang (2002)). Furthermore, we assume that

sample units form a complicated social network. Thus, the residuals of units are

dependent, and their dependence should be related to the network structure. To

model such a dependence relationship, we adopt a spatial autoregression (SAR)

model (Bronnenberg and Mahajan (2001); Lee, Liu and Lin (2010); Huang et

al. (2016); Zhou et al. (2017)). This is one of the most typical models used for

network dependence. Finally, we assume that auxiliary information is fully ob-

served. Furthermore, conditional on the auxiliary information, the response is

MAR.

With the MAR assumption, and using observed information only, we pro-

pose a partial likelihood estimation and develop the corresponding maximum

partial likelihood estimator (MPLE). The estimator’s consistency and asymp-

totic normality are established. Using the MPLE, we develop a novel regression

imputation method. The proposed method utilizes both auxiliary information

(always observed) and connected complete units (i.e., network information). Us-

ing the imputed data, we can compute the sample mean of the responses (both

observed and imputed responses), which we show is consistent and asymptotically

normal. Compared with the imputation method with auxiliary information only



1422 SUN AND WANG

(i.e., ignoring network information), the proposed estimator is statistically more

efficient. Simulation studies are presented to demonstrate the finite−sample per-

formance of the proposed method. Lastly, a real−data example about college

student QQ users is discussed.

The rest of this paper is organized as follows. Section 2 presents the proposed

methodology. We conduct numerical studies based on both simulated and real

data sets in Section 3. Finally, Section 4 concludes the paper. We present the

proofs of the theorems in the online Supplementary Material.

2. Methodology

2.1. Full data likelihood

Let Yi ∈ R1 (1 ≤ i ≤ N) be the response collected from the ith subject and

Xi = (Xi1, . . . , Xip)
> ∈ Rp be the associated p-dimensional covariate. We model

their regression relationship based on the following standard linear regression

model:

Yi = X>i β + vi, (2.1)

where vi is the residual and β = (β1, . . . , βp)
> ∈ Rp is the unknown regression

coefficient. We define Y = (Y1, . . . , YN )> ∈ RN as the response vector, X =

(X1, . . . , XN )> ∈ RN×p as the design matrix, and V = (v1, . . . , vN )> ∈ RN as the

residual vector. Define the theoretical R-Squared as R2 = {1−var(νi)/var(Yi)}×
100%.

We further assume that different subjects are connected through a network,

which has an adjacency matrix given by A = (ai1i2) ∈ RN×N , where ai1i2 = 1 if

there exists a relationship from i1 to i2 (e.g., user i1 follows user i2 on Twitter),

and ai1i2 = 0 otherwise. Obviously, the connected users are likely to be correlated

with one another in terms of residuals. We model the correlation structure using

the following popular spatial network regression model (Anselin (1988); Lee, Liu

and Lin (2010)):

V = ρWV + E , (2.2)

where ρ is the spatial autocorrelation coefficient, with |ρ| < 1. Recall that V is

the noise vector in (2.1). In contrast, E = (ε1, . . . , εN )> ∈ RN is the noise vector

in (2.2). To differentiate between the model errors, we refer to V as the residual

vector and to E as the innovation vector. We assume that the components of

the innovation vector E are mutually independent normal random variables with

mean zero and variance σ2. Furthermore, W = (wi1i2) ∈ RN×N is the so-called
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spatial weighting matrix. Depending on the application, the definitions may

vary. However, one popular definition can be given as wi1i2 = ai1i2/ni1 and

ni1 =
∑

i2
ai1i2 (Anselin (1988)).

Note that (2.2) implies that each vi consists of two parts. The first is the

average value of its connected friends, multiplied by a coefficient ρ. We refer

to this as the network effect. The second is a white noise E . The advantage of

the model is that it allows for network dependence, making it possible to use

information from the node’s connected friends. The disadvantage of the model

is that its computation cost is significant, especially when the network is large.

This is mainly because we need to compute the determinant of a high-dimensional

matrix; see, for example, the log-likelihood function in (2.7).

From models (2.1) and (2.2), we know that Y − Xβ = V = (I − ρW )−1E ,

where I ∈ RN×N is an identity matrix. We immediately see that V follows

a multivariate normal distribution with mean zero and covariance Σ = σ2(I −
ρW )−1(I − ρW>)−1. Thus, its log-likelihood function is given by

`∗f (ρ, σ2, β) =
1

2
log
∣∣∣(I − ρW>)(I − ρW )

∣∣∣− N

2
log σ2 − N

2
log(2π)

+
1

2σ2
(Y− Xβ)>(I − ρW>)(I − ρW )(Y− Xβ). (2.3)

With fixed ρ, we can estimate β using an ideal estimator β̂f = (X̆>X̆)−1(X̆>Y̆),

where X̆ = (I − ρW )X and Y̆ = (I − ρW )Y. We consider β̂f an ideal es-

timator because its computation involves an unknown parameter ρ. By re-

placing the unknown parameter β in (2.3) with β̂f , we arrive at the follow-

ing profiled full data likelihood function: `f (ρ, σ2) = `∗f (ρ, σ2, β̂f ). By opti-

mizing `f (ρ, σ2) with respect to σ2, we obtain an analytic estimator of σ2 as

σ̂2f = (Y − Xβ̂f )>(I − ρW>)(I − ρW )(Y − Xβ̂f )/N . Then, we obtain the pro-

filed maximum likelihood estimator (MLE) of ρ as ρ̂f = arg max
ρ
`∗f (ρ, σ̂2f , β̂f ).

Here, the subscript f indicates that we obtain the MLE by considering the full

data likelihood; that is, the response vector Y is fully observed. Under appro-

priate regularity conditions, Lee (2004) studied the asymptotic distribution of

(β̂f , ρ̂f , σ̂
2
f ) in a similar manner.

2.2. Incomplete data likelihood

In practice, the response vector Y is very often not completely ob-

served. For example, consider a social network, comprising QQ (www.qq.com)

users from the same university. Let Yi be the self-reported natural age from the
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ith user. Because many QQ users consider age a private matter and, thus, refuse

to report Yi publicly, we cannot observe a considerable portion of Y. Conse-

quently, we decompose Y into two parts. Without loss of generality, we write

Y = (Y>1 ,Y>2 )>, where Y1 = (Y1, . . . , Yn)> ∈ Rn is the observed response vector,

and Y2 = (Yn+1, . . . , YN )> ∈ RN−n is the unobserved vector. We can decom-

pose other notation accordingly, yielding V = (V>1 ,V>2 )>, E = (E>1 , E>2 )> ∈ RN ,

and X = (X>1 ,X>2 )>. Then, the adjacency matrix A and weighting matrix W

can be partitioned as A = (A11, A12;A21, A22) and W = (W11,W12;W21,W22),

respectively.

Before continuing, we need to define the missing data mechanism of Y2.

First, for an arbitrary subject i, the binary indicator δi takes the value one if

Yi is observed, and zero otherwise. For consistency with the notation defined in

the previous subsections, we see immediately that the subjects are appropriately

ordered such that δi = 1 for 1 ≤ i ≤ n, and δi = 0 for n < i ≤ N . In a network

context, it is likely that the missingness of a response is affected by both the

individual and his/her connected friends. Thus, it is realistic to assume that

the conditional missingness probability depends on both the covariate X and the

response Y. Here, Y is the entire response vector. It collects responses from

both the target node and its connected friends, regardless of whether or not Y
is observed. Under a regression setup, this is equivalent to assuming that the

missingness probability depends on both X and V. This leads to the following

assumption:

P (δi = 1|X,Y, A) = P (δi = 1|X,Xβ + V) = P (δi = 1|X,V). (2.4)

By assuming that the probability function is smooth in V, we can conduct a

Taylor−type expansion about V at the point V = 0. This leads to

P (δi = 1|X,V) = P (δi = 1|X,V)|V=0 +
dP (δi = 1|X,V)

dV
|V=0 · V + o(V). (2.5)

Note that V is not fully observed in our data set. As a result, we ignore the

higher−order terms involving V. Consequently, only the intercept term is kept,

and serves as the first−order approximation to the true missingness probability.

This approximation leads to

P (δi = 1|X,Y, A) ≈ P (δi = 1|Xi). (2.6)

Interestingly, this first−order approximation is free of the residual vector V, and
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thus is free of the response vector Y. This is an MAR assumption (Rubin (1987)),

which means the classical MAR assumption can be viewed as a first−order ap-

proximation of the true missingness data mechanism. Although this is a practical

approximation, our simulation studies show that it is helpful.

Because Y2 is not observed, the estimator based on full data is no longer

computable. Thus, we can use the observed data Y1 only. Because V and, thus,

Y are jointly normal, the marginal distribution of Y1 is also normal, with mean

X1β and residual E1. Thus, to derive the marginal likelihood of Y1, we have only

to specify the marginal covariance matrix of E1. We then consider the partition

of the whole covariance Σ, which leads to Σ = (Σ11,Σ12; Σ21,Σ22) . Here, Σ11 is

the marginal covariance of E1. Recall that Σ−1 = σ−2(I−ρW>)(I−ρW ). Then,

write (I − ρW>)(I − ρW ) by Υ(ρ) =
[
Υ11(ρ),Υ12(ρ); Υ21(ρ),Υ22(ρ)

]
, with

Υ11(ρ) = I11 − ρ(W>11 +W11) + ρ2(W>11W11 +W>21W21),

Υ12(ρ) = −ρ(W12 +W>21) + ρ2(W>11W12 +W>21W22),

Υ21(ρ) = −ρ(W>12 +W21) + ρ2(W>12W11 +W>22W21),

Υ22(ρ) = I22 − ρ(W>22 +W22) + ρ2(W>12W12 +W>22W22).

We now have Σ11 = σ2
[
Υ11(ρ) − Υ12(ρ)Υ−122 (ρ)Υ21(ρ)

]−1
. This leads to the

following log partial likelihood based on incomplete data:

`(β, ρ, σ2) =
1

2
log |Ω(ρ)| − n

2
log σ2

− 1

2σ2
(Y1 − X1β)>Ω(ρ)(Y1 − X1β)− n

2
log(2π), (2.7)

where Ω(ρ) = Υ11 −Υ12Υ
−1
22 Υ21. Here, by adopting the matrix Ω(ρ), we extend

the full data likelihood (2.3) to the incomplete data likelihood (2.7).

To estimate the parameter θ = (β>, ρ, σ2)>, we can adopt a profiled esti-

mation approach. We first fix ρ and σ2 and optimize (2.7) with respect to β to

obtain an estimator of β: β̂(ρ) =
[
X>1 Ω(ρ)X1

]−1
X>1 Ω(ρ)Y1. Then, by replacing

β in (2.7) with β̂(ρ), we obtain the profiled objective function for (σ2, ρ),

`(β̂, σ2, ρ) =− n

2
log(2π) +

1

2
log |Ω(ρ)| − n

2
log σ2

− 1

2σ2
(Y1 − X1β̂(ρ))>Ω(ρ)(Y1 − X1β̂(ρ)).
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Next, we optimize `(β̂, σ2, ρ) with respect to σ2. This leads to the following

estimator of σ2: σ̂2(ρ) = n−1(Y1−X1β̂)>Ω(ρ)(Y1−X1β̂). By applying σ̂2(ρ) and

β̂(ρ) back to (2.7), we obtain the profiled objective function `(ρ) = `(ρ, σ̂2, β̂).

This leads to the final estimator, ρ̂ = argmax`(ρ). Note that ρ is a scaler in

(−1, 1), we can thus compute ρ̂ using a grid search, which is computationally

stable. We apply ρ̂ back to the formula of β̂(ρ) and σ̂2(ρ) to obtain the estimators

for β and σ2 as β̂ = β̂(ρ̂) and σ̂2 = σ̂2(ρ̂), respectively.

2.3. Network-based imputation method

We next examine how to impute the missing responses in Y2, with the help

of θ̂ = (β̂>, ρ̂, σ̂2)>. From model (2.1), we have Y2 = X2β + V2, where X2 is

observed, and we can consistently estimate β using β̂ based on observed complete

data. Thus, imputing V2 based on the information given by X1, Y1, and W is

the key step to considering the network information. On the other hand, V1

and V2 are correlated, and their correlation structure is fully determined by the

network weighting matrix W . This motivates us to investigate the conditional

distribution of V2, given V1. Because V = (V>1 ,V>2 )> is jointly normal, we can

obtain the conditional distribution V2|V1, as stated in the following proposition.

Proposition 1. Assuming model (2.2), the conditional distribution of V2, given

V1, is multivariate normal, with mean Σ21Σ
−1
11 V1 and covariance Σ22−Σ21Σ

−1
11 Σ12.

From proposition 1, we know that E(V2|V1) = Σ21Σ
−1
11 V1, where we can ac-

curately approximate V1 using V̂1 = Y1 − X>1 β̂. This leads to the imputed

response Ŷ2 = (Ŷn+l, l = 1, . . . , N − n), with Ŷn+l = X>n+lβ̂ + V̂n+l, where

V̂n+l = Σ21,l(ρ̂)Σ−111 (ρ̂)V̂1 = −Υ−122,l(ρ̂)Υ21(ρ̂)V̂1, and Σ−121,l(ρ̂) and Υ−122,l(ρ̂) are the

lth rows of Σ−121 (ρ̂) and Υ−122 (ρ̂), respectively. Using the imputed Y2, we estimate

the mean E(Yi) = µ by

µ̂N = N−1

(
n∑
i=1

Yi +

N∑
i=n+1

Ŷi

)
,

where we use the subscript N in µ̂N to emphasize that this estimator includes

network information (i.e., W ). Thus, we refer to Ŷ2 as a network-based (NB) im-

puted response. We also impute Y2 using Ỹ2 = X2β̃, where β̃ = (X>1 X)−1(X>1 Y1).

Clearly, β̃ is a standard ordinary least squares estimate, computed with complete

units only and ignoring all network information. For convenience, we refer to Ỹ2

as a regression-based (RB) imputed response. As we show subsequently, the NB

estimate Ŷ2 is much more accurate than the RB estimate Ỹ2; see Theorem 2 in
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the next subsection and Section 3 for numerical evidence.

2.4. Technical conditions

We next consider the theoretical properties of the proposed estimators,

including the asymptotic distribution of various estimators. To this end, we write

Ω̇(ρ) =
dΩ(ρ)

dρ

=Υ12(ρ)Υ−122 (ρ)
[
2ρ(W>12W12 +W>22W22)− (W22 +W>22)

]
Υ−122 (ρ)Υ21(ρ)

+
[
W12 +W>21 − 2ρ(W>11W12 +W>21W22)

]
Υ−122 (ρ)Υ21(ρ)

+ Υ12(ρ)Υ−122 (ρ)
[
W>12 +W21 − 2ρ(W>12W11 +W>22W21)

]
− (W>11 +W11) + 2ρ(W>11W11 +W>21W21).

For an arbitrary matrix H, we denote the product HH by H2. We then have

the following technical conditions:

(C1) Ω(ρ) is a positive−definite matrix, for any ρ > 0. There exists another

positive−definite matrix Λ11 and a finite positive constant Λ22, such that

(nσ2)−1X>1 Ω(ρ)X1 → Λ11 and n−1tr
[
{Ω−1(ρ)Ω̇(ρ)}2

]
→ Λ22.

(C2) Constants cmin and cmax exist, such that limn→∞ 2n−1tr
[
{B(ρ)Ω−1(ρ)}2

]
>

cmin and λmax

{
B(ρ)Ω−1(ρ)

}
≤ cmax, for B = Ω̇(ρ) and Ω̈(ρ) .

(C3) A constant 0 < r < 1 exists, such that limn→∞ n/N = r.

Both (C1) and (C2) are essentially moment conditions involving the design

matrix X1, network structure W , and unknown parameter ρ. However, we argue

that both (C1) and (C2) are fairly reasonable conditions. To gain an intuitive

understanding, we conduct Taylor’s expansion for Ω(ρ), Ω̇(ρ), and Ω̈(ρ) around

ρ. In many reported real applications, the empirically estimated ρ is small. This

enables us to approximate Ω(ρ) using Ω(0). That is, Ω(ρ) ≈ Ω(0). Similar

approximations hold for Ω̇(ρ) and Ω̈(ρ). However, we do not use this simple

approximation to develop the asymptotic theory of the proposed method, but

instead use it only to gain a quick understanding of the technical conditions (C1)

and (C2).

First, we consider (C1). Because Ω(ρ) ≈ Ω(0) = I11, we have (nσ2)−X>1 Ω(ρ)

X1 ≈ (nσ2)−1X>1 X1. Thus, the first condition in (C1) is equivalent to (nσ2)−1X>1
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X1 → Λ11, approximately, which is just a law of large numbers (LLN)-type as-

sumption. This condition can be satisfied easily if the predictors from different

nodes are independent or are weakly dependent. As with ρ ≈ 0, we can ver-

ify that Ω̇(ρ) ≈ Ω̇(0) = −W>11 − W11. Because Ω−1(ρ) ≈ Ω−1(0) = I11, the

second condition in (C1) is approximately equivalent to n−1tr(W>11 + W11)
2 →

Λ22. When W11 is symmetrical, this condition is approximately equivalent to

n−14
∑n

i1=1

∑n
i2=1w

2
i1i2
→ Λ22. This is reasonable, because wi1i2 , for i2 =

1, . . . , n, are all positive and sum to one. We can use similar arguments for

the conditions in (C2). To summarize, although both (C1) and (C2) seem quite

complicated in form, their conditions are fairly reasonable.

2.5. Theoretical properties

Using the technical conditions given in the previous subsection, we inves-

tigate the asymptotic properties of the proposed estimators.

Theorem 1. Assuming models (2.1) and (2.2) and conditions (C1)–(C2), we

have (1) (β̂, ρ̂, σ̂2) is a consistent estimator of (β, ρ, σ2), and β̂ and (ρ̂, σ̂2) are

asymptotically independent; and (2)
√
n(β̂ − β)

d−→ N(0,Λ−111 ),
√
n(ρ̂ − ρ, σ̂2 −

σ2)>
d−→ N(0,Λ−12 ), where

d−→ represents convergence in the distribution. In

addition, Λ2 = (Λ22,Λ23; Λ32,Λ33) , Λ22 = limn→∞(2n)−1tr[(Ω−1(ρ)Ω̇(ρ))2], and

Λ23 = Λ32 = limn→∞−(2nσ4)−1E[(Y1 − X1β)>Ω̇(ρ)(Y1 − X1β)],Λ33 = (2σ4)−1.

From Theorem 1, we know that the proposed estimators are all
√
n-consistent and

asymptotically normal. Note that β̂ and (ρ̂, σ̂2) are asymptotically independent.

This is as expected, because the information for β̂ mainly comes from the mean,

whereas that for (ρ̂, σ̂2) comes from the covariance.

Remark 1. By Little and Rubin (2002) and under the MAR assumption, we

expect the parameter to be estimated consistently from observed data, in theory.

Theorem 1 formally confirms this expectation. In addition, Theorem 1 provides

an analytically tractable formula for the asymptotic variance, which makes the

corresponding variance estimation easy.

Theorem 2. Assuming models (2.1) and (2.2), we know that, for l = 1, . . . , N −
n, Ŷn+l − Yn+l

d−→ N(0,Φ), where Φ = EV 2
n+l − E[E(Vn+l|V1)]

2.

Note that if we ignore the network information by taking ρ = 0, and then estimate

Yn+l using Ỹn+l = X>n+lβ̃, we can verify that Ỹn+l − Yn+l →d= −Vn+l, with a

variance of EV 2
n+l. By Theorem 2, we know that the NB imputation is likely to
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be more efficient than its RB counterpart if EV 2
n+l − Φ = E{E(Vn+l|V1)}2 > 0.

However, if ρ = 0, we then know E(Vn+l|V1) = 0. In this case, EV 2
n+l = Φ.

Thus, the efficiencies of both methods become identical. This suggests that the

superiority of the NB imputation is highly dependent on ρ.

Theorem 3. Assuming models (2.1) and (2.2), we have
√
n(µ̂N−µ)

d−→ N(0, φ),

with φ = Var(X1β)+limn→∞(r/n)
[
1>n −1>N−nΥ−122 (ρ)Υ21(ρ)+B

]
Σ11

[
1>n −1>N−n

Υ−122 (ρ)Υ21(ρ)+B
]>

and B=limn→∞ 1>N−n

[
X2+Υ−122 (ρ)Υ21(ρ)X1

]
·
[
X>1 Ω(ρ)X1

]−1
X>1 Ω(ρ).

3. Numerical Studies

3.1. simulation studies

To demonstrate the finite−sample performance of the proposed method, we

present a number of simulation studies. Specifically, we set N = 500 and fix

p = 2. For each i, we set Xi1 = 1 and simulate Xi2 from a standard normal

distribution. The corresponding regression parameters are given by β = (1, 1)> ∈
R2. Furthermore, we consider ρ = 0, 0.3, and 0.5. For each ρ, we generate εi from

a standard independent normal distribution. Finally, we generate the adjacency

matrix A, as follows. We first generate N independent random variables from

N(3, 1), denoted by Ei, with 1 ≤ i ≤ N . Next, for every node pair (i, j), with

i 6= j, we define aij = 1 if |i − j| ≤ Ei, and zero otherwise. Further, we define

aij = 0 whenever i = j. This leads to the adjacency matrix A and its row-

normalized weighting matrix W . We then generate Y according to (2.1) and

(2.2).

We consider two cases of the missing data mechanism: the MAR and the

NM. In the MAR case, for every node i, we set its response as missing with

probability exp(γ + Xi1 + Xi2)/{1 + exp(γ + Xi1 + Xi2)}, where γ is a tuning

parameter controlling the level of missing data. We consider three different values

of γ: γ = −2, −1, and 0.5. In our model, the three values yield missing rates

of approximately 20%, 50%, and 80%, respectively, on average. For each γ

specification, the experiment is randomly replicated M = 1, 000 times.

Let n(r) be the number of complete units generated in the rth simulation

replication, and their average be given by n̄ = M−1
∑

r n
(r). For each pa-

rameter, for example, β1, let β̂
(r)
1 be the corresponding estimator obtained in

the rth simulation replication. Then, we estimate the true variance (VAR)

as VAR = M−1
∑

r(β̂
(r)
1 − β̄1)

2, with β̄1 = M−1
∑

r β̂
(r)
1 . From Theorem 1,
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we analytically state the asymptotic variance of β̂1. This enables us to pro-

vide an estimator for the true VAR by replacing the unknown quantities in

Λ−111 (2, 2) with their estimates. We denote the estimate by V̂AR
(r)

, with a mean of

V̂AR = M−1
∑

r V̂AR
(r)

. Next, we construct a 95% confidence interval for β1 as

CI(r) = (β̂
(r)
1 − ŜE

(r)
z1−α/2, β̂

(r)
1 + ŜE

(r)
z1−α/2), where ŜE

(r)
= {V̂AR

(r)
}1/2, and

zα represents the αth lower quantile of a standard normal distribution. We then

evaluate their coverage probability (CP) as CP = M−1
∑

r I(β1 ∈ CI(r)). Other

estimates (i.e., β̂0,ρ̂, σ̂2, and µ̂) are summarized similarly. We also evaluate the

forecasting error (FE) of Ŷ2 by FE1 = M−1
∑
‖Ŷ(r)

2 −Y(r)
2 ‖2/(N −n(r))}, where

Y(r)
2 is the missing response vector generated in the rth replication. Then, we can

evaluate Ỹ2 in a similar manner, as FE2 = M−1
∑
‖Ỹ(r)

2 − Y(r)
2 ‖2/(N − n(r))}.

The relative improvement margin is then given by RIM = (1−FE1/FE2)×100%.

From Table 1, in the MAR case, we find that as the sample size of the

complete units (i.e., n) increases, the performance of all estimators improves, with

VAR steadily approaching zero. This suggests that the proposed estimators are

consistent. Moreover, we find that the VAR estimate (i.e., V̂AR) approximates

VAR relatively well. This confirms that our asymptotic results given in Theorems

1 and 3 should be correct. This is further confirmed by the reported CP values,

which are fairly close to the nominal level of 95%.

From Table 2, we find that the performance of the NB estimator depends on

the parameter ρ. Specifically, for ρ = 0, the performance of the NB estimator and

the RB estimator are nearly identical, with the RB estimator performing slightly

better (probably owing to its simplicity). However, for ρ = 0.3 and 0.5, which

indicate the existence of network dependence, the forecasting accuracy of the NB

estimator is considerably better than that of the RB estimator. Additionally,

the forecasting accuracy improves as ρ increases. The RIM could be as large as

22.84%. This corroborates our theoretical findings in Theorem 2 quite well.

To assess the effect of the MAR assumption, we conduct a simulation study

with an NM missing data mechanism. In this case, for every node i, we set its

response as missing with probability exp(γ +Xi1 +Xi2 + 0.1 · Vi)/{1 + exp(γ +

Xi1 + Xi2 + 0.1 · Vi)}. Accordingly, neither the NB nor the RB estimators is

still consistent. As a result, the empirical performance deteriorates, as shown in

Table 3. The reported CP values for the intercept term β0 could be far below the

nominal level 95%. This is particularly true when R2 = 10%. However, it seems

that the results improve as R2 increases. In this case, the residual V becomes

smaller, enabling the first−order approximation (2.4), (2.5), and (2.6) to work
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better. This corroborates our theoretical finding.

3.2. Real−data example

To demonstrate our method, we present an interesting real−data example.

The data set is a sampled subnetwork of QQ (www.qq.com), which is perhaps

the largest social network instant messaging (IM) software in mainland China,

with more than 800 million users. We obtain the data set using a convenient

snowball−type sampling method on a university campus. The objective is to

demonstrate QQ network dependence among college students. We start with

eight convenient QQ users, who are college students. We next collect their QQ

friends. We collect only those QQ users whose self-reported age is missing or

between 18 and 25 years old in order to ensure the sampled QQ users are college

students, or at least of a similar age. This forms a sample of N = 396 QQ users.

Nothe that the sampling method means that we expect the sample to be biased

if the target is the whole QQ population. However, if we consider the college

student users in the intended university campus as the population, we conjecture

that the bias could be considerably reduced.

For each QQ user, we take the user’s natural age as the response. QQ users

have the right to decide whether to disclose their age. Some might refuse to do so

owing to privacy concerns. This leads to a considerable portion of users showing

no age. In our data set, the number of complete units is n = 332; this leaves

N−n = 64 units with missing responses, accounting for about (N−n)/N = 16%

of the total sample size.

For two arbitrary QQ users (i and j), we define aij = aji = 1 if they are

friends, and zero otherwise. This leads to the adjacency matrix A and its row-

normalized weighting matrix W . Similarly, for each QQ user i, we collect the

following covariate data: X1 = 1 (intercept); X2 (gender); X3 (QQ age, i.e.

how long the user has been using QQ; this is different to the user’s natural

age); X4 (QQ grade; this is a comprehensive measure for the user’s QQ age

and activeness), X5 (total number of photos posted in the user’s QQ space; QQ

space is a Facebook-type personal QQ homepage); X6 (total number of comments

posted in the user’s QQ space); X7 (total number of articles posted in the user’s

QQ space); and X8 (total number of messages left by the user’s QQ friends in the

QQ space). The observed age ranges from 18 to 25, with mean 23.24, median 23,

and standard deviation 1.20. Before conducting a formal analysis, we standardize

all quantitative covariates so that they have mean zero and variance one.

We then apply the proposed method to the data set to obtain the estimated

www.qq.com
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Table 2. Comparison of Prediction Errors for Different ρ.

n̄ PE1 PE2 RIM (%)
103 1.03334 1.02520 -0.79383

ρ = 0 250 1.01052 1.00705 -0.34444
389 1.00213 0.99975 -0.23781
103 1.08412 1.09729 1.20035

ρ = 0.3 250 1.02930 1.07923 4.62681
389 0.99572 1.07061 6.99538
103 1.20045 1.30298 7.86864

ρ = 0.5 250 1.05946 1.28261 17.39817
389 0.98113 1.27153 22.83846

Table 3. Detailed Simulation Results for NM with ρ = 0.3.

VAR V̂AR CP
β0 0.043285 0.041870 0.82

R2 = 10% β1 0.027782 0.025787 0.86
ρ 0.005208 0.004879 0.95
σ2 0.429914 0.416175 0.92
β0 0.019356 0.018806 0.89

R2 = 20% β1 0.012360 0.011533 0.91
ρ 0.005285 0.004843 0.94
σ2 0.087596 0.083071 0.94
β0 0.004895 0.004732 0.93

R2 = 50% β1 0.003110 0.002893 0.93
ρ 0.005431 0.004823 0.93
σ2 0.005392 0.005229 0.94

Table 4. Results: Analysis of the QQ Data Set.

Variable Name Estimate SE p-Value
X1 Intercept 23.226 0.1448 0.000
X2 Gender -0.04 0.1239 0.773
X3 QQ age 0.27 0.0801 0.001
X4 QQ Grade 0.06 0.0709 0.396
X5 Photos 0.10 0.0683 0.152
X6 Comments -0.20 0.0677 0.003
X7 Articles -0.01 0.0591 0.910
X8 Messages -0.13 0.0633 0.038

results shown in Table 4. From Table 4, we find four estimates to be statistically

significant at the 5% level: X1 (the intercept), X3 (QQ age), X6 (total number

of comments) and X8 (total number of messages). In addition, we find that ρ



1434 SUN AND WANG

Table 5. Results: Analysis of the QQ Data Set from Complete Case.

Variable Name Estimate SE p-Value
X1 Intercept 23.30 0.0889 0.000
X2 Gender -0.05 0.1340 0.714
X3 QQ age 0.35 0.0817 0.000
X4 QQ Grade 0.08 0.0739 0.264
X5 Photos 0.17 0.0726 0.022
X6 Comments -0.23 0.0720 0.002
X7 Articles -0.01 0.0626 0.887
X8 Messages -0.23 0.0664 0.001

is estimated to be 0.59 with ŜE=0.10. The resulting p-value is less than 1%,

suggesting that even after controlling for the effects of the aforementioned co-

variates, a positive correlation still exists between QQ friends in terms of their

natural age. We also include a complete case analysis, for comparison purpose.

It shows that the corresponding p-value of the model is nearly zero, which in-

dicates the significance of the model. Table 5 reports the regression coefficient

estimation from the complete−case analysis. The resulting root mean prediction

error is 1.12.

Then, we can impute the missing responses of the 64 incomplete units using

both the NB and RB methods. Because the missing responses of a real data

set are not observed, we cannot accurately evaluate the forecasting error of the

NB and RB methods. To overcome this difficulty, we focus on the subnetwork

generated by the complete units. This leads to a subnetwork size of 332, with

both responses and covariates observed. Next, let i be an arbitrarily selected

node from this subnetwork. We then randomly set Yi as missing, with probability

exp(1 +WX)/(1 + exp(1 +WX)), with WX = 0.5 ·Xi1 + 0.1 ·Xi2 + 0.2 ·Xi3 + 0.3 ·
Xi4 + 0.4 ·Xi5 + 0.3 ·Xi6 + 0.2 ·Xi7 + 0.1 ·Xi8. This leads to approximately 20%

incomplete units. Then, we impute the missing responses using either the NB

or the RB method, and compare the imputed values against the true responses,

similarly to the simulation study. The experiment is replicated 1,000 times. The

average root mean prediction error (ARMPE) is computed. The ARMPE value

for NB is 1.10, and for RB is 1.16, with a RIM of 10.09%.

4. Conclusion

In this work, we develop a network-based imputation method to analyze

missing data in a network. The proposed method explores information from
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both regression and network dependence points of view. This yields a consis-

tent estimator for E(Y ). However, it can not be used to estimate higher-order

statistics, such as E(Y 2). Thus, the proposed imputation method can be adapted

only to estimate E(Y ), and should be extended accordingly. However, estimating

higher−order moments for network data with SAR-type dependence is an open

question, which we leave to future work.

Supplementary Material

The Supplementary Material contains detailed proofs of Theorem 1, Theorem

2 and Theorem 3.
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