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Supplementary Material

The supplementary material contains additional simulation reports, ex-

pressions of some linear operators and details of all the proofs. Section S1

gives the expressions of some linear operators that help to simply the proofs.

Section S2 includes the proofs of Theorem 1, Theorem 2 and Theorem 3.

Section S3 proves the null limit distribution of the proposed test statistic

in Theorem 4. In Section S4, we discuss the potential challenges to the

theoretical results if the functional covariate is observed with measurement

errors. We provide simulation results with measurement errors to the func-

tional process in Section S5.

S1 Linear operators

In this section, we define some linear operators and give the expressions

of the linear operators. All these linear operators help to present the proofs

in a more concise way. The current generalized partial functional linear
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model is more comprehensive and more convenient than the generalized

functional linear model studied in Shang and Cheng (2015). Such conve-

nience comes at the price of a harder theoretical investigation. Specifically,

the modified conditional expectation G(X) is supposed to be linear in X

in Assumption 4. The decay rates of the coefficients of G(X) are required

to be carefully verified. Further, it takes greater effort to bound the term

E{I(U)Z
∫ 1

0
X(t)β(t)dt} in the proofs via the inner product in (2.5).

To represent `n,λ(θ) by the inner product of the parameter θ, two linear

operations R and Pλ are defined as follows,

〈Ru, θ〉 = z>γ +

∫ 1

0

x(t)β(t)dt for any u ∈ U and θ ∈ H (S1.1)

and

〈Pλθ1, θ2〉 = λJ(β1, β2) for any θ1, θ2 ∈ H. (S1.2)

Owing to the two operators, we can rewrite `n,λ(θ) as

`n,λ(θ) =
1

n

n∑
i=1

`(Yi; 〈RUi
, θ〉)− 1

2
〈Pλθ, θ〉. (S1.3)

We separate the joint parameter θ from the covariates X and Z in this man-

ner, and provide a convenient approach to obtain the Fréchet derivatives of

`n,λ, which are the premise of deriving the Bahadur representation.

Denote ∆θ = (∆γ,∆β), the Fréchet derivative of `n,λ(θ) with respect
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to θ is

Sn,λ(θ)∆θ = D`n,λ(θ)∆θ =
1

n

n∑
i=1

˙̀
a(Yi; 〈RUi

, θ〉)〈RUi
,∆θ〉 − 〈Pλθ,∆θ〉.

Notice that Sn,λ(θ̂n,λ) = 0, and Sn,λ(θ0) = 1
n

∑n
i=1

˙̀
a(Yi; 〈RUi

, θ0〉)RUi
−Pλθ0

is of interest. The second- and third-order Fréchet derivatives of `n,λ(θ) can

be derived in the same way and we omit here. Meanwhile, define Sn(θ) =

1
n

∑n
i=1

˙̀
a(Yi; 〈RUi

, θ〉)RUi
, S(θ) = E{Sn(θ)} and Sλ(θ) = E{Sn,λ(θ)}.

In order to obtain the expressions of the two linear operators in (S1.1)

and (S1.2), we begin with some preparatory work. Let K(s, t) be the re-

producing kernel function of Hm(I), and define Kt(·) = K(t, ·) ∈ Hm(I) for

any t ∈ I. Then 〈Kt, β〉1 = β(t) for any β ∈ Hm(I) by definition. Also, we

define an operator Wλ from Hm(I) to Hm(I) satisfying

〈Wλβ1, β2〉1 = λJ(β1, β2), for any β1, β2 ∈ Hm(I). (S1.4)

Simple calculations lead to expressions of the two operators,

Kt(·) =
∑
v

ϕv(t)

1 + λρv
ϕv(·), (Wλϕv)(·) =

λρv
1 + λρv

ϕv(·). (S1.5)

It follows that Wλβ(·) =
∑

v V (β, ϕv)
λρv

1+λρv
ϕv(·). Meanwhile, we define

τ(x)(·) ∈ Hm(I) satisfying 〈τ(x), β〉1 =
∫ 1

0
x(t)β(t)dt for any L2 integrable

x = x(t) and β ∈ Hm(I). It is easy to have

τ(x)(t) =
∞∑
v=1

xv
1 + λρv

ϕv(t) for t ∈ I, (S1.6)

3



Ting Li and Zhongyi Zhu

where xv = 〈τ(x), ϕv〉1 =
∫ 1

0
x(t)ϕv(t)dt. With the aforementioned eigen-

functions, the linear operators Wλ and τ(x)(·), we can have explicit forms

of Ru and Pλ defined in (S1.1) and (S1.2).

Let id be the identity operator such that idβ = β, and define Aj =

(id −Wλ)β̃j for β̃j defined in Assumption 4. Then for any β ∈ Hm(I), we

have V (β̃j, β) = 〈Aj, β〉1. Let A = (A1, . . . , Ap)
> and β̃ = (β̃1, . . . , β̃p)

>.

Note that A and β̃ are vectors of functional elements, then

V (β̃, β) = 〈A, β〉1. (S1.7)

We can derive the expression of A by taking β = Kt, one can deduce that

A(t) = 〈A, Kt〉1 =
∑
v

V (β̃, ϕv)

1 + λρv
ϕv(t) (S1.8)

and

(WλA)(t) =
∑
v

V (β̃, ϕv)λρv
(1 + λρv)2

ϕv(t).

Define Ω2 = EX{B(X)G(X)(G(X) −
∫ 1

0
X(t)A(t)dt)>}. We are ready to

obtain the expressions of Ru and Pλ defined in (S1.1) and (S1.2).

Proposition 1. Let Ru : u 7→ (Hu, Tu) ∈ H, we have

Hu = (Ω1 + Ω2)
−1(z − 〈A, τ(x)〉1),

Tu = τ(x)−A>(Ω1 + Ω2)
−1(z − 〈A, τ(x)〉1).
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Furthermore, Pλ can be expressed as Pλθ : (γ, β) 7→ (H∗u, T
∗
u ) ∈ H, then

H∗u = −(Ω1 + Ω2)
−1〈A,Wλβ〉1,

T ∗u = Wλβ +A>(Ω1 + Ω2)
−1〈A,Wλβ〉1.

Notice that (Ω1+Ω2)
−1 is well defined under Assumption 4 and limλ→0 Ω2 =

0 according to (S1.12).

Proof of Proposition 1. Define Ru = (Hu, Tu), for any θ = (γ, β) ∈ H.

According to (2.6) and Assumption 2(b), we have

〈(Hu, Tu), (γ, β)〉 = EU

{
I(U)

(
Z>γ +

∫ 1

0

X(t)β(t)dt

)(
Z>Hu +

∫ 1

0

X(t)Tu(t)dt

)}
+λJ(Tu, β).

By definition (S1.1) of Ru, it also holds

〈(Hu, Tu), (γ, β)〉 = z>γ +

∫ 1

0

x(t)β(t)dt = γ>z + 〈τ(x), β〉1,

then (Hu, Tu) are the solutions of equations
EU
{
I(U)ZZ>

}
Hu + EU

{
I(U)Z

∫ 1

0
X(t)Tu(t)dt

}
= z,

EU

{
I(U)Z

∫ 1

0
X(t)β(t)dtZ>

}
Hu + 〈β, Tu〉1 = 〈τ(x), β〉1.

(S1.9)

Recall that β̃ = (β̃1, · · · , β̃p)>, and β̃js are defined in Assumption 4, we

can rewrite

EU

{
I(U)Z

∫ 1

0

X(t)Tu(t)dt

}
= EX

{
B(X)G(X)

∫ 1

0

X(t)Tu(t)dt

}
= EX

{
B(X)

∫ 1

0

X(t)β̃(t)dt

∫ 1

0

X(t)Tu(t)dt

}
= 〈A, Tu〉1,
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where the last equality follows from the definition of A in (S1.8). Similarly,

we have EU

{
I(U)

∫ 1

0
X(t)β(t)dtZ>

}
= 〈A>, β〉1. Then we can rewrite

(S1.9) as 
EU
{
I(U)ZZ>

}
Hu + 〈A, Tu〉1 = z,

A>Hu + Tu = τ(x).

(S1.10)

Substituting Tu = τ(x)−A>Hu into the first equation of (S1.10), we have

z = EU
{
I(U)ZZ>

}
Hu + EU

{
I(U)Z

∫ 1

0

X(t)τ(x)dt

}
−EU

{
I(U)Z

∫ 1

0

X(t)A>(t)dt

}
Hu

= EU
{
I(U)(Z −G(X))(Z −G(X))>

}
Hu + EU

{
I(U)Z

∫ 1

0

X(t)τ(x)dt

}
+EX

{
B(X)G(X)(G(X)−

∫ 1

0

X(t)A(t)dt)>
}
Hu

= (Ω1 + Ω2)Hu + 〈A, τ(x)〉1.

It is easy to see

Hu = (Ω1 + Ω2)
−1(z − 〈A, τ(x)〉1),

Tu = τ(x)−A>(Ω1 + Ω2)
−1(z − 〈A, τ(x)〉1).

Similar to the process above, one can get the expression of Pλθ if we let

z = 0 and replace τ(x) with Wλβ.

Lemma 1. Recall that B(X) = E{I(U)|X}, G(X) = E{I(U)Z|X}/B(X)
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and A is defined in (S1.8), as λ→ 0, we have

lim
λ→0

EX{B(X)(G(X)− 〈A, τ(X)〉1)(G(X)− 〈A, τ(X)〉1)>} = 0, (S1.11)

lim
λ→0

EX{B(X)G(X)(G(X)− 〈A, τ(X)〉1)>} = lim
λ→0

Ω2 = 0, (S1.12)

lim
λ→0

EU{I(U)(Z − 〈A, τ(X)〉1)(Z − 〈A, τ(X)〉1)>} = Ω1. (S1.13)

Proof. Since the proofs of (S1.11) and (S1.12) are similar, we only show

that (S1.12) holds. For any j, k ∈ {1, 2, . . . , p}, recall that Gj(X) =∫ 1

0
X(t)β̃j(t)dt =

∑
v V (β̃j, ϕv)Xv, and 〈Aj, τ(X)〉1 =

∑
v
V (β̃j ,ϕv)

1+λρv
Xv, then

EX{B(X)Gj(X)(Gk(X)− 〈Ak, τ(X)〉1)}

= EX{B(X)
∑
v

V (β̃j, ϕv)Xv

∑
v

V (β̃k, ϕv)λρv
1 + λρv

Xv}. (S1.14)

For any v1 6= v2, we can derive that

EX{B(X)Xv1Xv2} = EX{B(X)

∫ 1

0

X(t)ϕv1(t)dt

∫ 1

0

X(t)ϕv2(t)dt}

= V (ϕv1 , ϕv2) = 0.

Then (S1.14) turns into

∑
v

V (β̃j, ϕv)V (β̃k, ϕv)
λρv

1 + λρv
≤
∑
v

V 1/2(β̃j, β̃j)V
1/2(β̃k, β̃k)

λρv
1 + λρv

.

Under Assumption 4 (b) that V (β̃j, β̃j) < ∞ and the dominated conver-

gence theorem, we have that the above sum converges to zero as λ→ 0.
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For the proof of (S1.13), simple calculations imply that

EU{I(U)(Z − 〈A, τ(X)〉1)(Z − 〈A, τ(X)〉1)>}

= EU{I(U)(Z −G(X))(Z −G(X))>}

+2EU{I(U)(Z −G(X))(G(X)− 〈A, τ(X)〉1)>}

+EU{I(U)(G(X)− 〈A, τ(X)〉1)(G(X)− 〈A, τ(X)〉1)>}

= I1 + I2 + I3,

we can easily have limλ→0 I3 = 0 according to (S1.11). For I2, rewrite it as

I2 = EX{EU{I(U)(Z −G(X))|X}(G(X)− 〈A, τ(X)〉1)>}}.

Recall that B(X) = EU{I(U)|X} and EU{I(U)Z|X} = G(X)B(X), we

have I2 = 0. This completes the proof of (S1.13).

S2 Proofs of the theoretical results

We need to establish inequalities with respect to the inner product of

Ru and its expectation, which are involved in the proofs.

Lemma 2. Suppose that Assumption 2 and Assumption 3 hold, then for

any u = (x, z), x ∈ L2(I), z ∈ Rp, we get that

〈Ru, Ru〉 = (z − 〈A, τ(x)〉1)>(Ω1 + Ω2)
−1(z − 〈A, τ(x)〉1)

+〈τ(x), τ(x)〉1. (S2.15)
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Meanwhile, as h → 0, there exists a universal constant CR > 0 satisfying

〈Ru, Ru〉 ≤ CR(1 + ‖x‖2L2h−(2a+1)), and EU{‖RU‖2} ≤ CRh
−1.

Proof of Lemma 2. The expression of 〈Ru, Ru〉 directly follows the defini-

tion of Ru. Next we show that the two inequalities hold. Recall that τ(x) =∑
v

Xv

1+λρv
ϕv where Xv =

∫ 1

0
X(t)ϕv(t)dt. It follows that 〈τ(x), τ(x)〉1 =∑

v
X2

v

1+λρv
. Under Assumption 2 that I(U) > C−12 , we have

EU{‖RU‖2} ≤ C2EU{I(U)‖RU‖2}

= C2EU{I(U)(Z − 〈A, τ(X)〉1)>(Ω1 + Ω2)
−1(Z − 〈A, τ(X)〉1)}

+C2EU

{
I(U)

∑
v

X2
v

1 + λρv

}
. (S2.16)

For the second part of (S2.16), by Assumption 3 thatE[I(U)X2
v ] = V (ϕv, ϕv) =

1 and ρv � v2k, it is easy to derive that

EU

{
I(U)

∑
v

X2
v

1 + λρv

}
�

∑
v

1

1 + λρv
≤
∫ ∞
1

1

1 + λv2k
dv

= h−1
∫ ∞
1

1

1 + (hv)2k
d(hv).

Since
∫∞
1

1
1+(hv)2k

d(hv) ≤ ∞, it is obvious that there exists a constant CR1 ,

s.t. EU{I(U)
∑

v
X2

v

1+λρv
} ≤ CR1h

−1.

We conclude EU{‖RU‖2} ≤ CR1h
−1 by examining the finiteness of the
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first part in (S2.16). According to (S1.12) and (S1.13), one can verify that

EU{I(U)(Z − 〈A, τ(X)〉1)>(Ω1 + Ω2)
−1(Z − 〈A, τ(X)〉1)}

= tr(EU{I(U)(Ω1 + Ω2)
−1(Z− 〈A, τ(X)〉1)(Z− 〈A, τ(X)〉1)>})

= p.

We can use the inequalities |xv| ≤ ‖x‖L2‖ϕv‖L2 ≤ ‖x‖L2Cϕv
a and

the boundness of (z − 〈A, τ(x)〉1)>(Ω1 + Ω2)
−1(z − 〈A, τ(x)〉1) to prove

〈Ru, Ru〉 ≤ CR(1 + ‖x‖2L2h−(2a+1)). Specifically,

〈Ru, Ru〉 = (z − 〈A, τ(x)〉1)>(Ω1 + Ω2)
−1(z − 〈A, τ(x)〉1) +

∑
v

X2
v

1 + λρv

≤ (z − 〈A, τ(x)〉1)>(Ω1 + Ω2)
−1(z − 〈A, τ(x)〉1) +

∑
v

‖x‖2L2

C2
ϕv

2a

1 + λρv

≤ CR2(1 + ‖x‖2L2h−(2a+1)).

The universal constant can be taken as CR = max(CR1 , CR2).

Denote T = (Y, Z,X(·)) ∈ T , the following lemma proves a vital con-

dition (S2.19) on Hn(θ) defined as

Hn(θ) =
1√
n

n∑
i=1

[ψn(Ti; θ)RUi
− ET{ψn(T ; θ)RU}], (S2.17)

where ψn(T ; θ) is a function defined over T × H. Define Fpn = {θ =

(γ, β) ∈ H : γ>γ ≤ 1, ‖β‖L2 ≤ 1, J(β, β) ≤ pn}, where pn ≥ 1. It is worth

emphasizing that the proofs of the Bahadur representation count on (S2.19)

given in the following lemma.
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Lemma 3. Suppose that Assumptions 2 to 5 hold, ψn(Ti; 0) = 0 a.s., and

there exsits a constant Cψ > 0 such that the Lipschitz continuity holds,

|ψn(T ; θ)− ψn(T ; θ̃)| ≤ Cψ‖θ − θ̃‖2 for any θ, θ̃ ∈ Fpn . (S2.18)

Then as n→∞,

sup
θ∈Fpn

‖Hn(θ)‖
p
1/(4m)
n ‖θ‖ζ2 + n−1/2

= OP ((h−1 log log n)1/2), (S2.19)

where ζ = 1− 1/(2m).

The proof of Lemma 3 is similar to the proof of Lemma 3.4 of Shang

and Cheng (2015) by using Lemma 2 and modern empirical process theory,

so we omit here

With the preparations above, we can prove Theorem 1 and Theorem 2.

Proof of Theorem 1 . The proof of Theorem 1 follows from the proof of

Proposition 3.5 of Shang and Cheng (2015) by using Lemmas 2–3, Assump-

tions 1–6, the conditions in Theorem 1 and the Cauchy’s inequality.

Proof of Theorem 2. The proof of Theorem 2 follows directly from the

proof of Theorem 3.6 of Shang and Cheng (2015) and is omitted here.

Proof of Theorem 3 . The proof of the joint distribution depends on the

Cramér-Wald device. Denote θ∗0 = θ0 − Pλθ0 = (γ∗0 , β
∗
0). For any z̃ ∈ Rp,
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and u∗ = (z̃, x̃0), we will derive the distribution of

{z̃>(γ̂n,λ − γ∗0) +

∫ 1

0

x̃0(t)β̂n,λ(t)dt−
∫ 1

0

x̃0(t)β
∗
0(t)dt}

= 〈Ru∗ , θ̂n,λ − θ∗0〉 (S2.20)

where x̃0 = x0 · σ−1x0 . Then we will show that the bias converges to zero,

which can be found in Lemma 4.

Recall that Sn,λ(θ0) = 1
n

∑n
i=1 εiRUi

− Pλθ0. For the distribution of

(S2.20), under the condition ‖Ru∗‖= O(1) and by Theorem 2, we have

|〈Ru∗ , θ̂n,λ − θ0 − Sn,λ(θ0)〉| ≤ ‖Ru∗∗‖‖θ̂n,λ − θ0 − Sn,λ(θ0)‖ ≤ Op(an).

Then we will derive the asymptotic distribution of 〈Ru∗ , Sn,λ(θ0)〉.

Direct calculations lead to

〈Ru∗ , Sn,λ(θ0)〉 =
1

n

n∑
i=1

εi(z̃
>HUi

+ 〈τ(x0), TUi
〉1)− 〈Pλθ0, Ru∗〉,

where HUi
, TUi

are defined in Proposition S1.1, then

Mi , z̃>HUi
+ 〈τ(x̃0), TUi

〉1 (S2.21)

= (z̃ − 〈A, τ(x̃0)〉1)>(Ω1 + Ω2)
−1(Z − 〈A, τ(X)〉1) + 〈τ(x̃0), τ(X)〉1.
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It follows from Assumption 2 and E(ε2|U) = I(U) that

s2n = nE{ε2|z̃>HUi
+ 〈τ(x̃0), TUi

〉1|2}

= nE{I(U)〈τ(x̃0), τ(X)〉21}

+2n(z̃ − 〈A, τ(x̃0)〉1)>E{I(U)〈τ(x̃0), τ(X)〉1(Z − 〈A, τ(X)〉1)}

+n(z̃ − 〈A, τ(x̃0)〉1)>E{I(U)HUH
>
U }(z̃ − 〈A, τ(x̃0)〉1). (S2.22)

Recall that B(X) = E{I(U)|X}, it is easy to verify that

E{I(U)〈τ(x̃0), τ(X)〉21} = V (τ(x̃0), τ(x̃0))

=
∞∑
v=1

x20v
(1 + λρv)2

· σ2
x0

−1
= 1. (S2.23)

Meanwhile, Lemma 1 implies that as λ→ 0,

E{I(U)HUH
>
U } → Ω−11 . (S2.24)

Thus, it can be derived from Lemma 4, (S2.23) and (S2.24),

s2n = n{1 + z̃>Ω−11 z̃} = n(z̃>, 1)>Ψ(z̃>, 1) � n, (S2.25)

where Ψ is defined in Theorem 3.

Recall that Mi are defined in (S2.21). By Lemma 4 and ‖τ(X)‖1 ≤

CRh
− (2a+1)

2 · ‖Xi‖L2 from the proof of Lemma 2, we can obtain

Mi ≤ z̃>Ω−1(Z − 〈A, τ(X)〉1) + CRh
− (2a+1)

2 · ‖Xi‖L2 · ‖τ(x̃0)‖1.

Denote c∗ as the largest element of the matrix Ω−1z̃z̃>Ω−1, then c∗ is finite
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due to the definiteness of Ω1. Cauchy’s inequality indicates that

M2
i ≤ 2(Zi − 〈A, τ(Xi)〉1)>Ω−1z̃z̃>Ω−1(Zi − 〈A, τ(Xi)〉1)

+2C2
Rh
−(2a+1) · ‖Xi‖2L2 · ‖τ(x̃0)‖21

≤ 2c∗(Z − 〈A, τ(Xi)〉1)>(Z − 〈A, τ(Xi)〉1)

+2C2
Rh
−(2a+1) · ‖Xi‖2L2 · ‖τ(x̃0)‖21.

Next we will check the Lindeberg’s condition. Since log(h−1) = O(log n)

holds, we can choose a large constant C̃ > 0 such that h−(2a+1)n−C̃ = o(1).

Then, for any ε > 0, one can obtain

n

s2n
E{ε2iM2

i I(ε2iM
2
i ≥ ε2s2n)} . E{ε4iM4

i }1/2P (ε2iM
2
i ≥ ε2s2n)1/2. (S2.26)

Recall that E(ε4i |U) <∞, it is easy to check that

E{ε4iM4
i } = E{E(ε4i |U)M4

i } . E{M4
i } = O(h−2(2a+1)). (S2.27)

Meanwhile, one can deduce that

P (ε2iM
2
i ≥ ε2s2n)

≤ P (s∗|εi| ≥ C̃ log n) + P (s∗|(Z − 〈A, τ(Xi)〉1)>(Z − 〈A, τ(Xi)〉1)| ≥ C̃ log n)

+P

(
s∗‖X‖L2 ≥ s∗

√
h2a+1

CR

(
s∗3ε2n

(C̃ log n)2‖τ(x̃0)‖21
− C̃ log n

))
.
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Owing to the conditions E{exp(s∗|ε|)} <∞, (3.2) and (3.5), we have

P (ε2iM
2
i ≥ ε2s2n)

≤ 2n−C̃ + exp

(
−s∗

√
h2a+1

CR

(
s∗3ε2n

(C̃ log n)2
− C̃ log n

))
. (S2.28)

Substituting (S2.27) and (S2.28) into (S2.26), one can verify that

n

s2n
E{ε2iM2

i I(ε2iM
2
i ≥ ε2s2n)}

. O(h−(2a+1))

[
2n−C̃ + exp

(
−s∗

√
h2a+1

CR

(
s∗3ε2n

(C̃ log n)2‖τ(x̃0)‖21
− C̃ log n

))]1/2
.

Then the Lindeberg’s condition holds under the condition nh2a+1 � (log n)4

and suitable choice of C̃, which implies s−1n
∑

i εiMi
d−→ N(0, 1).

Lemma 4. Suppose that there exists b ∈ ((2a + 1)/2k, a/k + 1], such that

for j = 1, · · · , p, β̃j satisfies (3.10). If n1/2λ
1+b−a/k

2 = o(1) and h = o(1),

then for any x0 ∈ L2(I), and x̃0 = x0 · σ−1x0 , we have

〈A, τ(x̃0)〉1 = o(1), (S2.29)

E{I(U)〈τ(x̃0), τ(X)〉1(Z − 〈A, τ(X)〉1)} = o(1). (S2.30)

Recall that θ∗0 = θ0 − Pλθ0 = (γ∗0 , β
∗
0), then

√
n(γ0 − γ∗0)

√
n{
∫ 1

0
x̃0(t)(β0(t)−Wλβ0(t)− β∗0(t))dt}

→ 0. (S2.31)

Proof. First we show that (S2.29) holds. By the definition of A in (S1.7),
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for any j = 1, · · · , p, we have

〈Aj, τ(x̃0)〉1 = σ−1x0 V (β̃j, τ(x0)).

Recall that τ(x0) =
∑

v
x0v

1+λρv
ϕv, it is easy to see that V (β̃j, τ(x0)) =∑

v V (β̃j, ϕv)
x0v

1+λρv
. By the Cauchy’s inequality, x0v ≤ ‖x0‖L2‖ϕv‖L2 and

‖ϕv‖L2 ≤ Cϕvv
a in Assumption 3, we have

|V (β̃j, τ(x0))|2 ≤
∑
v

V (β̃j, ϕv)
2‖x0‖2L2v2a(1 + ρv)

b−a/k 1

(1 + λρv)2(1 + ρv)b−a/k

.
∑
v

V (β̃j, ϕv)
2‖x0‖2L2ρv

a/k(1 + ρv)
b−a/k 1

(1 + λρv)2(1 + ρv)b−a/k

= O

(
1

(1 + ρv)b−a/k

)
= O(1),

where the last equality follows from x0 ∈ L2(I), condition (3.10), ρv � v2k

and 2k(b− a/k) > 1. As σ−1x0 = o(1), we can directly have

〈Aj, τ(x̃0)〉1 = σ−1x0 V (β̃j, τ(x0)) = o(1).

Next we show that (S2.30) holds. Since

E{I(U)〈τ(x̃0), τ(X)〉1(Z − 〈A, τ(X)〉1)}

= σ−1x0 E{I(U)〈τ(x0), τ(X)〉1(Z − 〈A, τ(X)〉1)},

it is sufficient to show that for any j = 1, · · · , p,

E{I(U)〈τ(x0), τ(X)〉1(Zj − 〈Aj, τ(X)〉1)} = O(1).
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Under Assumption 4 and E(I(U)Zj|X) = B(X)
∫ 1

0
X̃(t)βj(t)dt, we have

E{I(U)〈τ(x0), τ(X)〉1(Zj − 〈Aj, τ(X)〉1)}

= V (β̃j − Aj, τ(x0)) ≤ V (β̃j, τ(x0) = O(1).

Then E{I(U)〈τ(x̃0), τ(X)〉1(Z − 〈A, τ(X)〉1)} = o(1) follows immediately

from σ−1x0 = o(1).

In the end, we show that the bias converges to zero. Rewrite
√
n(γ0 − γ∗0)

√
n{
∫ 1

0
x̃0(t)β0(t)dt−

∫ 1

0
x̃0(t)Wλβ0(t)dt−

∫ 1

0
x̃0(t)β

∗
0(t)dt}



=
√
n

 (Ω1 + Ω2)
−1〈A,Wλβ0〉

−
∫ 1

0
x̃0(t)A

>(t)dt(Ω1 + Ω2)
−1〈A,Wλβ0〉

 . (S2.32)

From (S2.29), we can directly have that
∫ 1

0
x̃0(t)A

>(t)dt = 〈A>, τ(x̃0)〉 =

o(1). We only need to show that ‖〈A,Wλβ0〉‖l2 = o(n−1/2) because (Ω1+Ω2)

is positive definite. Recall Wλβ0 =
∑

v
V (β0,ϕv)
1+λρv

λρvϕv, for any j = 1, · · · , p,

〈Aj,Wλβ0〉 = V (β̃j,Wλβ) =
∑
v

V (β0, ϕv)V (β̃, ϕv)
λρv

1 + λρv
.

Note that β0 admits
∑

v V (β0, ϕv)
2ρv <∞, then

〈Aj,Wλβ0〉2 ≤
∑
v

V (β0, ϕv)
2 λρv
1 + λρv

∑
v

V (β̃, ϕv)
2 λρv
1 + λρv

. λ
∑
v

V (β0, ϕv)
2ρb−a/kv

λρ
1−b+a/k
v

1 + λρv

. λ1+b−a/k,

17
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where the last inequality follows from (3.10). Therefore, n1/2λ
1+b−a/k

2 = o(1)

implies ‖〈A,Wλβ0〉‖l2 = o(n−1/2).

S3 Proofs of the limit distributions

Proof of Theorem 4. Let θ0 = (γ0, β0) = 0 be the true parameter under

H0, and θ̂0 = (γ̂0, β̂0) be the maximizer over H. In analogy to Shang and

Cheng (2015), we have

TP = n−1‖
n∑
i=1

εiRUi
‖2 + n‖Wλβ0‖21

+n1/2‖Sn,λ(θ0)‖ · op(1) + op(h
−1/2). (S3.33)

The null limit distribution depends on the term n−1‖
∑n

i=1 εiRUi
‖2, and

we can rewrite it as

‖
n∑
i=1

εiRUi
‖2 =

n∑
i=1

ε2i 〈RUi
, RUi
〉+ 2

∑
1≤i<j≤n

εiεj〈RUi
, RUj

〉.

Denote Wij = 2εiεj〈RUi
, RUj

〉 and define W (n) =
∑

i<jWij. It is easy to

verify that for i < j,

E{Wij|εi, Ui} = 2〈RUi
, E{εiεjRUj

|εi, Ui}〉 = 2εi〈RUi
, E{εjRUj

|εi, Ui}〉 = 0.

Hence, W (n) is clean in the sense of de Jong (1987).

18
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Define σ(n)2 = E{W (n)2} and

GI =
∑
i<j

E{W 4
ij},

GII =
∑
i<j<k

(E{W 2
ijW

2
ik}+ E{W 2

jiW
2
jk}+ E{W 2

kiW
2
kj}),

GIV =
∑

i<j<k<l

(E{WijWikWljWlk}+ E{WijWilWkjWkl}+ E{WikWilWjkWjl}).

According to Proposition 3.2 of de Jong (1987), we can derive the limit

distribution of W (n) if GI , GII , GIV are of lower orders than σ(n)4.

It is easy to see that

E{W 4
ij} = 24E{ε4i ε4j |〈RUi

, RUj
〉|4} ≤ 16E{ε4‖RU‖4}2 ≤ 16M2

4E{|〈RU , RU〉|2}2.

Recall that E{I(U)X2
v} = V (ϕv, ϕv) = 1 where Xv =

∫ 1

0
X(t)ϕv(t)dt , then

E{X4
v} ≤ E{X2

v}2 ≤ C2
2E{I(U)X2

v}2 = C2
2 . From (S2.15) and (S1.13), we

can directly have

E{|〈RU , RU〉|2}

≤ 2E{[(Z − 〈A, τ(X)〉1)>Ω−11 (Z − 〈A, τ(X)〉1)]2 + |〈τ(X), τ(X)〉1|2}.

We will deal with the two terms respectively. For the first term, by (3.5) in

Assumption 3.6 and the positive definiteness of Ω1, we can see that

E{[(Z − 〈A, τ(X)〉1)>Ω−11 (Z − 〈A, τ(X)〉1)]2 <∞. (S3.34)
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For the second term, direct calculations give us

2E{|〈τ(X), τ(X)〉1|2} = 2E{|
∑
v

X2
v

1 + λρv
|2}

≤ 2E{|
∑
v

X4
v

1 + λρv
|
∑
v

1

1 + λρv
} = O(h−2).

Thus, E{|〈RU , RU〉|2} = O(h−2), E{W 4
ij} = O(h−4) and GI = O(n2h−4).

Meanwhile, since E{W 2
ijW

2
it} ≤ E{W 4

ij} holds for i < j < t, we have

GII = O(n3h−4). Finally, we will derive the bound rate of GIV . For i <

j < t < l, denote Z̃i = Zi − 〈A, τ(Xi)〉1. It can be shown that

E{WijWitWljWlt}

= 24E{ε2i ε2jε2l ε2t 〈RUi
, RUj

〉〈RUi
, RUt〉〈RUl

, RUj
〉〈RUl

, RUt〉}

= 16E{ε2i ε2jε2l ε2t · Z̃>i Ω−11 Z̃j · Z̃>i Ω−11 Z̃t · Z̃>l Ω−11 Z̃j · Z̃>l Ω−11 Z̃t}

+(16)(4)E{ε2i ε2jε2l ε2t · 〈τ(Xi), τ(Xj)〉1 · Z̃>i Ω−11 Z̃t · Z̃>l Ω−11 Z̃j · Z̃>l Ω−11 Z̃t}

+(16)(4)E{ε2i ε2jε2l ε2t · 〈τ(Xi), τ(Xj)〉1〈τ(Xi), τ(Xt)〉1 · Z̃>l Ω−11 Z̃j · Z̃>l Ω−11 Z̃t}

+(16)(2)E{ε2i ε2jε2l ε2t · 〈τ(Xi), τ(Xj)〉1〈τ(Xl), τ(Xt)〉1 · Z̃>i Ω−11 Z̃t · Z̃>l Ω−11 Z̃j}

+(16)(4)E{ε2i ε2jε2l ε2t · 〈τ(Xi), τ(Xj)〉1〈τ(Xi), τ(Xt)〉1〈τ(Xl), τ(Xj)〉1Z̃>l Ω−11 Z̃t}

+16E{ε2i ε2jε2l ε2t · 〈τ(Xi), τ(Xj)〉1〈τ(Xi), τ(Xt)〉1〈τ(Xl), τ(Xj)〉1〈τ(Xl), τ(Xt)〉1}

= S1 + S2 + S3 + S4 + S5 + S6.

Note that in (S1.13), E{I(U)Z̃iZ̃
>
i } → Ω1 as λ→ 0, then

E{I(U)Z̃>Ω−11 Z̃} = tr{Ω−11 E(I(U)Z̃Z̃>)} = p. (S3.35)
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It follows directly that S1 = E{ε2Z̃>Ω−11 Z̃}4 = E{I(U)Z>Ω−11 Z̃}4 = p4.

For i = 1, · · · , n and v ≥ 1, define X i
v =

∫ 1

0
Xi(t)ϕv(t)dt. One can

verify E{ε2i Z̃iX i
v} = E{I(U)Z̃iX

i
v} = 0. Recall the definition of G(X) and

A in Assumption 4 and (S1.8), we have

E{I(U)Z̃iX
i
v} = E{E{I(U)(Zi − 〈A, τ(Xi)〉)X i

v|X}}

= E{B(X)(G(X)− 〈A, τ(X)〉)Xv} = V (β̃ −A, ϕv)

=
∑
v

V (β̃, ϕv)

1 + λρv
λρv → 0.

Condition (3.10) implies that
∑

v V (β̃, ϕv) < ∞, then the last limit holds

as λ → 0 by applying the dominated convergence theorem. On the other

hand, one can deduce that

S2 = E{ε2i ε2j Z̃>i Ω−11 Z̃j〈τ(Xi), τ(Xj)〉1} · E{ε2Z̃>Ω−11 Z̃}2

= E

{
ε2i ε

2
j Z̃
>
i Ω−11 Z̃j

∑
v

X i
vX

j
v

1 + λρv

}
· p2

=
∑
v

E{ε2i Z̃>X i
v}Ω−11 E{ε2j Z̃jXj

v}
1 + λρv

· p2 = 0.

Similar to the calculations of S2, it is easy to find that S3 = S4 = S5 = 0.
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For S6, we have

S6 =
∑

v1,v2,v3,v4

E{ε2iX i
v1
X i
v2
}E{ε2jXj

v1
Xj
v3
}E{ε2lX l

v3
X l
v4
}E{ε2tX t

v2
X t
v4
}

(1 + λρv1)(1 + λρv2)(1 + λρv3)(1 + λρv4)

=
∑

v1,v2,v3,v4

δv1,v2δv1,v3δv3,v4δv2,v4
(1 + λρv1)(1 + λρv2)(1 + λρv3)(1 + λρv4)

=
∑
v

1

(1 + λρ4v)
= O(h−1).

The summation of S1 to S6 leads to GIV = O(n4h−1).

Now we set out to calculate the order of σ(n)2. Specifically,

σ(n)2 = E{W (n)2} = 4
∑
i<j

E{ε2i ε2j |〈RUi
, RUj

〉|2}

= 4C2
nE{ε2i ε2j(Z̃>i Ω−11 Z̃j + 〈τ(Xi), τ(Xj)〉1)2}

= 4C2
nE{ε2i ε2j(Z̃>i Ω−11 Z̃jZ̃

>
j Ω−11 Z̃i + 〈τ(Xi), τ(Xj)〉21)}.

Notice that E{ε2i ε2j(Z>i AZjZ>j AZi} = p and

E{ε2i ε2j〈τ(Xi), τ(Xj)〉21} = E{ε2i ε2j
∑
v

X i
v
2
Xj
v
2

(1 + λρv
)2

=
∑
v

E{I(Ui)X
i
v
2}E{I(Uj)X

j
v
2}

(1 + λρv)2
=
∑
v

1

(1 + λρv)2
.

Recall that σ2
l = h

∑
v(1 + λρv)

−l, then

σ(n)2 = 2n(n− 1)(p+
∑
v

1

(1 + λρv)2
) � 2n2(p+ h−1σ2

2).

It is obvious that GI , GII , GIV are of lower orders than σ(n)4 � 4n4h−2σ2
2.

Then by Proposition 3.2 of de Jong (1987), as n→∞, we have

W (n)√
2n2h−1σ2

2

d−→ N(0, 1).
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Since

E{|
n∑
i=1

[ε2i ‖RUi
‖2 − E{ε2i ‖R2

Ui
‖}]|2} ≤ nE{ε4|〈RU , RU〉|2} = O(nh−2),

then

1

n

n∑
i=1

ε2i ‖RUi
‖2 = E{ε2i ‖RUi

‖2}+Op(n
−1/2h−1)

= p+ h−1σ2
1 +Op(n

−1/2h−1).

Thus,

n‖Sn,λ(θ0)‖2 =
1

n

n∑
i=1

ε2i ‖RUi
‖2 +

1

n
W (n) +Op(h

−1/2 + nλ)

= Op(h
−1 + n−1/2h−1 + h−1/2 + nλ) = Op(h

−1).

Therefore, it follows by (S3.33) that

TP =
1

n

n∑
i=1

ε2i ‖RUi
‖2 +

1

n
W (n) + n‖Wλβ0‖1 + op(h

−1/2)

= p+ h−1σ2
1 +

1

n
W (n) + n‖Wλβ0‖1 + op(h

−1/2).

This leads to the conclusion that as n→∞,

TP − (h−1σ2
1 + n‖Wλβ0‖1 + p)√

2(σ2
2h
−1 + p)

= (2un + 2pσ2)−1/2(σ2 · TP − (un + pσ2 + nσ2‖Wλβ0‖1))
d−→ N(0, 1).

Besides, it can be shown that n‖Wλβ0‖1 = o(nλ) = o(un). Therefore σ2TP

is asymptotically N(un + pσ2, 2un + 2pσ2). This completes the proof.
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S4 Impacts of measurement errors

The theoretical results are based on the underlying assumption that

the functional covariate X(t) is observed completely. However, X(t) is

usually observed intermittently and with errors in practice. Here we discuss

potential challenges to achieving similar theoretical results if we plug in an

empirical version of X(t).

We observe that

Wij = Xi(tij) + eij, j = 1, . . . ,mi,

where eij are independent zero-mean errors independent ofXi, with V ar(eij) =

σ2
e . We smooth each curve to obtain an estimate X̂i(t) = θ̂0(t) of Xi by a

local linear regression,

(θ̂0, θ̂1) = arg min
(θ0,θ1)

n∑
i=1

mi∑
j=1

{Wij − θ0 − θ1(tij − t)}2K{(tij − t)/hw},

where K(·) is a kernel function and hw is the bandwidth for the smoothing

step. If dense measurements are made on each curve, we can effectively

eliminate effects from measurement errors and pretend that we know the

true curve. We can use X̂i(t) to perform estimation and hypothesis testings.

The following conditions used in Kong et al. (2016) ensure that ‖X̂i(t) −

Xi(t)‖L2 = op(n
−1/2). Denote that m̃ = infi=1,...,nmi.
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(A-1). For any C > 0, there exists an ε > 0 such that supt∈I{E|X(s)|C} <

∞, and sups,t∈I{E[(|s− t|−ε|X(s)−X(t)|)C ]} <∞.

(A-2). X is twice continuously differentiable on I with probability 1, and∫
E(X(2)(t))4dt <∞, where X(2)(t) denotes the second derivative of X(t).

(A-3). The observation points {tij, j = 1, . . . ,mi} are deterministic and

ordered increasingly for i = 1, . . . , n. There exist densities gi uniformly

smooth over i, satisfying
∫ 1

0
gi(t)dt = 1 and 0 < c1 < infi{inft∈I gi(t)} <

supi{supt∈I gi(t)} < c2 < ∞. The tijs are generated according to tij =

G−1i {j/(mi + 1)}, where G−1i is the inverse of Gij =
∫ t
−∞ gi(s)ds. The

kernel density function is smooth and compactly supported.

(A-4). supi sup{ti(j+1) − tij, j = 1, . . . ,mi} = O(m̃−1), hw ∼ m̃−1/5,

m̃n−5/4 →∞.

Such a “smooth first, then perform estimation” procedure was widely

adopted in the literature (Li et al., 2010; Zhang and Chen, 2007; Wong

et al., 2019). From the simulation results below, it can be seen that the

smoothing procedure is quite useful especially when the variance of eij is

small and the curves are densely observed.

The penalized estimator using X̂i(t) instead of Xi(t) is obtained by
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ˆ̃θn,λ = (ˆ̃γn,λ,
ˆ̃βn,λ) = arg supθ∈H ˜̀

n,λ(θ), where

˜̀
n,λ(θ) =

{
1

n

n∑
i=1

`(Yi;Z
>
i γ +

∫ 1

0

X̂i(t)β(t)dt)− (λ/2)J(β, β)

}
. (S4.36)

The Fréchet derivative of ˜̀
n,λ(θ) with respect to θ is

S̃n,λ(θ) =
1

n

n∑
i=1

˙̀
a(Yi; 〈RÛi

, θ〉)RÛi
− Pλθ,

where Ûi = (X̂i, Z). Also, define S̃n(θ) = 1
n

∑n
i=1

˙̀
a(Yi; 〈RÛi

, θ〉)RÛi
, S̃(θ) =

E{S̃n(θ)}, S̃λ(θ) = E{S̃n,λ(θ)} and ε̃i = ˙̀
a(Yi;Z

>
i γ0 +

∫ 1

0
X̂i(t)β0(t)dt). Let

H̃n(θ) be the term when using X̂i(t) in Hn(θ) defined in (S2.17).

By examining the proofs of the theoretical results, roughly, it is required

to quantify the asymptotic orders of several important types of expressions.

Denote S̃λ(θ̃λ) = 0, Sλ(θλ) = 0, the expressions are as follows,

η1 = S̃λ(θ0), η2 = θ +DS̃λ(θ0)θ, η3 = E{〈RÛi
, θ〉2‖RÛi

‖ − 〈RUi
, θ〉2‖RUi

‖},

η4 =

∫ 1

0

∫ 1

0

sE{|〈RÛi
, θ1 − θ2〉| · |〈RÛi

, θ2 + s(θ1 − θ2)〉| · ‖RÛi
‖}dsds′,

−
∫ 1

0

∫ 1

0

sE{|〈RUi
, θ1 − θ2〉| · |〈RUi

, θ2 + s(θ1 − θ2)〉| · ‖RUi
‖}dsds′,

η5 = |[DS̃λ(θ̃λ)− S̃λ(θ0)]θθ′ − [DSλ(θλ)− Sλ(θ0)]θθ′|,

η6 = E{ε̃i‖RÛi
‖ − εi‖RUi

‖}, η7 = sup
θ∈Fpn

‖H̃n(θ)−Hn(θ)‖,

η8 = E{(| ˙̀a(Yi; 〈RÛi
, θ̃λ〉)− ˙̀

a(Yi; 〈RÛi
, θ0〉)|)‖RÛi

‖},

η9 = sup
θ′=1

E{|〈RÛi
, θ〉|2 · |〈RÛi

, θ′〉|2} − sup
θ′=1

E{|〈RUi
, θ〉|2 · |〈RUi

, θ′〉|2}.

Denote B(ε) = {θ ∈ H : ‖θ‖ ≤ ε}. The following lemmas provide the
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conditions under which the theoretical results still hold when we plug in an

empirical version of X(t).

Lemma 5. If ‖η1‖ = O(hk), and for any θ, θ1, θ2 ∈ B(2(J(β0, β0)+1)1/2hk),

the following conditions hold, ‖η2‖ ≤ h−1/2‖θ‖2, η3 ≤ h−1/2‖θ‖2, η4 ≤

1/2‖θ1 − θ2‖, η5 = o(1), η6 = o((nh)−1), η7 = o(p
1/(4m)
n (h−1 log log n)1/2)

and η8 = o((nh)−1). Meanwhile, for any θ ∈ B(C(nh)−1/2), where C > 0 is

a constant, |η9| = o(‖θ‖). Then we have

‖ ˆ̃θn,λ − θ0‖ = Op((nh)−1/2 + hk).

Lemma 6. Suppose the conditions in Lemma 5 are satisfied. Recall that

an is defined in Theorem 2. Additionally, for θ = ˆ̃θn,λ − θ0, the following

conditions hold, ‖S̃n,λ(θ + θ0) − S̃n,λ(θ0) − E{S̃n,λ(θ + θ0) − S̃n,λ(θ0)}‖ ≤

O(n−1/2h−
4ma+6m−1

4m rn(log n)2(log log n)1/2), ‖E{DS̃n,λ(θ0)θ − θ}‖ = op(an),

and ‖
∫ 1

0

∫ 1

0
sE{DS̃n,λ(θ0 + ss′θ)θθdsds′}‖ ≤ O(h−1/2r2n). Then we have

‖ ˆ̃θn,λ − θ0 − S̃n,λ(θ0)‖ = Op(an).

Lemma 7. Suppose the conditions in Lemma 6 hold. Denote û∗ = (z̃, ˆ̃x0)

for any z̃ ∈ Rp. If 〈Rû∗ − Ru∗ ,
ˆ̃θn,λ − θ̂n,λ〉 = op(n

−1/2), 〈Rû∗ − Ru∗ , θ̂n,λ −

θ0〉 = op(n
−1/2), and 〈Rû∗ − Ru∗ ,

ˆ̃θn,λ − θ̂n,λ〉 = op(n
−1/2), then the joint

independence result in Theorem 3 can still be achieved if we use an empirical

version of x̃0(t).

27



Ting Li and Zhongyi Zhu

Lemma 8. For the penalized likelihood ratio test statistic

T̃P = −2n{˜̀n,λ(θ0)− ˜̀
n,λ(

ˆ̃θn,λ)}. (S4.37)

If the conditions in Lemma 6 are satisfied, further

sup
‖θ−θ0‖≤C((nh)−1/2+hk)

n|˜̀n,λ(θ)− `n,λ(θ)| = op(un + pσ2),

where σ2 and un are defined in Theorem 4, then σ2T̃P is also asymptotically

N(un + pσ2, 2un + 2pσ2).

Let Ĉ(s, t) = 1
n

∑n
i=1 B̂(X̂i)X̂i(s)X̂i(t) be an estimate of C, where

B̂(X̂i) = − 1
n

∑n
i=1

῭
a(yi; z

>
i

ˆ̃γn,λ +
∫ 1

0
x̂i(t)

ˆ̃βn,λ(t)dt). Then we can obtain

an estimate of V (β1, β2) such that V̂ (β1, β2) =
∫ 1

0
Ĉ(s, t)β1(s)β2(t)dsdt.

Denote (ρ̂v, ϕ̂v) as the eigen-pairs driven by Ĉ. The last step is to show

that the limit distribution also holds if we use σ̂l instead of σl in practice.

The key step is to show |σ̂2
l − σ2

l | = op(1).

Following similar procedures in Kong et al. (2016), we can have
∫ ∫

(Ĉ(s, t)−

C(s, t))2dsdt = Op(n
−1) if conditions (A-1)-(A-4) hold. Then in analogy to

the arguments of Shang and Cheng (2015), we can have |σ̂2
l − σ2

l | = op(1).

In general, the proofs of the theoretical developments rely heavily on the

inner products defined in (2.5) and (2.6), which involve the fully observed

trajectory. Apart from figuring out the errors to the eigen-system, we not

only need to explore the impacts of measurement errors on the inner prod-
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ucts, but also need to clarify the effects on several expressions in relation

to X(t) in complex forms. It requires greater effort to verify the conditions

in Lemmas 5-8. These issues need to be addressed in future research.

S5 Simulation results with measurement errors

In this section, we conduct additional simulations to explore the im-

pacts of measurement errors of the functional variable on the performance

of the proposed test. Example 1 explores the impact of the variance of

measurement errors on the performance of the proposed test. Example 2

investigates the effect of the sparsity of the observation points.

Example 1. We compute the sizes and powers of the proposed test

when testing H0 : β = 0 and γ = 0 and H0 : β = 0 under the PFLM

setting and the PFLGM setting with sample size n ∈ {100, 500}. We run

1000 replicates for each case. Data are simulated in the same way as that

in Case 1 in the main text except that the functional predictor Xi(t) are

not fully observed. We assume the actual observation Xij is the realization

of Xi(t) at 200 evenly spaced points {Tij, j = 1, · · · , 200} with i.i.d. error

eij ∼ N(0, σ2
e), and σe ∈ {0.5, 1, 1.5}.

Table S1 and Table S2 provide the results when testing H0 : β = 0

and γ = 0 under the PFLM setting and the PFLGRM setting. Sizes and

powers when testing H0 : β = 0 are summarized in Tables S3-S4. Recall
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that TP denotes the proposed test, TS, TW , TL and TF denote the score test,

Wald test, modified likelihood ratio test and F test in Kong, Staicu, and

Maity (2016), and T ∗W denotes the test method of Su, Di, and Hsu (2017).

It can be seen that if the errors are small, the sizes and powers behave

similar to the sizes and powers when X(t)s are fully observed. Meanwhile,

we also plot changes of sizes and powers with σe ranging from 0.5 to 4

when testing H0 : β = 0 under the PFLM setting in Figure S5. Under the

alternative hypothesis, we set ξ = 0.1 and B = 1. The proposed method

still outperforms the competing methods in all scenarios.

Example 2. The data settings are similar to that in Example 1, except

that Xi(t) are observed with fewer observation points. We set the number

of points to be m̃ ∈ {30, 50, 100}. The variance of the measurement errors

is fixed at σe = 1. The results are summarized in Tables S5 - S8. We can

see that all the methods lose power as the sparsity level becomes higher.

However, when observation points are sufficiently dense, the results are

similar to knowing the entire trajectory of each Xi.
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Table S1: Sizes and powers in the PFLM setting when testing H0 : β = 0 and γ = 0 with

measurement errors.

n σe ξ = 0.1 ξ = 0.5
(γ1, γ2) B = 0 B = 0.1 B = 0.5 B = 1 B = 0.1 B = 0.5 B = 1

100 0.5 (0.0,0.0) 5.4 8.0 20.0 63.1 9.0 54.8 98.5
(0.1,0.1) 21.2 21.7 35.4 71.7 21.0 63.6 98.9
(0.2,0.2) 64.9 62.1 74.7 90.7 64.8 87.5 99.5
(0.3,0.3) 94.0 94.8 95.9 98.8 93.5 98.1 100

1.0 (0.0,0.0) 5.5 8.2 18.4 60.7 7.7 53.7 97.6
(0.1,0.1) 20.2 21.2 34.7 69.1 20.6 63.1 98.7
(0.2,0.2) 63.5 63.8 72.6 90.1 63.5 87.6 99.4
(0.3,0.3) 94.1 92.7 96.1 98.5 94.0 98.2 100

1.5 (0.0,0.0) 5.5 7.2 18.4 58.0 7.5 52.8 98.8
(0.1,0.1) 20.3 20.7 33.1 70.4 21.1 62.9 99.7
(0.2,0.2) 63.9 61.5 70.7 89.6 62.9 85.7 99.2
(0.3,0.3) 94.5 92.9 95.2 98.4 94.3 97.8 100

500 0.5 (0.0,0.0) 5.2 10.6 71.7 100 17.1 100 100
(0.1,0.1) 72.2 75.9 96.5 100 79.8 100 100
(0.2,0.2) 99.9 100 100 100 100 100 100
(0.3,0.3) 100 100 100 100 100 100 100

1.0 (0.0,0.0) 5.3 10.1 71.7 100 15.2 99.6 100
(0.1,0.1) 74.0 74.8 96.7 100 78.7 100 100
(0.2,0.2) 100 99.9 100 100 100 100 100
(0.3,0.3) 100 100 100 100 100 100 100

1.5 (0.0,0.0) 5.1 9.7 73.6 100 14.1 99.9 100
(0.1,0.1) 73.2 73.7 97.2 100 78.6 100 100
(0.2,0.2) 100 100 100 100 100 100 100
(0.3,0.3) 100 100 100 100 100 100 100
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Table S2: Sizes and powers in the PFLGRM setting when testing H0 : β = 0 and γ = 0 with

measurement errors.

n σe ξ = 0.1 ξ = 0.5
(γ1, γ2) B = 0 B = 0.1 B = 0.5 B = 1 B = 0.1 B = 0.5 B = 1

100 0.5 (0.0,0.0) 5.6 5.2 6.5 13.5 5.2 10.1 43.4
(0.1,0.1) 7.4 7.6 8.3 18.6 7.7 14.3 45.4
(0.2,0.2) 14.9 14.9 19.3 26.2 13.5 24.5 57.2
(0.3,0.3) 28.9 29.6 33.6 42.3 32.0 42.7 64.8

1.0 (0.0,0.0) 5.5 5.4 5.2 12.8 5.5 10.4 41.6
(0.1,0.1) 7.3 7.2 8.6 17.2 6.9 13.1 40.9
(0.2,0.2) 14.3 13.1 17.9 23.8 11.8 24.3 55.2
(0.3,0.3) 29.8 28.7 32.1 41.2 29.7 40.3 63.3

1.5 (0.0,0.0) 5.6 5.2 6.1 11.9 6.0 9.0 35.4
(0.1,0.1) 6.6 6.4 8.0 16.3 6.6 12.9 39.7
(0.2,0.2) 13.5 12.2 15.6 23.8 11.8 20.1 53.0
(0.3,0.3) 26.5 27.7 30.0 38.3 27.8 39.1 60.5

500 0.5 (0.0,0.0) 5.4 5.4 19.2 65.6 6.3 57.6 99.7
(0.1,0.1) 19.8 21.2 38.2 79.0 21.1 72.2 100
(0.2,0.2) 67.7 66.2 78.7 95.8 71.5 93.1 100
(0.3,0.3) 97.5 97.8 98.5 99.7 97.4 99.5 100

1.0 (0.0,0.0) 5.2 5.1 18.9 66.8 5.0 57.8 99.4
(0.1,0.1) 20.5 20.0 38.4 78.0 20.5 68.0 99.7
(0.2,0.2) 67.3 62.4 76.4 93.6 69.2 91.9 100
(0.3,0.3) 96.6 96.4 97.7 99.2 95.7 99.2 100

1.5 (0.0,0.0) 4.9 5.0 18.3 66.7 5.5 55.3 99.7
(0.1,0.1) 15.3 18.0 35.9 76.0 16.3 65.8 99.4
(0.2,0.2) 63.7 63.3 76.4 92.5 62.8 92.1 100
(0.3,0.3) 96.3 95.2 97.5 99.1 96.5 99.5 100
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Table S3: Sizes and powers in the PFLM setting when testing H0 : β = 0 with measurement

errors.

n σe ξ = 0.1 ξ = 0.5
B = 0 B = 0.1 B = 0.5 B = 1 B = 0.1 B = 0.5 B = 1

100 0.5 TP 5.1 20.2 46.1 89.5 20.2 80.7 99.6
TS 5.5 5.8 18.5 59.2 7.1 52.4 98.7
TW 5.7 6.0 19.0 59.7 7.3 53.2 98.8
TL 5.8 6.1 19.0 59.9 7.4 53.5 98.9
TF 5.3 5.6 17.8 58.6 6.9 51.7 98.6
T ∗
W 5.4 6.7 18.1 56.1 6.5 47.7 98.0

1.0 TP 5.4 18.6 45.5 87.4 19.4 80.4 99.9
TS 5.3 5.2 18.2 59.4 7.1 50.5 98.6
TW 5.5 5.5 19.5 60.7 7.4 51.0 98.6
TL 5.7 5.7 19.5 61.1 7.5 51.5 98.6
TF 5.2 5.1 17.3 58.3 6.7 49.5 98.4
T ∗
W 5.6 5.8 16.2 55.6 6.9 45.7 97.0

1.5 TP 5.2 16.0 43.0 86.8 18.3 81.5 99.8
TS 5.2 6.3 16.9 60.5 5.9 50.2 98.2
TW 5.8 7.3 17.9 61.2 6.1 50.4 98.3
TL 5.7 7.4 18.2 61.2 6.2 50.5 98.3
TF 5.4 5.8 16.2 59.8 5.7 49.2 98.1
T ∗
W 5.4 6.8 16.5 55.5 5.4 45.4 97.1

500 0.5 TP 5.6 22.5 92.3 100 35.1 100 100
TS 5.8 7.5 72.4 100 13.8 100 100
TW 5.5 7.5 72.8 100 14.0 100 100
TL 5.8 7.5 72.8 100 13.4 100 100
TF 5.7 7.3 72.3 100 13.8 100 100
T ∗
W 5.2 7.5 64.6 100 11.6 100 100

1.0 TP 5.3 20.5 92.1 100 32.5 100 100
TS 5.6 7.1 71.8 100 11.8 99.8 100
TW 5.7 7.2 71.9 100 12.1 99.8 100
TL 5.6 7.2 71.9 100 12.2 99.8 100
TF 5.4 7.1 71.7 100 11.8 99.8 100
T ∗
W 5.3 7.5 63.3 100 11.0 99.5 100

1.5 TP 5.5 19.5 92.2 100 32.4 100 100
TS 5.5 6.3 69.3 100 12.0 100 100
TW 5.6 6.4 69.3 100 12.2 100 100
TL 5.6 6.4 69.3 100 12.4 100 100
TF 5.4 6.1 68.9 100 11.7 100 100
T ∗
W 5.2 6.0 62.3 100 10.5 100 100
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Figure S1: Changes of sizes and powers with σe under H0 : β = 0 in the PFLM setting

Table S4: Sizes and powers in the PFLGRM setting when testing H0 : β = 0 with measurement

errors.

n σe ξ = 0.1 ξ = 0.5
(γ1, γ2) B = 0 B = 0.1 B = 0.5 B = 1 B = 0.1 B = 0.5 B = 1
100 0.5 5.5 5.2 7.1 20.4 6.3 17.5 56.0

1.0 5.4 5.5 6.9 20.0 5.7 15.3 52.5
1.5 5.3 5.1 6.4 17.3 6.4 15.4 49.4

500 0.5 5.4 6.6 25.7 74.3 8.0 70.0 99.9
1.0 5.1 5.9 25.9 75.6 7.4 68.7 99.8
1.5 5.6 5.7 24.4 73.4 7.6 68.3 99.8
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Table S5: Sizes and powers in the PFLM setting when testing H0 : β = 0 and γ = 0 with

different number of observation points.

n m̃ ξ = 0.1 ξ = 0.5
(γ1, γ2) B = 0 B = 0.1 B = 0.5 B = 1 B = 0.1 B = 0.5 B = 1

100 30 (0.0,0.0) 5.8 7.0 17.4 55.6 7.2 46.9 95.9
(0.1,0.1) 19.2 19.3 31.9 65.8 18.8 62.5 97.6
(0.2,0.2) 62.4 62.7 69.8 88.1 63.9 85.0 98.8
(0.3,0.3) 93.5 94.0 95.1 98.3 93.3 98.3 100

50 (0.0,0.0) 5.6 7.4 17.6 57.7 7.8 50.8 97.8
(0.1,0.1) 20.4 18.3 33.1 67.6 20.4 63.5 98.1
(0.2,0.2) 64.0 64.0 70.1 89.2 64.0 86.1 99.6
(0.3,0.3) 93.6 93.0 95.7 98.4 94.7 98.0 100

100 (0.0,0.0) 5.7 7.9 19.1 60.6 7.5 52.6 97.7
(0.1,0.1) 20.1 19.9 34.5 69.6 21.1 65.0 98.2
(0.2,0.2) 63.7 63.5 71.4 90.0 64.0 86.6 99.7
(0.3,0.3) 94.9 95.5 96.8 98.8 95.0 98.2 100

500 30 (0.0,0.0) 5.6 7.2 62.1 99.6 11.3 99.0 100
(0.1,0.1) 72.3 72.8 94.4 100 75.3 99.7 100
(0.2,0.2) 100 100 100 100 100 100 100
(0.3,0.3) 100 100 100 100 100 100 100

50 (0.0,0.0) 5.3 9.0 67.8 99.8 11.8 99.3 100
(0.1,0.1) 71.6 73.7 95.5 100 76.4 100 100
(0.2,0.2) 100 99.8 100 100 100 100 100
(0.3,0.3) 100 100 100 100 100 100 100

100 (0.0,0.0) 5.0 10.0 68.3 100 14.8 99.4 100
(0.1,0.1) 73.8 74.2 95.7 100 74.9 100 100
(0.2,0.2) 100 100 100 100 100 100 100
(0.3,0.3) 100 100 100 100 100 100 100
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Table S6: Sizes and powers in the PFLGRM setting when testing H0 : β = 0 and γ = 0 with

different number of observation points.

n m̃ ξ = 0.1 ξ = 0.5
(γ1, γ2) B = 0 B = 0.1 B = 0.5 B = 1 B = 0.1 B = 0.5 B = 1

100 30 (0.0,0.0) 5.6 5.4 6.4 10.7 5.7 10.0 37.5
(0.1,0.1) 6.6 6.2 7.5 15.9 5.6 12.2 39.1
(0.2,0.2) 11.9 11.6 16.3 19.9 11.5 22.1 51.5
(0.3,0.3) 28.1 29.9 29.4 40.0 29.6 36.6 61.6

50 (0.0,0.0) 5.1 5.7 6.0 12.8 5.9 11.2 39.5
(0.1,0.1) 7.2 7.8 8.9 16.7 6.6 12.9 40.7
(0.2,0.2) 14.1 12.1 17.7 22.2 13.9 24.3 54.0
(0.3,0.3) 27.2 31.1 31.6 39.7 27.9 38.6 63.2

100 (0.0,0.0) 5.4 5.5 6.3 13.9 5.6 11.3 40.8
(0.1,0.1) 7.1 8.5 8.1 17.5 7.2 14.4 41.3
(0.2,0.2) 14.0 17.6 18.4 25.7 14.6 24.9 54.5
(0.3,0.3) 31.2 32.8 33.5 42.6 29.6 40.1 64.1

500 30 (0.0,0.0) 5.3 5.6 15.0 62.0 6.1 54.6 98.8
(0.1,0.1) 19.4 17.2 35.8 74.8 20.9 65.0 99.6
(0.2,0.2) 66.4 63.8 73.7 92.7 66.9 91.2 99.9
(0.3,0.3) 96.0 96.5 97.6 99.6 96.1 99.1 100

50 (0.0,0.0) 5.3 6.3 17.6 67.5 5.0 58.1 99.1
(0.1,0.1) 20.1 19.7 38.4 75.8 20.0 67.5 99.4
(0.2,0.2) 67.1 63.4 77.5 93.5 69.1 91.0 99.9
(0.3,0.3) 96.0 96.7 98.1 99.5 96.2 99.7 100

100 (0.0,0.0) 5.6 6.3 19.0 66.2 6.0 58.9 99.4
(0.1,0.1) 20.8 19.9 38.5 77.9 20.8 67.3 99.8
(0.2,0.2) 67.1 63.4 78.3 93.5 69.6 92.5 100
(0.3,0.3) 96.9 97.4 98.8 99.7 97.2 99.7 100
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Table S7: Sizes and powers in the PFLM setting when testing H0 : β = 0 with different number

of observation points.

n m̃ ξ = 0.1 ξ = 0.5
B = 0 B = 0.1 B = 0.5 B = 1 B = 0.1 B = 0.5 B = 1

100 30 TP 5.3 16.8 41.3 84.0 17.4 78.7 99.6
TS 5.1 5.4 17.1 56.4 6.4 49.1 97.6
TW 5.5 5.6 17.9 57.2 6.7 50.0 97.2
TL 5.8 5.6 18.0 57.4 6.8 50.3 97.6
TF 5.2 5.3 17.0 55.7 6.4 48.9 98.1
T ∗
W 5.5 5.5 15.2 53.5 6.1 44.5 96.4

50 TP 5.1 16.1 42.6 84.7 19.0 79.2 99.8
TS 5.2 5.6 17.8 58.6 6.7 50.2 98.3
TW 5.6 5.8 19.1 59.7 7.1 50.3 98.4
TL 5.7 5.7 19.0 60.0 7.2 50.5 98.5
TF 5.3 5.8 17.3 58.9 6.8 49.2 98.0
T ∗
W 5.6 5.5 16.0 53.6 6.7 45.1 96.6

100 TP 5.2 17.2 44.2 86.3 19.7 80.3 99.8
TS 5.4 5.5 18.4 58.9 7.2 50.0 98.8
TW 5.6 5.7 19.3 60.0 7.5 51.2 98.9
TL 5.4 5.5 19.6 61.2 7.1 51.1 98.9
TF 5.1 5.3 17.7 58.5 6.6 49.2 98.5
T ∗
W 5.4 5.3 16.3 55.0 6.9 46.0 97.5

500 30 TP 5.5 18.9 90.6 100 30.6 99.9 100
TS 5.3 6.7 68.7 100 12.2 99.6 100
TW 5.4 6.9 68.8 100 12.2 99.6 100
TL 5.4 6.9 68.8 100 12.2 99.6 100
TF 5.3 6.6 68.5 100 12.1 99.5 100
T ∗
W 5.2 6.8 62.7 99.9 10.9 99.5 100

50 TP 5.3 20.5 92.1 100 32.5 100 100
TS 5.6 7.1 71.8 100 11.8 99.8 100
TW 5.7 7.2 71.9 100 12.1 99.8 100
TL 5.6 7.2 71.9 100 12.2 99.8 100
TF 5.4 7.1 71.7 100 11.8 99.8 100
T ∗
W 5.3 7.5 63.3 100 11.0 99.5 100

50 TP 5.2 19.6 91.1 100 31.8 100 100
TS 5.4 7.0 69.7 100 12.0 99.9 100
TW 5.5 7.0 69.9 100 12.0 99.9 100
TL 5.5 7.0 70.0 100 12.1 99.9 100
TF 5.3 6.9 69.3 100 11.8 99.9 100
T ∗
W 5.2 6.8 63.2 100 11.0 99.6 100

100 TP 5.3 20.7 92.1 100 33.5 100 100
TS 5.4 7.2 71.3 100 12.7 99.9 100
TW 5.4 7.3 71.5 100 12.7 99.9 100
TL 5.4 7.3 71.5 100 12.7 99.9 100
TF 5.2 7.1 71.1 100 12.5 99.9 100
T ∗
W 5.3 7.3 63.4 100 11.2 99.8 100
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Table S8: Sizes and powers in the PFLGRM setting when testing H0 : β = 0 with different

number of observation points.

n m̃ ξ = 0.1 ξ = 0.5
(γ1, γ2) B = 0 B = 0.1 B = 0.5 B = 1 B = 0.1 B = 0.5 B = 1
100 30 5.7 5.4 6.8 18.9 6.0 13.1 50.0

50 5.3 5.5 6.9 19.1 6.4 14.5 51.7
100 5.5 5.7 6.4 20.3 5.9 15.4 52.7

500 30 5.2 6.0 24.1 72.5 7.3 66.5 99.5
50 5.6 5.7 25.4 72.5 7.4 67.9 99.9
100 5.3 6.2 27.2 75.5 8.0 67.9 99.9
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