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Supplementary Material

The supplementary material contains additional simulation reports, ex-
pressions of some linear operators and details of all the proofs. Section
gives the expressions of some linear operators that help to simply the proofs.
Section [S2] includes the proofs of Theorem [I, Theorem 2] and Theorem [3]
Section proves the null limit distribution of the proposed test statistic
in Theorem In Section [S4 we discuss the potential challenges to the
theoretical results if the functional covariate is observed with measurement
errors. We provide simulation results with measurement errors to the func-

tional process in Section

S1 Linear operators

In this section, we define some linear operators and give the expressions
of the linear operators. All these linear operators help to present the proofs

in a more concise way. The current generalized partial functional linear
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model is more comprehensive and more convenient than the generalized
functional linear model studied in Shang and Cheng (2015). Such conve-
nience comes at the price of a harder theoretical investigation. Specifically,
the modified conditional expectation G(X) is supposed to be linear in X
in Assumption 4l The decay rates of the coefficients of G(X) are required
to be carefully verified. Further, it takes greater effort to bound the term
E{I(U)Z fo (t)dt} in the proofs via the inner product in .

To represent ¢, ,(0) by the inner product of the parameter 6, two linear

operations R and P, are defined as follows,
1
(Ry,0) = 2"~ +/ x(t)5(t)dt for any u € U and 6 € H (S1.1)
0
and
(Prb1,02) = AJ(B1, B2) for any 0,0, € H. (51.2)
Owing to the two operators, we can rewrite ¢, () as
1
Ze (Ru,, 0)) = 5(P20.9). (S1.3)

We separate the joint parameter 6 from the covariates X and Z in this man-
ner, and provide a convenient approach to obtain the Fréchet derivatives of
,, x, which are the premise of deriving the Bahadur representation.

Denote A8 = (Av, AfB), the Fréchet derivative of ¢, 5(f) with respect
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S1. LINEAR OPERATORS

to 6 is
1 .
Sua(0)A8 = Dl \(0)A0 = - ZEG(YQ; (Ru,,0))(Ru,, AJ) — (P\0, Af).

Notice that Sy x(f,.) = 0, and S, x(6y) = Ly 02(Ys; (Rus, 00)) Ry, — Pabo
is of interest. The second- and third-order Fréchet derivatives of £, \(6) can
be derived in the same way and we omit here. Meanwhile, define S, (0) =
LS (Y3 (Ruy, 0)) Ry, S(0) = E{S,(0)} and S\(0) = E{S,(0)}.

In order to obtain the expressions of the two linear operators in ((S1.1))
and , we begin with some preparatory work. Let K(s,t) be the re-
producing kernel function of H™(I), and define K;(-) = K(¢,-) € H™(I) for
any t € . Then (K, 8)1 = p(t) for any g € H™(I) by definition. Also, we

define an operator W) from H™(I) to H™(I) satisfying

(WaB1, B2)1 = AJ (B, B2), for any 1, B € H™(I). (S1.4)

Simple calculations lead to expressions of the two operators,

K =32 0 o)) = 2 o(). (SLB)

14 Apy

It follows that W)5(-) = >, V(B, cpv)lif\t) ©y(+). Meanwhile, we define
7(z)(-) € H™(I) satistying (7 = fo t)dt for any L? integrable

x =z(t) and f € H™(I). It is easy to have

() fortel, (51.6)
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where x, = (1(x), p,)1 = fol x(t)p,(t)dt. With the aforementioned eigen-
functions, the linear operators Wy and 7(x)(-), we can have explicit forms
of R, and P, defined in and (S1.2)).

Let id be the identity operator such that id3 = 3, and define A; =
(id — Wy)B; for 3; defined in Assumption . Then for any 5 € H™(I), we

have V(8;,8) = (A;,8)1. Let A = (Ay,...,A)T and B = (B1,...,05,)".

Note that A and 3 are vectors of functional elements, then

V(B,5) = (A, ). (S1.7)

We can derive the expression of A by taking § = K;, one can deduce that

AW = (4 K = 3 T2 (519
and
(MAY) = 322020 ),

Define Qs = Ex{B(X)G(X)(G(X) — fl

o X(t)A(t)dt)"}. We are ready to

obtain the expressions of R, and P) defined in (S1.1)) and (S1.2).

Proposition 1. Let R, : uw— (H,,T,) € H, we have

H, = (+ Q)7 (2~ (A, 7(@)h),

T, = 7(z)— AT(Q 4+ )z - (A, 7(2)))).
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Furthermore, Py can be expressed as P\0 : (v, 8) — (HX,Tx) € H, then
Hy = —(Qu+ Q) (A, WiB)1,
T, = WA+ AT+ Q) (A W)
Notice that (€;+) 7! is well defined under Assumption and limy_,g 2y =

0 according to (S1.12]).

Proof of Proposition [1} Define R, = (H,,T,), for any 6 = (v,3) € H.

According to and Assumption 2(b), we have
(1.8 = {10y (274 [ x@swar) (27 [ xemow) |
+)\J(Tu, ﬁ)

By definition (S1.1)) of R,, it also holds

1
(7). 008) = T+ [ a8 =272+ (r(2), B,
0
then (H,,T,) are the solutions of equations

Ey {I(0)2Z7} H, + By {1(U)Z [y X(OT,(t)dt | = =, 10

Ey {I(U)Z I8 X(t)ﬂ(t)dtZT} Hy + (8,T.): = ((z), B).
Recall that B = (Bl, e ,ﬁNp)T, and Bjs are defined in Assumption , we
can rewrite
Ey {I(U)Z/lX(t)Tu(t)dt} ~ By {B(X)G(X) /1 X(t)Tu(t)dt}
= Ex {B(X) /01 X(t)ﬁ(t)dt/o1 X(t)Tu(t)dt} = (A, T,),
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where the last equality follows from the definition of A in (S1.8]). Similarly,

we have EU{ fo dtZT} = (AT,B);. Then we can rewrite

T9) as

Ey {I(U)ZZ"} H,+ (A, T,)1 = =, (S1.10)

A'H,+T, =71(x).

Substituting T, = 7(x) — AT H, into the first equation of (S1.10)), we have

z = EU{I(U)ZZT}HU+EU{ /X }

—Ey s I(U /X }

= Ey {I(U)(Z - G(X))(Z — G(X))"} H, + Ey {I(U)Z/IX(t)T(:p)dt

+Ex{B(X (X)—/IX(t)A(t)dt)T}Hu

= (Q +Q)H, + (A, 7()):.
It is easy to see

H, = (Q1 + QQ)_I(Z - (A,T(ZL’)>1),

T, = 7(z)— AT(Q 4+ )z — (A, 7(2))1).

Similar to the process above, one can get the expression of P\f if we let

z = 0 and replace 7(x) with W, 5. O

Lemma 1. Recall that B(X) = E{I(U)|X}, G(X) = E{I(U)Z|X}/B(X)
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and A s defined in , as A — 0, we have

lim Ex{B(X)(G(X) ~ (A, 7(X)})(G(X) ~ (4, 7(X)))T} =0, (S1.11)
lim Ex {B(Y)G(X)(G(X) = (A, 7(X))1) '} = lm 0, = 0, (SL12)

A—0

/l\ig(l)EU{](U)(Z — (A 7(X)))(Z = (A, 7(X)) "} = Q. (S1.13)

Proof. Since the proofs of (S1.11)) and (S1.12)) are similar, we only show
that (S1.12) holds. For any j,k € {1,2,...,p}, recall that G;(X) =
Jo X(@)B;(0)dt = 3, V(Bj,00) X, and (A7, 7(X)) = 3, 22X, then
Ex{B(X)G;(X)(Gr(X) — (Ap, 7(X))1)}
, Pu)A e
= Ex(BOO TV )X 3 S Voo 3 (1 14)

14 Apy

For any vy # vy, we can derive that

1 1
Ex{B(X)X,X,} = Ex{B(X) / X () (1)t / X (g (1)}
0 0
= V(Pw,¢w) =0.
Then (S1.14)) turns into

APy
L+ Apy

ZV /BJ)QO”U Blm@ov) ZV1/2 ﬁ]uﬁ])vlﬂ(ﬁkaﬁk)

1+

Under Assumption (b) that V(6;,3;) < oo and the dominated conver-

gence theorem, we have that the above sum converges to zero as A — 0.
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For the proof of (51.13)), simple calculations imply that

Ey{I(U)(Z — (A, 7(X)))(Z — (A, 7(X))1) "}

= Ey{I(U)(Z - G(X))(Z - G(X))"}
+2B{I(U)(Z = G(X))(G(X) — (A, 7(X))1) '}
+E{I(U)(G(X) — (A, 7(X))(G(X) — (A, 7(X))1) "}

= L+ 1+ I3,
we can easily have limy_,o I3 = 0 according to (S1.11]). For Iy, rewrite it as
I = Ex{Eg{I(U)(Z — G(X))|X}G(X) — (A, 7(X))1)"}}.

Recall that B(X) = Ey{I(U)|X} and Ey{I(U)Z|X} = G(X)B(X), we

have Iy = 0. This completes the proof of (S1.13)). O

S2 Proofs of the theoretical results

We need to establish inequalities with respect to the inner product of

R, and its expectation, which are involved in the proofs.

Lemma 2. Suppose that Assumption [4 and Assumption [3 hold, then for
any u = (z,z2), x € L*(),2 € R?, we get that
(R, Ry) = (2= (A, 7(2)) (1 + D)7 (2 — (A, 7(x)))

+(7(2), (2 (S2.15)



S2. PROOFS OF THE THEORETICAL RESULTS

Meanwhile, as h — 0, there exists a universal constant Cgr > 0 satisfying

(Ru, Ru) < Cr(1+ 2|k~ %*Y), and Ev{||Ry|*} < Crh~".

Proof of Lemma 2l The expression of (R,,, R,) directly follows the defini-
tion of R,. Next we show that the two inequalities hold. Recall that 7(z) =

>, 1y where X, = [ X(t)g,(t)dt. Tt follows that (7(z),7(x)) =

> XL Under Assumption [2] that I(U) > C;*', we have

v 14+Apy

Eu{||Ru|’} < CEu{I(U)||Ru|?}
= CoEy{I(U)(Z — (A, 7(X))1) (1 + Q)7 (Z — (A, 7(X)))}

+02EU{I(U)Z X, } (S2.16)

14 Apy

For the second part of (S2.16)), by Assumption [3|that E[I(U)X2] = V (¢, ¢u) =

1 and p, < v%, it is easy to derive that

X? 1 *° 1
Ey < I(U K = < ——d
Ao B < St [

v

1 > 1
— /1 )

Since [;* md(hv) < o0, it is obvious that there exists a constant Ch,,

st. Eg{I(U)Y, =21 < Cp 2.

v 14+Apy

We conclude Ey{||Ry||*} < Cg,h™! by examining the finiteness of the
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first part in (S2.16)). According to (S1.12)) and (S1.13|), one can verify that

E{I(U)(Z — (A, 7(X))1) " (u + Q2) 7 (Z — (A, 7(X)))}
= tr(Bu{I(U)(Q + Q2)7H(Z — (A, 7(X))1)(Z = (A, 7(X))1) " })
= p
We can use the inequalities |z,| < |2|2]l@ollrz < ||2]12Cpv® and

the boundness of (z — (A, 7(2))1)" (O + Q2) (2 — (A, 7(x))1) to prove

(Ru, Ry) < Cr(1+ ||z]|2.h~@*+D). Specifically,

(R, Ru) = (2= (A, 7(2))) (@ + Q)7 (z = (A, m(@)1) + ) Xy

14+ Apy
02,U2a
< (2= (A T(@)) T (Qu + Q)= — (A r(@))) + Y ]2 - pr
< Cpy(1+ ||| 72k~ @Y.
The universal constant can be taken as Cr = max(Cg,, Cg,). [

Denote T' = (Y, Z, X()) € T, the following lemma proves a vital con-

dition (52.19)) on H,,(0) defined as
1 n
H,(0) = 7= Wn(Ti0)Ro, = Er{$n(T:OR0Y, - (S217)
i=1

where 9,(T;6) is a function defined over 7 x H. Define F,, = {0 =
(7,8) € H Ty < L[|Bllee < 1, J(B, B) < pu}, where p, > 1. It is worth
emphasizing that the proofs of the Bahadur representation count on ([52.19))

given in the following lemma.
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Lemma 3. Suppose that Assumptions[q to 5 hold, ¢, (T};0) = 0 a.s., and

there exsits a constant Cy > 0 such that the Lipschitz continuity holds,
0n(T560) — o (T50)] < Cyll0 — 0|, for any 6,6 € F,,.  (S2.18)

Then as n — oo,

[1Ha(0)]]

= Op((h ™ loglogn)'/?), (52.19)
0Ty, pil " )0)IS + 12 (

where ( =1—1/(2m).

The proof of Lemma |3 is similar to the proof of Lemma 3.4 of Shang
and Cheng (2015) by using Lemma [2| and modern empirical process theory,
so we omit here

With the preparations above, we can prove Theorem [I] and Theorem [2|

Proof of Theorem [1] . The proof of Theorem [1] follows from the proof of
Proposition 3.5 of Shang and Cheng| (2015) by using Lemmas Assump-

tions [IH6, the conditions in Theorem [I] and the Cauchy’s inequality. ]

Proof of Theorem [2l The proof of Theorem [2] follows directly from the

proof of Theorem 3.6 of Shang and Cheng| (2015)) and is omitted here. [J

Proof of Theorem [3] . The proof of the joint distribution depends on the
Cramér-Wald device. Denote 65 = 0y — P\tp = (7§, ;). For any Z € RP,
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and u* = (2,Z), we will derive the distribution of

5 G —10) + / Fo(t)Bun(t)dt — / Fo(t) B (8)dt)
= (Rys,0nr—03) (S2.20)

where &y = x¢ - 0.

Then we will show that the bias converges to zero,
which can be found in Lemma [4]

Recall that S, \(6p) = %Z?Zl e, Ry, — P\0y. For the distribution of

(S2.20), under the condition || R,+||= O(1) and by Theorem [2| we have

A

|<Ru*7 gn,)\ - 00 - Sn,)\(HO)H S ||Ru** |én,)\ - 00 - Sn,)\<00)|| S Op(an)~

Then we will derive the asymptotic distribution of (R, S, x(6o)).

Direct calculations lead to

n

(Ru Sun(@0) = 3 (T Ho, + (r(a0), Tu) = (Prfoy Ruc),

=1

where Hy,, Ty, are defined in Proposition then

M; & ZVHy, + (1(%0), Tuh (S2.21)

= (2= (A, 7(@))) " (0 + Q) (Z — (A, 7(X))) + (r(Z0), T(X )1
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It follows from Assumption |2/ and E(e?|U) = I(U) that

sz = nE{&|Z" Hy, + (1(30), Tu,)1|*}
= nE{I(U)(r(%),7(X))}}
+2n(2 — (A, 7(z0))1) T E{I(U) (7 (Z0), (X)) (Z — (A, 7(X))1)}

+n(z — (A, 7(Zo)1) E{I(U)Hy H Y (2 — (A, 7(30))1).  (S2.22)
Recall that B(X) = E{I(U)|X}, it is easy to verify that

E{I(U)((Z0), T(X))T} = V(7 (&), 7(i0))

o

2
o 2 : xOv 2 —1 _

v=1

Meanwhile, Lemma |1 implies that as A — 0,

E{I(U)HyH} — Q7% (S2.24)

Thus, it can be derived from Lemma [4] (S2.23) and (52.24),

s =n{l+2'Q7" 2 =nE", D)V, 1) <0, (S2.25)

where VU is defined in Theorem [3]
Recall that M; are defined in (S2.21)). By Lemma {4 and ||[7(X)[; <

_ (2a+1)

Crh™ 2 || Xi||z2 from the proof of Lemma , we can obtain
- _ _(2a+1) -
M; <2707 (Z — (A, 7(X))) + Crh™ = - | Xillz - [I7(Z0) |-

Denote c* as the largest element of the matrix Q7'227Q~!, then c* is finite
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due to the definiteness of €2;. Cauchy’s inequality indicates that

M? < 2(Z;— (A, 7(X))) Q22T NZ — (A, 7(X))

+2CRh™ D IXG |13 - |17 (20) I}

IN

2¢(Z — (A, (X)) (Z — (A, 7(Xi)))

+2CRh™ D IXG |13 - (I (F0) 13-

Next we will check the Lindeberg’s condition. Since log(h™') = O(logn)
holds, we can choose a large constant C' > 0 such that h~(2*p=C = o(1).

Then, for any € > 0, one can obtain

L B{EMAI(EM? > 252)} < B{E MM 2P(EM? > &52)V/2. (S2.26)

2
Sh

Recall that E(e}|U) < oo, it is easy to check that
E{eM} = B{E(UIME} S B{M{} = O(h-22+0). (s2.27)
Meanwhile, one can deduce that

P(e;M} > €s,)

< P(s*|e;| > Clogn) + P(s*[(Z — (A, 7(Xi))1) T (Z — (A, 7(Xi))1)| > Clogn)

h2a+1 *3 ~2 _
+P | s X2 > s < I 5n~ 5 —Clogn | |.
Cr \(Clogn)?||r(z0)|
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Owing to the conditions E{exp(s*|e|)} < oo, (3.2) and (3.5), we have

PEM? > &52)

N h2a+1 3*352n -
< 2n % 4exp| —s* ( — —Clo n) . (S2.28
- P ( \/ Cr \(Clogn)? & ( )

Substituting ((S2.27)) and m into - one can verify that

n
LM > 25)

n

1/2
i 2a+1 *3 -2 ~
S O(h_(2a+1)) QTL_C —{—exp —s* h ( _ sTUeE“Nn . S = C’logn) :
Cr \(Clogn)?|7(zo)|?

Then the Lindeberg’s condition holds under the condition nh?**! > (logn)?

and suitable choice of C, which implies ;' 3. ¢;M; 4 N(0,1). O

Lemma 4. Suppose that there exists b € ((2a + 1)/2k,a/k + 1], such that

1+b 14b—a/k

forj =1,---,p, B; satisfies (3.10). If n'?A= = = o(1) and h = o(1),
then for any xo € L*(I), and &y = xo - 0, we have
(A, 7(Z0))1 = o(1), (S2.29)
E{I(U){7(Z0), T(X))1(Z — (A, 7(X))1)} = o(1). (52.30)
Recall that 65 = 0y — P\0y = (7, 55), then
vl = %) 0. (S2.31)
vl [y Zo — WiBo(t) — B5(t))dt}

Proof. First we show that (S2.29)) holds. By the definition of A in (S1.7)),
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for any j =1,---,p, we have

(A, 7(To))r = 0,y V(Bj, 7(w0))-

Recall that 7(zo) = ), Trx5, s it is easy to see that V(B;,7(x0)) =

> V(Bj,gov)l_f‘j\zv. By the Cauchy’s inequality, xo, < ||zol/r2]|¢v]/z2 and

o]z < Cp,v* in Assumption [3, we have

1
T+ AP (L4 p) "
1
T A P+ 07"

V(B o) < D V(B 00)2llwoll 20 (1 + p,) /"

S D VB o) llmollFep (1 + po)

= Ofmag) o0

where the last equality follows from zy € L%(T), condition (3.10)), p, < v

and 2k(b—a/k) > 1. As o, = o(1), we can directly have
(4, 7(Z0))1 = 0,V (Bj, 7(w0)) = o(1).
Next we show that (S2.30]) holds. Since

E{IU)(7(Z0), (X))1(Z = (A, 7(X))1)}

= 0y E{I(U)(7(0), 7(X))1(Z — (A, 7(X)1)},
it is sufficient to show that for any j =1,--- ,p,

E{IU)(7(x0), T(X))1(Z; = (Aj, 7(X))1)} = O(1).
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Under Assumption 4| and E(I(U)Z;|X) = fo )dt, we have

EXLU){r (o), 7(X)1(Z; — (A5, (X))}
= V(B — A, 7(20)) < V(Bj,7(x0) = O(L).

Then E{I(U)(r(zo), 7(X))1(Z — (A, 7(X))1)} = o(1) follows immediately
from o " = o(1).

In the end, we show that the bias converges to zero. Rewrite

V(v = %)
VI Eo(0)8o(t)dt — J; 7ot WaBo(t)dt — f; 70(t) 5 (1))
O+ Q) HA W
_ (1 + Q)7 \Bo) | (52.32)
fo ()dt($y + )~ <A> Wi o)
From ([S2.29), we can directly have that fol To(t)AT(t)dt = (AT, 7(30)) =

0(1). We only need to show that || (A, Wy 50|z = o(n~1/?) because (£ +5)

is positive definite. Recall Wx8y =, Vfﬁ‘i\f” Apvpw, for any j =1,--- ,p,

Apo
(Aj, WaBo) = V(Bj, WiB) = Zv Bos u)V ﬁ,mH’JM.

Note that 8y admits >~ V (S, ¢uv)?py < 00, then

Ap
A Wh5Bo)? < V (Bos ¢u .
< 7 )\ﬁ0> = Z 507()0 1+)\ (ﬁa ) 1+)\pv
) /\;01 b+a/k
< 2 b—a/k
S A Voo
< /\1+b—a/k
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1+b—a/k

where the last inequality follows from 1) Therefore, n'/2A~2 — = o(1)

implies |[{A, W»50) ;2 = o(n~1/?). O

S3 Proofs of the limit distributions

Proof of Theorem [l Let 6y = (7, 5) = 0 be the true parameter under
Hy, and 0° = (5°, 3°) be the maximizer over H. In analogy to Shang and
Cheng (2015)), we have

Tp = n 'Y aBull +nlWaboll

i=1

+n1%)| S (Bo)| - 0 (1) + 0, (h112). (S3.33)

The null limit distribution depends on the term n~'|| Y°7 | Ry, ||, and

we can rewrite it as

n

2:26?<RU1.,RUZ.)+2 Z ei€j(Ru,, Ru,).

i=1 1<i<j<n

n
|| Z EiRUi
i=1

Denote Wi; = 2¢;¢;(Ry,, Ry;) and define W(n) = >, Wi;. It is easy to

verify that for i < j,
E{V[/ij|€i; Ul} = 2<RUZ~7 E{EiejRUj|€i; Ul}> = 2€i<RU¢7 E{EjRUj|€Z', Uz}> =0.

Hence, W (n) is clean in the sense of [de Jong| (1987).
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Define o(n)? = E{W(n)?} and

G = Y E{W}
1<j

G = Y (B{W;W3}+E{W;W;.} + E{W W }),
1<j<k

Grv = Y (B{WyWaW;Wiu} + E{WyWaWiWia} + E{WuWaWWi}).
1<j<k<l

According to Proposition 3.2 of |de Jong| (1987)), we can derive the limit
distribution of W (n) if Gy, Gr7, Gy are of lower orders than o(n)*.

It is easy to see that
E{W;} = 2'E{ei¢j|(Ru,. Ru,)|"} < 16E{c"||Ry[|"}* < 16M{E{|(Ry, Ru)|"}*.

Recall that E{I(U)X2} = V (g, ¢,) = 1 where X, = fol X (t)py(t)dt , then

B{X!} < BE{X2}> < G3E{I(U)X2)? = C}. From (52.15) and (SL.13). we

can directly have

E{|(Ry, Ry)|*}

< 2B{((Z — (A, 7(X))) ' (Z — (A, 7(X))1)]* + (7 (X), 7(X)h[*}-

We will deal with the two terms respectively. For the first term, by (3.5 in

Assumption and the positive definiteness of €}y, we can see that

E{(Z — (A, 7(X))) " (Z — (A, 7(X)h)]? < 0. (S3.34)
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For the second term, direct calculations give us
2E{|(r(X), 7(X))1[*} = 2E %}
{r(X). 7N ) {|ZHAPU

1
< v — —2 .
- 2E{|;1+)\pv|;1+>\pv} O(h™)

Thus, E{|(Ry, Ry)[?} = O(h~2), E{W1} = O(h~*) and G; = O(n?h~4).

Meanwhile, since E{W2W;3} < E{W;} holds for i < j < t, we have
Gir = O(n*h™*). Finally, we will derive the bound rate of Gp. For i <

j <t <l denote Z; = Z; — (A, 7(X;))1. It can be shown that

E{Wy; Wi Wi Wi}
= 2'B{elejeie/(Ru,, Ru,)(Ru,, Ru,)(Ru,, Ru;)(Ru,, Ru,)}
= 16B{ejceie; - Z] Q' Z; - ZT 07 2, 2707 Zy - 27 Z,)
+H16)(H) E{eleleie; - (r(Xa). T (X)) - Z1 00 2, - 200V 2 - Z) 07 2
+H(16)(4) E{eleleie; - (r(Xa), (X)) (T(Xa), 7(Xo)h - 24701 25 2 Q1 24}
+(16)(2) E{e}ejeie; - (r(Xa), 7(Xp))i {m(X0), 7(X))1 - 2] 01 2, - 20 25}
+(16)(4) E{elejere; - (7(X0), T(X)1 (7 (X0), 7(Xe) (7(X0). T (X)) 2 ' 2}
+H16E{ e ejerer  (7(X), 7(X)h (7(Xi), 7(X))1 {m(X0), 7(X;))a(m(X), 7(X))a }

= S+ 52+ 535+ 54+ 55+ S6.

Note that in (S1.13), E{I(U)Z;Z]} — Q; as A — 0, then

E{I(U)Z" 07 Z} = tr{Q7'E(L(U)ZZ")} = p. (S3.35)
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It follows directly that S = E{2ZTQ ' Z} = E{I(U)ZT Q' Z}* = p*.
For i = 1,--- ,n and v > 1, define X! = fol X:(t)p,(t)dt. One can
verify B{e2Z; X!} = E{I(U)Z;X!} = 0. Recall the definition of G(X) and

A in Assumption 4| and (S1.8)), we have

E{I(U)Z:X;} = B{E{I(U)(Z — (A, 7(X,)))X,|X}}
= B{B(X)(G(X) — (A, 7(X)))X.} =V (6~ A, ¢,)

V(B ¢0)

v

Condition (3.10) implies that ", V(f,¢,) < oo, then the last limit holds
as A — 0 by applying the dominated convergence theorem. On the other

hand, one can deduce that

SQ = E{€2€22T9;123<T(XZ),T(X])>1} . E{E2ZTQIIZ}2

[

~ ~ XiXJ
_ 2 27T—1 vt 2
_ E{eiejZi 0 ZJ}:HAPU}.p

v

E{G?ZTXg}QflE{egszg}

- Z 1+ Apy =0

v

Similar to the calculations of Sy, it is easy to find that S3 = S, = S5 = 0.
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For Sg, we have

S = Y.

v1,V2,V3,V4

E{e; X X] YE{e&X] X] VE{e] X! X] }E{] X] X! }
(14 Apuy ) (1 4 Apuy ) (1 + Apug ) (1 + Ay )

5”1 ;U2 6”1 ,U3 57-13 »yU4 5”2 , V4

Z (1 + Apuy ) (14 Apuy ) (1 + Apug ) (1 + Apyy)

v1,02,V3,V4

1
= S h .
2 Ty =00

The summation of S; to Sy leads to Gy = O(n*h™1).

Now we set out to calculate the order of o(n)?. Specifically,

o(n)* = E{W(n)’}=4> E{¢c|(Ry,, R}
GBI, 1 (), A
= ACRE{e(Z] O 2,2 Q0 2+ (r(X0), 7(X))) D)}
Notice that E{e}e(Z, AZ;Z] AZ;} = p and

Xix7°
E{E(r(X,),7(X,))}} = {2y —v i)

(1+Ap,
E{I(U)XZVE{I(U) XS} 1
; (14 Apy)? - Z (14 Apo)?’

Recall that o7 = h >, (1 + Ap,)~!, then

o0 = 2n(n = )lp+ 3 o) < 2o+ ),

It is obvious that G, G, Gy are of lower orders than o(n)? < 4n*h=202.

Then by Proposition 3.2 of |de Jong| (1987)), as n — oo, we have

\/2n2h—1o2

4 N(0,1).
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S3. PROOFS OF THE LIMIT DISTRIBUTIONS

Since

E{] Z[G?IIR@IIQ — E{& R, I3} < nE{e'[(Ry, Ry)[*} = O(nh™),

then

1 n

" ZE?HRUZ- * = E{&|Ry|*} + Op(n*mh*l)

=1
= p+hlel+0,(n 2.
Thus,
1 & 1 )
EANCH R - ; e | Ru,|I* + EW(H) + O, (K12 4 n)\)

= Oy +n 2R £ V2 ) = O, (7).
Therefore, it follows by ([S3.33|) that

1o 1
Tp = — > lRul? + W) +nl[Wafolls +op(h~7%)

=1

1
= p+hlo}+ ﬁw(n) + n||[WaBoll1 + o,(h?).

This leads to the conclusion that as n — oo,
Tp — (W lof + n||[WiBol1 +p)
2(c2h=1 + p)
= (2uy + 2p0?) V2(0? - Tp — (up + po® + no|[Wafoll1)) 4 N(0,1).

Besides, it can be shown that n||W,5||1 = o(n\) = o(u,,). Therefore c*Tp

is asymptotically N(u, + po?,2u, + 2po?). This completes the proof.
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S4 Impacts of measurement errors

The theoretical results are based on the underlying assumption that
the functional covariate X(t) is observed completely. However, X(t) is
usually observed intermittently and with errors in practice. Here we discuss
potential challenges to achieving similar theoretical results if we plug in an
empirical version of X ().

We observe that
Wi = Xi(tij) + e, j=1,...,my,

where e;; are independent zero-mean errors independent of X;, with Var(e;;) =

02. We smooth each curve to obtain an estimate X;(t) = y(t) of X; by a

local linear regression,

(6o,0,) = arg min ZZ{m — O (ti; — YK {(ti; —t)/hu},

80,60 5 i3
where K(+) is a kernel function and h,, is the bandwidth for the smoothing
step. If dense measurements are made on each curve, we can effectively
eliminate effects from measurement errors and pretend that we know the
true curve. We can use Xz(t) to perform estimation and hypothesis testings.
The following conditions used in Kong et al.| (2016) ensure that || X;(t) —

X;(t)|lz2 = 0,(n~Y?). Denote that m = inf,_;__, m;.
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S4. IMPACTS OF MEASUREMENT ERRORS

(A-1). For any C > 0, there exists an € > 0 such that sup,.;{F|X (s)|“} <

00, and sup, ;e { E[(|s — | ~*[X(s) = X(£))°]} < oo

(A-2). X is twice continuously differentiable on I with probability 1, and

[ E(X®(t)*dt < oo, where X@(t) denotes the second derivative of X (t).

(A-3). The observation points {t;;,j = 1,...,m;} are deterministic and
ordered increasingly for ¢ = 1,...,n. There exist densities g; uniformly
smooth over i, satisfying fol gi(t)dt = 1 and 0 < ¢y < infi{infieg;(t)} <
sup;{sup;c; gi(t)} < ca < oo. The t;;s are generated according to ¢;; =
G 'Yj/(m; + 1)}, where G;' is the inverse of G;; = ffoo gi(s)ds. The

kernel density function is smooth and compactly supported.

(A-4). sup, sup{ti(jﬂ) — tij7j = 1, e ,mi} = O(’ﬁ’L—1>, hw ~ m_l/S,

—5/4

mn — 0.

Such a “smooth first, then perform estimation” procedure was widely
adopted in the literature (Li et al) 2010; Zhang and Chen, 2007; Wong
et al., 2019). From the simulation results below, it can be seen that the
smoothing procedure is quite useful especially when the variance of e;; is
small and the curves are densely observed.

The penalized estimator using X;(¢) instead of X;(¢) is obtained by
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én,/\ = (%/n,)\v Bn,/\) = arg SuPycy gm)\(e), where

{ Zﬁ YZ,ZT7+/ Xi(t — (A/2)J(5, )}.(84.36)

The Fréchet derivative of £, (f) with respect to 8 is
Z (a(Ysi (Rp,, 0)) Ry, — Prf,

where U; = (X'Z, 7). Also, define gn(ﬁ) = %Z?:l éa(iﬁ; (Rg,,0)) Ry, 5(9) =
E{S,(0)}, Sx(0) = E{S,\(0)} and & = £u(Yi; Z] 0+ f, Xi(t)Bo(t)dt). Let
H,(6) be the term when using X;(t) in H,(0) defined in (S2.17).

By examining the proofs of the theoretical results, roughly, it is required
to quantify the asymptotic orders of several important types of expressions.

Denote Sy(6) = 0, S(6,) = 0, the expressions are as follows,

= SA(80)7 2 = 0+ DS’/\(Q())Q’ 3 = EJ{<R(AJZ’9>2||RU2 - <RU170>2||RU1||}7

1 1
Ny = / / SE{|(Ry,, 01 — 02)| - (R, 02 + s(61 — 62))| - || Ry, || }dsds,
0 0

—/0 / SE{|(Rp,. 00 — 0] - |(Rur, 62+ 5(6 — 6)] -
15 = |[DSA(0)) — Sx(600)]00" — [DSA(6)) — Sx(60)]00'],
— sup [|H,(6) — Ha(0)].

0 Fp,,

= B{(|£a(Y5; (R, 03) = La(Yi; (R, 00)) D[ Ry, |1}

e = E{&l Ry,

no = sup E{|(Ry,,0)* - [(Ry,,0')["} — sup E{|(Ru,. O)|* - [(Ru, 0)[*}.

0'=1 0'=1
Denote B(e) = {0 € H : ||0]| < e}. The following lemmas provide the
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conditions under which the theoretical results still hold when we plug in an

empirical version of X ().

Lemma 5. If |n|| = O(h*), and for any 0,6,,0, € B(2(J(Bo, Bo)+1)2h*),
the following conditions hold, ||no|| < h=Y2||0]12, ns < h™Y2|0)|?, ns <
1/2[161 = 63|, 15 = o(1), ng = o((nh)™), nr = o(pi/ ™ (h="log log n)*/2)
and ng = o((nh)™1). Meanwhile, for any 6 € B(C(nh)~*/2), where C > 0 is

a constant, |ng| = o(||0]]). Then we have
162, = Goll = Op((nh) =72 + hF).

Lemma 6. Suppose the conditions in Lemma [9 are satisfied. Recall that

ay 1s defined in Theorem . Additionally, for 0 = 6’27)\ — by, the following

conditions hold, ||Su (0 + 00) — Sux(00) — E{Sur(0 + 65) — Spr(f0)}]| <
dma+6m—1

O(n=Y2h="" 5" r,(logn)?(loglog n)'/?), HE{DS,M(HO)G — 0} = op(an),

and || fol fol sE{DS, \(0y + s5'0)00dsds'}|| < O(h='/*r2). Then we have
Hén,)\ — 0 — gn)\wO)H = Op(an).

Lemma 7. Suppose the conditions in Lemma@ hold. Denote i* = (%, )
for any z € RP. If (Ry- — Ru*yén,)\ — én,\> = 0,(n"V?), (Ryr — Ru*,én7A —
o) = 0,(n"'?), and (Ry- — Ru*,én)\ — 0,0) = 0,(n"?), then the joint
independence result in Theorem|[3] can still be achieved if we use an empirical
version of To(t).
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Lemma 8. For the penalized likelthood ratio test statistic

~

Tp = —Zn{gn)\(ﬁo) — lﬁn,,\(ﬁn)\)}. (S4.37)
If the conditions in Lemma |6 are satisfied, further

sup nlgn)\(g) — €n7)\(0)| — Op(un _l_pO_Q)’
IIG_GOHSC((nh)*l/ZJ’_hk)

2

where 0 and u,, are defined in Theorem then o*T'p is also asymptotically

N (u,, + po?, 2u, + 2pc?).

Let C(s,t) = %Z?zlé()?z)f(l(s))@(t) be an estimate of C, where
B(X;) = =130 lu(yis 2l Anp + fol :%i(t)ﬁzny,\(t)dt). Then we can obtain
an estimate of V(fy, 8;) such that V(By,f,) = fol C(s,1)B1(s)Ba(t)dsdL.
Denote (py,, ¢,) as the eigen-pairs driven by C. The last step is to show
that the limit distribution also holds if we use 6; instead of o; in practice.
The key step is to show |67 — 07| = 0,(1).

Following similar procedures in Kong et al.| (2016)), we can have [ [(C (s, t)—
C(s,t))*dsdt = Oy(n~1) if conditions hold. Then in analogy to
the arguments of Shang and Cheng (2015)), we can have |67 — 07| = 0,(1).

In general, the proofs of the theoretical developments rely heavily on the
inner products defined in and (2.6), which involve the fully observed

trajectory. Apart from figuring out the errors to the eigen-system, we not

only need to explore the impacts of measurement errors on the inner prod-
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ucts, but also need to clarify the effects on several expressions in relation
to X (t) in complex forms. It requires greater effort to verify the conditions

in Lemmas [BHS] These issues need to be addressed in future research.

S5 Simulation results with measurement errors

In this section, we conduct additional simulations to explore the im-
pacts of measurement errors of the functional variable on the performance
of the proposed test. FEzxample 1 explores the impact of the variance of
measurement errors on the performance of the proposed test. Ezrample 2
investigates the effect of the sparsity of the observation points.

Example 1. We compute the sizes and powers of the proposed test
when testing Hy : f = 0 and v = 0 and Hy : f = 0 under the PFLM
setting and the PFLGM setting with sample size n € {100,500}. We run
1000 replicates for each case. Data are simulated in the same way as that
in Case 1 in the main text except that the functional predictor X;(t) are
not fully observed. We assume the actual observation X;; is the realization
of X;(t) at 200 evenly spaced points {7;;,j = 1,---,200} with i.i.d. error
ei;; ~ N(0,0?), and o, € {0.5,1,1.5}.

Table [S1] and Table [S2| provide the results when testing Hy : § = 0
and v = 0 under the PFLM setting and the PFLGRM setting. Sizes and

powers when testing Hy : f = 0 are summarized in Tables [S3H54l Recall
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that T'» denotes the proposed test, T, Ty, 17, and T denote the score test,
Wald test, modified likelihood ratio test and F test in |[Kong, Staicu, and
Maity| (2016)), and T3;, denotes the test method of |Su, Di, and Hsu| (2017)).
It can be seen that if the errors are small, the sizes and powers behave
similar to the sizes and powers when X (t)s are fully observed. Meanwhile,
we also plot changes of sizes and powers with o, ranging from 0.5 to 4
when testing Hy : 8 = 0 under the PFLM setting in Figure [S5] Under the
alternative hypothesis, we set £ = 0.1 and B = 1. The proposed method
still outperforms the competing methods in all scenarios.

Ezxample 2. The data settings are similar to that in Fxample 1, except
that X;(t) are observed with fewer observation points. We set the number
of points to be m € {30,50,100}. The variance of the measurement errors
is fixed at 0, = 1. The results are summarized in Tables [59| - We can
see that all the methods lose power as the sparsity level becomes higher.
However, when observation points are sufficiently dense, the results are

similar to knowing the entire trajectory of each X;.
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Table S1: Sizes and powers in the PFLM setting when testing Ho : § = 0 and v = 0 with

measurement errors.

n oe £=0.1 £E=05
(71,72) B=0B=01B=05B=1 B=01B=05B=1

100 0.5 (0.0,0.0) 5.4 8.0 20.0 63.1 9.0 54.8  98.5
(0.1,0.1) 21.2 21.7 354 717 21.0 63.6  98.9
(0.2,0.2) 64.9 62.1 4.7 90.7 64.8 87.5  99.5
(0.3,0.3) 94.0 94.8 95.9  98.8 93.5 98.1 100

1.0 (0.0,0.0) 5.5 8.2 184  60.7 7.7 53.7  97.6
(0.1,0.1) 20.2 21.2 34.7  69.1 20.6 63.1  98.7
(0.2,0.2) 63.5 638 72.6  90.1 63.5 87.6 994
(0.3,0.3) 94.1  92.7 96.1  98.5 94.0 98.2 100

1.5 (0.0,0.0) 5.5 7.2 184  58.0 7.5 52.8  98.8
(0.1,0.1) 20.3 20.7 33.1 704 21.1 62.9  99.7
(0.2,0.2) 63.9 61.5 70.7  89.6 62.9 85.7  99.2
(0.3,0.3) 94.5 929 95.2 984 94.3 97.8 100

500 0.5 (0.0,0.0) 5.2 10.6 T1.7 100 17.1 100 100
(0.1,0.1) 72.2 759 96.5 100 79.8 100 100
(0.2,0.2) 99.9 100 100 100 100 100 100
(0.3,0.3) 100 100 100 100 100 100 100

1.0 (0.0,0.0) 5.3 10.1 T1.7 100 15.2 99.6 100
(0.1,0.1) 74.0 74.8 96.7 100 8.7 100 100
(0.2,0.2) 100  99.9 100 100 100 100 100
(0.3,0.3) 100 100 100 100 100 100 100

1.5 (0.0,0.0) 5.1 9.7 73.6 100 14.1 99.9 100
(0.1,0.1) 73.2  73.7 97.2 100 78.6 100 100
(0.2,0.2) 100 100 100 100 100 100 100
(0.3,0.3) 100 100 100 100 100 100 100
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Table S2: Sizes and powers in the PFLGRM setting when testing Hp : 8 = 0 and v = 0 with

measurement errors.

n o. £E=0.1 £E=05
(v1,72) B=0B=01B=05B=1 B=01B=05B=1
100 0.5 (0.0,0.0) 5.6 5.2 6.5 13.5 5.2 10.1 434
0.1,0.1) 74 7.6 8.3 18.6 7.7 14.3 454
0.2,0.2) 149 149 193 26.2 13.5 24.5 572
0.3,0.3) 28.9 29.6 33.6 423 32.0 42.7  64.8
0.0,0.0) 5.5 5.4 5.2 12.8 5.5 104 41.6
0.1,0.1) 7.3 7.2 8.6 17.2 6.9 13.1 409
0.2,0.2) 14.3 131 179 238 11.8 24.3 552
0.3,0.3) 29.8 28.7 32.1 41.2 29.7 40.3  63.3
0.0,0.0) 5.6 5.2 6.1 11.9 6.0 9.0 35.4
0.1,0.1) 6.6 6.4 8.0 16.3 6.6 129 39.7
0.2,0.2) 135 122 15.6  23.8 11.8 20.1  53.0
0.3,0.3) 26.5 27.7 30.0 38.3 27.8 39.1 60.5

)
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

500 05 (0.0,0.0) 5.4 54 192 656 63  57.6 997

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

1.0

1.5

0.1,0.1) 19.8 21.2 382  79.0 21.1 72.2 100
0.2,0.2) 67.7  66.2 78.7 958 71.5 93.1 100
0.3,0.3) 97.5 97.8 98.5  99.7 97.4 99.5 100
0.0,0.0) 5.2 5.1 189  66.8 5.0 57.8 994
0.1,0.1) 20.5  20.0 384  78.0 20.5 68.0  99.7
0.2,0.2) 67.3 62.4 76.4  93.6 69.2 91.9 100
0.3,0.3) 96.6  96.4 97.7  99.2 95.7 99.2 100
0.0,0.0) 4.9 5.0 183  66.7 5.5 55.3  99.7
0.1,0.1) 15.3 18.0 359  76.0 16.3 65.8 994
0.2,0.2) 63.7 63.3 76.4 925 62.8 92.1 100
0.3,0.3) 96.3  95.2 97.5  99.1 96.5 99.5 100

1.0

1.5
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Table S3: Sizes and powers in the PFLM setting when testing Hp : 8 = 0 with measurement

€rrors.

n o, £E=0.1 £E=0.5
B=0B=01B=05B=1 B=01B=05B=1
100 0.5 Tp 5.1 20.2 46.1  89.5 20.2 80.7  99.6
Ts 5.5 5.8 18.5  59.2 7.1 52.4  98.7
Tw 5.7 6.0 19.0  59.7 7.3 53.2  98.8
T, 5.8 6.1 19.0  59.9 74 53.5  98.9
Tr 5.3 5.6 17.8  58.6 6.9 51.7  98.6
Ty 5.4 6.7 18.1  56.1 6.5 47.7  98.0
1.0 Tp 54 18.6 45.5 874 19.4 80.4  99.9
Ts 5.3 5.2 18.2 594 7.1 50.5  98.6
Tw 5.5 5.5 19.5  60.7 7.4 51.0 98.6
T, 5.7 5.7 19.5  61.1 7.5 51.5  98.6
Tr 5.2 5.1 17.3 583 6.7 49.5 984
Ty 5.6 5.8 16.2  55.6 6.9 45.7 970
1.5 Tp 5.2 16.0 43.0 86.8 18.3 81.5  99.8
Ts 5.2 6.3 16.9  60.5 5.9 50.2  98.2
Tw 5.8 7.3 179  61.2 6.1 50.4  98.3
T, 5.7 74 18.2  61.2 6.2 50.5  98.3
T 5.4 5.8 16.2  59.8 5.7 49.2  98.1
Ty 5.4 6.8 16.5  55.5 5.4 454 971

500 0.5 Tp 5.6 22.5 92.3 100 35.1 100 100
Ts 5.8 7.5 72.4 100 13.8 100 100
Tw 5.5 7.5 72.8 100 14.0 100 100
T, 5.8 7.5 72.8 100 13.4 100 100
Tr 5.7 7.3 72.3 100 13.8 100 100
T3 5.2 7.5 64.6 100 11.6 100 100

1.0 Tp 5.3 20.5 92.1 100 32.5 100 100
Ts 5.6 7.1 71.8 100 11.8 99.8 100
Tw 5.7 7.2 71.9 100 12.1 99.8 100
T, 5.6 7.2 71.9 100 12.2 99.8 100
T 54 7.1 1.7 100 11.8 99.8 100
Ty 5.3 7.5 63.3 100 11.0 99.5 100

1.5 Tp 5.5 19.5 92.2 100 32.4 100 100
Ts 5.5 6.3 69.3 100 12.0 100 100
Tw 5.6 6.4 69.3 100 12.2 100 100
T, 5.6 6.4 69.3 100 12.4 100 100
Tr 54 6.1 68.9 100 11.7 100 100
T3 5.2 6.0 62.3 100 10.5 100 100
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Figure S1: Changes of sizes and powers with o, under Hy : 8 = 0 in the PFLM setting

Table S4: Sizes and powers in the PFLGRM setting when testing Hy : § = 0 with measurement

errors.

n e £E=0.1 £E=0.5

(71,72) B=0B=01B=05B=1 B=01B=05B=1
100 0.5 5.5 5.2 7.1 20.4 6.3 17.5  56.0
1.0 54 5.5 6.9 20.0 5.7 153 52,5

1.5 5.3 5.1 6.4 17.3 6.4 154 494

500 0.5 54 6.6 25.7  74.3 8.0 70.0 999
1.0 5.1 5.9 25.9  75.6 74 68.7  99.8

1.5 5.6 5.7 244 734 7.6 68.3  99.8
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Table S5: Sizes and powers in the PFLM setting when testing Hy : f = 0 and v = 0 with

different number of observation points.

n m £=01 €=05
(y1,92) B=0B=01B=05B=1 B=01B=05B=1
0.000) 58 7.0 174 556 72 469 959
0.1,01) 19.2 193 319 658 188 625 97.6
0.2,0.2) 624 627 698 881 639 850 98.8
0.3,03) 935 940 951 983 933 983 100
0.0,00) 56 74 176 577 7.8 508 078
0.1,01) 204 183 331 676 204 635 98.1
0.2,0.2) 640 640 701 892 640 861  99.6
0.3,03) 93.6 930 957 984 947  98.0 100
0.0,00) 57 7.9 1901 606 75 526 9O7.7
0.1,01) 20.1 199 345 69.6 21.1 650 98.2
0.2,0.2) 63.7 635 714 900 640  86.6 99.7
0.3,0.3) 949 955 968 988 950  98.2 100
)
)
)
)
)
)
)
)
)
)
)
)

(
(
(
(
(
(
(
(
(
(
(
(
500 30 (0.0,0.0) 5.6 7.2 621 99.6 113  99.0 100
(
(
(
(
(
(
(
(
(
(
(

100 30

50

100

0.1,0.1) 72.3 728 94.4 100 75.3 99.7 100
100 100 100 100 100 100 100
100 100 100 100 100 100 100
5.3 9.0 67.8  99.8 11.8 99.3 100
71.6  73.7 95.5 100 76.4 100 100
100  99.8 100 100 100 100 100
100 100 100 100 100 100 100
5.0 10.0 68.3 100 14.8 99.4 100
73.8  T4.2 95.7 100 74.9 100 100
100 100 100 100 100 100 100
100 100 100 100 100 100 100

0.2,0.2
0.3,0.3
0.0,0.0
0.1,0.1
0.2,0.2
0.3,0.3
0.0,0.0
0.1,0.1
0.2,0.2
0.3,0.3

50

100
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Table S6: Sizes and powers in the PFLGRM setting when testing Ho : § = 0 and v = 0 with

different number of observation points.

n m £=01 £=05
(71,72) B=0B=01B=05B=1 B=01B=05B=1
100 30 (0.0,00) 56 54 64 107 57 100 375
(0.1,0.1) 66 6.2 75 159 56 122 391
(0.2,02) 11.9 11.6 163 199 115 221 515
(0.3,03) 281 299 294 400 296 366 616
50 (0.000) 51 57 60 128 59 112 395
(0.1,01) 7.2 78 89 167 66 129 40.7
(02,02) 141 121 177 222 139 243 540
(0.3,03) 27.2 311 316 39.7 279 386 632
100 (0.0,00) 54 55 63 139 56 113 408
(0.1,01) 71 85 81 175 72 144 413
(0.2,02) 140 17.6 184 257 146 249 545
(0.3,03) 31.2 328 335 426 296  40.1  64.1
500 30 (0.0,00) 53 56 150 620 6.1 546 98.8
(0.1,0.1) 194 172 358 748 209 650 99.6
(0.2,02) 664 638 737 927 669 912 99.9
(0.3,0.3) 960 965  97.6 99.6 961  99.1 100
50 (0.00.0) 53 63 176 675 50 581 99.1
(0.1,0.1) 20.1 19.7 384 758 200 675 994
(02,02) 67.1 634 775 935  69.1  91.0 99.9
(0.3,0.3) 960 96.7 981 995 962  99.7 100
100 (0.0,00) 56 6.3 190 662 60 589 994
(0.1,0.1) 20.8 19.9 385 77.9 208  67.3 998
(0.2,02) 67.1 634 783 935  69.6 925 100
(0.3,0.3) 969 974 988 99.7 972  99.7 100
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S5. SIMULATION RESULTS WITH MEASUREMENT ERRORS

Table S7: Sizes and powers in the PFLM setting when testing Ho : 8 = 0 with different number

of observation points.

n m £=0.1 £=0.5
B=0B=01B=05B=1 B=01B=05B=1
100 30 Tp 5.3 16.8 41.3  84.0 17.4 78.7  99.6
Ts 5.1 5.4 171 56.4 6.4 49.1 976
Tw 5.5 5.6 179 572 6.7 50.0 97.2
T, 5.8 5.6 18.0 574 6.8 50.3 976
Tp 5.2 5.3 17.0  55.7 6.4 489  98.1
T3 5.5 5.5 152  53.5 6.1 445  96.4
50 Tp 5.1 16.1 426 84.7 19.0 79.2  99.8
Ts 5.2 5.6 17.8  58.6 6.7 50.2  98.3
Tw 5.6 5.8 19.1  59.7 7.1 50.3 984
T, 5.7 5.7 19.0  60.0 7.2 50.5  98.5
Tr 5.3 5.8 173 58.9 6.8 49.2  98.0
T5 5.6 5.5 16.0  53.6 6.7 45.1  96.6
100 Tp 5.2 17.2 442 86.3 19.7 80.3  99.8
Ts 5.4 5.5 18.4  58.9 7.2 50.0  98.8
Tw 5.6 5.7 19.3  60.0 7.5 51.2 989
T, 54 5.5 19.6  61.2 7.1 51.1  98.9
T 5.1 5.3 17.7  58.5 6.6 49.2 985
Ty, 5.4 5.3 16.3  55.0 6.9 46.0 975

500 30 Tp 5.5 18.9 90.6 100 30.6 99.9 100
Ts 5.3 6.7 68.7 100 12.2 99.6 100
Tw 5.4 6.9 68.8 100 12.2 99.6 100
T, 54 6.9 68.8 100 12.2 99.6 100
Tr 5.3 6.6 68.5 100 12.1 99.5 100
T3 5.2 6.8 62.7  99.9 10.9 99.5 100

50 Tp 5.3 20.5 92.1 100 32.5 100 100
Ts 5.6 7.1 71.8 100 11.8 99.8 100
Tw 5.7 7.2 71.9 100 12.1 99.8 100
T, 5.6 7.2 71.9 100 12.2 99.8 100
T 54 7.1 1.7 100 11.8 99.8 100
Ty 5.3 7.5 63.3 100 11.0 99.5 100

50 Tp 5.2 19.6 91.1 100 31.8 100 100
Ts 5.4 7.0 69.7 100 12.0 99.9 100
Tw 5.5 7.0 69.9 100 12.0 99.9 100
T, 5.5 7.0 70.0 100 12.1 99.9 100
Tr 5.3 6.9 69.3 100 11.8 99.9 100
Ty 5.2 6.8 63.2 100 11.0 99.6 100

100 Tp 5.3 20.7 92.1 100 33.5 100 100
Ts 54 7.2 71.3 100 12.7 99.9 100
Tw 5.4 7.3 71.5 100 12.7 99.9 100
T, 54 7.3 71.5 100 12.7 99.9 100
Tr 5.2 7.1 71.1 100 12.5 99.9 100
5 5.3 7.3 63.4 100 11.2 99.8 100
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Table S8: Sizes and powers in the PFLGRM setting when testing Hy : 8 = 0 with different

number of observation points.

n m £=0.1 £E=05
(y,7%2) B=0B=01B=05B=1 B=01B=05DB=1
100 30 5.7 5.4 6.8 18.9 6.0 13.1  50.0
50 5.3 5.5 6.9 19.1 6.4 14.5  51.7
100 5.5 5.7 6.4 20.3 5.9 15.4 52.7

500 30 5.2 6.0 24.1 725 7.3 66.5  99.5

50 5.6 5.7 254 725 7.4 67.9  99.9
100 5.3 6.2 27.2 755 8.0 67.9  99.9
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