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This document serves as a supplement to the main manuscript and is organized as follows. In
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we present Figure [1] which plots the root mean integrated squared errors of different estimators
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S1. Seven lemmas

For all 0 < s < 1 and m > 1, we define a,, = K?(ux)/nm.[F; (1) —
FY(mm,)]™! and a,(s) = K°(ux)y/nst,|F. Y (s,) — F. Y(sm,)]. Besides,
we also define a A b = min{a, b} and a V b = max{a, b} for any a,b € R.

Note that the Weibull-type distributions have a common extreme value

index at zero. Thus in addition to (2.3), F,(+) also satisfies

. F,(z+za(2)) R
Zlg(r}o F ) =e ", (S1.1)

for all z € R by (1.2.4) in de Haan and Ferreira (2006), where a(-) is
a suitable positive function. By Theorem 1.2.1 in |de Haan and Ferreiral

(2006), we can choose a(z) = [ F,(s)ds/F,(z) such that ( - ) holds,

andthenf F,(s)ds < oo for z < oo.

Lemma 1. For the function a(z) = [7° F,(s)ds/F,(z) in (SLI)) with [7° F,(s)ds

< o0 for all z € R, we have

lim
Z—00 z

Proof. Note that

a(z)H,(2) _ f;o F,(s)ds
z 2F, (2) /Hy(2)

where [ F,(s)ds — 0 as z — oo, and lim,_,o 2F,(2)/H,(z) = 0 by

lim, o 2F,(2) = 0 in |de Haan and Ferreira (2006) and H,(z) — oo as
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z — o0o. It follows by L’Hospital’s rule that

- f;OF’ s)ds . Fu(2)

u (
z—=o0 2F, (2) [Hy(2) sHh00 Dy(2)’

where D, (z) := F!(2)(1 + H,(2))z/H%(2) + F,(2)/H.(2). Hence,

Dy(z)  zH,(2)1+ Hy(2) 1

E,(2) Hu(2) H(2) H,(z)

It is easy to find that lim, o [1 4+ H,(2)]/Hu(z) = 1 and lim,_,o, 1/H,(2) =
0.

The following task is to calculate lim, ., zH! (z)/H,(z). Because H,(z)
is differentiable and H,(z) € RV(1/0), we can obtain that H/(z) €
RV (1/6—1). Noting also that H,(z) is strictly increasing and H,(z) — oo
as z — 00, we can get by Theorem B.1.5 (Karamata’s theorem) in de Haan
and Ferreira (2006) that for some zy > 0

H' H' 1
lim L(Z) = lim 2H,(2) = _.

z—00 f;o H!(s)ds 2o H,(2) — Hy(2) 6

Hence, it is readily seen that lim, .., zH!(z)/H,(z) = 1/6. This leads to

lim,_,o0[—Fy(2)]/Dy(2) = 6, and hence proves the lemma. O

Lemma 2. Suppose condition (C5) holds. Let 0 < s < 1, and 7, — 0 as

n — o0o. Then,

In gy (s7,|x)—In gy (7,]x) = llnn((ll//;)) [Q +0b (— ;?(::)) (1+ 0(1))} +w (s, Té/K(x))—FRm

where R,, = O((ln(1/7n))—2 vV w2(S’T%/K(x))>.
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Proof. Tt is easy to deduce that

In gy (s7,]x) — Ingy (1,|x) = In [qu <(STn)1/K(x)> (1 +w (S, Té/K(x)))/qu (Ti/K(x))}
T ((STn)l/K(X))

o T (Tﬁ/K(’Q) +In (14 @ (5,7,/%%))

0 <($Tn)1/K(X)>

t (r}/K(x)>

=T, +w (S,Tl/K(X)) +0 (w2 (S,Tnl/K(x))) ,

n

=In +w (SyTnl/K(x)) +0 (w2 (S’Té/K(x)))

where T}, = In[q, ((57,,)/%5 ) /qu (72 *))]. Noting that In_(z) = In[In(1/2)],

we have

oy [ (1 (57) L= n (573) /)]
T W) T /K6)

=0[ln_s(s7,) — In_o(7,)] + In {l (=In(s7) /K(X»}

l[(—=InT,/K(x))

InTt In(smn)/InTy,
=0[ln_s(sm,) —In_o(7,)] + b (— z ) / tP~1dt (1 + o(1))
1

K(x)
(S1.2)
. 1H(1/S) n - -2 _hll IH(STn> 0
=0 iy O @it/ )|+ (55 ) () 1ot
~ In(1/s)

[9 +b (—K_l(x) In Tn) (1+ 0(1))] + 0 ((ln(l/Tn))_Q) ,

~In(1/7)
where (S1.2)) is by D,(In(s7,)/InT,) ~Ins/In7, as 7,, = 0 with p < 0 and

the second order condition in (C5). This proves the lemma. O

Lemma 3. Suppose conditions (C1), (C2), and (C5) hold, and let 1,, — 0
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as n — 0o. Then for any k € (0,1) U (1,00), and each x € X,
Fit (krlx) — Bt (7alx) ~ F7t ((kr) VK00 — B (£1/K09)
Proof. Note that
— F(jl(an|X) 1)

Fit (k) — Fi (muls) = Fi () ( :

and

Pt (k) V500 ) =B (20309 — Bt (e [ £ (k) 759) 1
u n u n Fu_l <7_71/K(x)>

Let T = FY((kr,)VE®) JE=1 (72 X)) 1, then

H, ' (= In(kr,)/ K (x))

I'= ;1 lnTn/K( ) -1
_(In /m (~In(kr)/K(x)) _,
B (1 lnkT:n ) —i(@iﬁjf?i ) In (k) \"
‘( I, ) ( [~ In 7/ K (X)) 1)*( I, ) !
= (1 lnk;n ) I+ Ip,

where I4 = I(—In(k7,) /K (x))/l(—InT,/K(x))—1and Iz = (In(k7,)/In7,)’
—1.
Consider the case of k > 1 firstly. For /4 now, when [(-) is a non-

constant slowly varying function, by (C5) it yields that

e [r o)~ (R ) 2 (i) 0 o)
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with D,(In7,/In(k7,)) = fllm"/ln(km) tP~1dt ~ Ink/In(1/7,) as 7, — 0.
Hence, I — 0 as 7, — 0 such that Iy = exp(—1I) — 1 satisfies [4 ~
b(—In(k7,)/K(x))Ink/In7,. When [(-) is a constant function, I, = 0.
Similarly the term Ip, we have Ig ~ flnk/In7, as 7, — 0 after some
simple calculations.

Consequently, 7' ~ 0Ink/In7, as 7, — 0. Combining this relation,

(C2) and Fj; Y (1a]x) ~ E; Y (m/ "™ as 1, — 0, we can get

Fpt (kr|x) — Fyt (alx) ~ Bt (k)Y E) — E7E (r/ KB

u

For the case of 0 < k < 1, the claim of this lemma can be proved in a

similar way. O]

Lemma 4. If K(x) € (0,00) for allx € X, and k € (0,1) U (1,00), under

condition (C5), and 1, — 0 as n — oo, we have

F () = B () ~ [K(0)” [B (kr)V509) = B (r/509)]

u

(S1.3)

Proof. We first consider k£ > 1. Noting that

FN () = H,' (~In7) = (~n7) [ (- In7,).

u
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the left-hand side of (S1.3) is

FE Y kr) — FNm) = H (= In(kr,)) — H, ' (—1nT,)

u u u u

= [~ In(k7,)])’ 1 (= In(k7,)) — [~ In7,])" 1 (—In7,)
ln(an))e [(~In(kr) 1]

In7, I[(—InT,)

= [—In7,)’l(~InT7,) [(

== Al-

If we further let Ay = [K(x)]7[F (k7)Y 5) = o1 (1 K5)] be the right-

hand side of (S1.3)), then

Ao = [K(x)) [H (—%5’;;;’) i (‘ z1<<x>>]
= [~ In(kr,)]’ 1 (—h;gz;))) [l (_%)

(i) | (k) b D ),

When [(-) is a non-constant slowly varying function, by (C5) it yields that

l(_ In Tn) In 7,/ In(kty) .
R T A S LA R O P
5, n(z(—ln(m))> b( n(an))/l L4t

~b(—=In(kr,))Ink/In(1/7,)

—0 as 7,,—0



8 Fengyang He, Huixia Judy Wang AND Tiejun Tong

and

=l <l ff}l(k%’zf))) o (‘;?(::)) /11m/1n<m) e

~b (—]1?(2)) Ink/In(1/7,)

—0 as 7, — 0.

When [(-) is a constant function, §; = d, = 0. Also, we have [In(k7,)/In7,]°
—1 ~0Ink/InT, as 7, — 0 by straightforward calculations. In addition,
exp(z) — 1 ~x as x — 0 and b(z) — 0 as z — oo. Combining the above

results, we have

A= (7))l (= Inm) [(ln(’”’“‘))e (exp(—d,) — 1) + (m(m))" - 1]

In 7,

~(=In7,)' 1 (=n7,)0nk/In,

and

Ay = (=In7,)"1 (_ ?(z)) [(hﬁ?))e (exp(—z) — 1) + (ﬁfﬂ))e _ 1]

InT7,

N(—lmn)ez( K(X>>91nk/ln7'n.

Therefore, under lim, , {((z)/l(z) = 1 locally uniformly in ¢ on (0, c0),
we have A1 /Ay — 1 as 7, — 0.

For 0 < k < 1, we can prove the result accordingly so that Lemma [4]

holds. [l
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Lemma 5. Let F); (1) = inf{z : F,(2) <7} for any 7 € (0,1). By (SL.1),

for any x > 0, we have

-1 _ -l
B er) - B ()
—0  a(FY(7))

Proof. Let V(z) = inf{y : 1/F,(y) > z}. By Theorem 1.1.6 in de Haan and

Ferreira (2006)), (S1.1) is equivalent to

. Vite) = V(t)
tlggo v Inx (S1.4)

for a positive function b(t) and x > 0, where a(t) = b(1/F,(t)). Noting

also that F,(z) is differentiable and strictly decreasing so that b(1/7) =

a(F; (7)), (S1.4) can be rewritten as

Vie/r) = V() _ . FNr/e) = B

lim — Inz
=0 b(1/7) 0 a(FN(T))
for x > 0. Therefore, for any x > 0,
-1
lim Rl er) — BT ) —Inz.
70 ( —1(7—))
m
For a given positive integer J and [ > 0, let s; >0, 7 =1,...,J, be a se-
quence of real numbers, Z,, = a,(6(7,) — 8(7a)) and Z,(s) = an(s)(B(s7,) —

B(sn))-
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Lemma 6. Suppose conditions (C1)-(C5) hold, 7, — 0, and nt, — oo.

Then,

AT (SJ)’)' b (Zs (51) - 7o (5,))) 2 N(0,90),
Sj A\ Sj/

A /Sij/

0

EZOO(SJ')ZOO(SJ’)/ =

for i, j° = 1,...,J, where Qy = (Inm)2Q,/0xQy", Ox = E(XX),

Q= E[(H(X))"'XX] and H(X) = [K (ux)/ K (X)]’ for § > 0.

Proof. Step 1 outlines the overall proof by convexity lemma in Knight
(1989)), while the principal Step 2 proves some preliminary results in Step
1. Step 3 shows joint convergence of several regression quantile statistics.
Hereinafter, we note 7 for 7,, for simplicity.

STEP 1. With reference to (2.2), and note that Z, = a,(8(r) — (1))

minimizes

Ro(z,7) Z pr (Yi = XiB(7) = Xiz/an) — p- (Vi = XiB(7)))

\/m

Making use of Knight’s identity,

pr(u—v) = pr(u) =—v(I(u>0)—7)+ /OU(I(u >0) — I(u > t))dt
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then,

R, (z,7) = Wo(1)' 2+ G,(2,7),

n

\/% Zl Y, > X\8(1)] — 1) X, (S1.5)
ay n X’z/an ) —
Gule) = = Zl (/ 1Y; — X\B(r) > 0) — [(Y; — X\B(r) > t)]dt) |

By Lemmald, W,(7) % W £ N(0,EXX), and by Step 2,

Inm

p
Gn(z,7) = 5

ZQuz,m > 1,

where Qp = E[(H (X)) 'XX'], H(X) = [K(ux)/K(X)]? for Weibull-type
tails. Thus, the weak marginal limit of R, (z) is given by

Inm
2

Roo(2) =W'z + 2 Qpz.

We know that E(XX') is positive definite by (C3) and 0 < H(X) < d < o0
for some constant d. Thus, Qg is finite and Qg is positive definite. In
fact, 2’Qpz = E[(X'2)?/H(X)] = 0 for some z # 0 if and only if X'z = 0
a.s.. Hence, the marginal limit R, (z) is uniquely minimized at Z,, =
—(Inm)'Q'W £ N(0, (Inm)~2Q;'E(XX/)Q5"). According to the con-
vexity lemma in [Knight (1989), we get Z, 4 Do

STEP 2. This step shows that as 7 — 0, E{G,(z,7)} — 27 Inmz'Qpz,
whereas Lemma [7] proves that Var(G,(z,7)) — 0. Define fy(z|X;) =

OFy(2|X;)/0z. In what follows, F; and f; denote Fy(-|X;) and fy(:|X,),
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respectively, where U is the auxiliary quantity constructed in (C1). Since

o Xizlan TI(Y; — XUB(r) > 0) — L(Y; — XUB(7) > 1)
Gn(z,7) = Zan (/0 [ NZD ] dt)

=1

” </ * {1 (Vi = XIB(r) > 0) ~ 1(Y; = XIB(r) > t/%)} dt) ,

Jn

i=1

(S1.6)

{F,
~E (M;mm) (S1.9)

(S1.7) is according to the definition of a,, and a first order Taylor expansion.



S1. SEVEN LEMMAS13

In fact, owing to 7n — oo uniformly over ¢ in any compact subset of R,

To prove ((S1.8)), it suffices to show that, for any sequence v, = o( F, }(7)—

F Y (m7)) withm > 1as 17— 0,
fi{F7' () + v} ~ f; (F7'(7)) uniformly in i. (S1.10)

This will be shown by using the assumption made in (C4), which is that
uniformly in 4, 1/ f;(F; (7)) ~ OF; Y (75X)) /o1, where OF; ' (exp(—2))/0z
= 0H;'(2)/02z € RV (0 — 1).

To be clear, we first show (S1.10)) for the special case of f; = f, and

fu (BN ) +0,) ~ fu (F7M(7)), (S1.11)

as T — 0. By the regular variation property of 0F (1) /01 = 1/ f.(F (7)),

locally uniformly in [ in any compact subset of (0, 0),

fu (F7N(IT)) ~ Ufu (BN (7)) (S1.12)

Namely, locally uniformly in [,
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Hence, for any [, — 1,

Fu (BN ) + [ENer) = BN ())) ~ fu (BN(7))

Therefore, for any sequence v, = o(F,(m7) — F (7)) with m > 1 as

T — 0,

fu (E7HT) +0,) ~ fu (F7H(7)),

because for any {v,}, in view of

as 7 — 0

r) Inm
by Lemmal}, and we can choose a sequence {I, } such that {v,} = {[F;*(I.7)

—F7 (7))} with I, = 1 as 7 — 0.

Now, to prove (S1.8), we generalize the (S1.11)) to (S1.10). It is easy to

prove the following (a)-(d).

() 1/ fi(F; (7)) ~ OF N (K X) Jor = 1/{ K (X;)r' =V ROD £ (F7H (rEED)) )
uniformly in ¢ by assumption (C4), and

(b) fu(F7HIT)VEY ~ IVEf(FEY (1K), locally uniformly in I and
uniformly in K € {K(x) : x € X'}. Thus, combining (a) and (b), we have

that locally uniformly in [ and uniformly in 7,
fi (M (1r) ~ Ufi (F7H(7))

(¢) F7Nr) — E7 k) ~ EZY(rY/EXD)) — FPo1((Br)V/ K X)) for any k €

)
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(0,1)U(1,00) and X; € X by Lemmal3|and F, (1) — F; *(k7) ~ [K(X,)]’
x [F7H(rVEXD)y — =1 ((kr)Y/EX))] by Lemma .
(d) fu(E7HTY) ~ 107171 £, (F7Y(7)) locally uniformly in /.

As we have proved in (b) that locally uniformly in [

fi (B () + [F () = FA(n)]) ~ Ufi (FH(T)
therefore, for any [, =+ 1 as 7 — 0,

fi (BN ) + [FH(r) = FA()]) ~ fi (FH(T) -

For any sequence v, = o(F;Y(m7) — F; (7)) with m > 1 as 7 — 0, and

u

noting that F71(7) — E-Ym7) ~ [K(X)]P[F7 (1) — F;7 ' (m7)] by (c), then

2

we have v, = o(F;, ' (m7) — F; *(1)).

Besides, using (c) and Lemma |5, we obtain that

B - ) Foer) - B
i (mT) = F7Y(7) EN(mT) — F7N(T)
Inl.
T T lam’

where Inl,/Inm — 0 for any I, — 1 as 7 — 0. Hence, for the above
sequence {v,}, it satisfies that {v.} = {[F;'(l,7) — F;1(7)]} by selecting
a sequence {l.}, where [, — 1 as 7 — 0. Consequently, the required

conclusion (S1.10]) holds.
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(S1.9) can be shown as follows. By (a), uniformly in i,

. (S1.13)

F,Y(mr) - F () F, Y (m7) — F (1)
(B ETE)) T R KPR f, (B (rE0))]

7

By (d), we have uniformly in ¢,

K (X)) VRO £ (B (75090)) © K(X0)1F,

u

E;N7)).  (S1.14)

__ L Rmr) = b S1.15
AT R
where H(X;) = [K (ux)/K(X;)]? for § > 0.
In addition, by 0F,*(n)/0n = 1/f. (F;*(n)) and (S1.12),
Pt mr) — F(n) _ fu (M) (M OF ()
™ (Fu (BD)) T /1 ot
_ L (EZ@) M T
S v
" fu(FUN()
“h g Ee)”
~ /m tldt
= Inm. (S1.16)

Combining (S1.15)) and (S1.16)) proves (S1.9)).
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STEP 3. By the definition of Z,(s), we note that

(Zn(s;),5=1,...,J) = argmin [R, (21, 5:7) + - - - + R (2, 5,7)]
zZcRAXJ
J

= arg minz (Wi(s;7) z; + Gulzj, 857)]

zeRAXJ =1

where z = (z],...,2)) and the functions R,(-,-), W,(-) and G,(-,-) are
defined in (S1.5)), respectively. As this objective function is a sum of
the objective functions in the preceding steps, it retains the properties
of the elements summed. Accordingly, the previous arguments can be
used to conclude that the marginal limit of this objective function is giv-

en by Y27 [W(s;)'2 + Gz, 5;)], where (W(sj),1 < j < J) £

N(0,%)
with G(z;,s;) = (Inm/2)2'Qpz and E[W (s;)W (s;)'] = E(XX')((s; A sj1)/
/5;5;) for j,7 = 1,...,n. This limit objective function is minimized at

(Zoo(85),1 <5 < J) = (=(Inm)1Q5'W(s;),1 < j < J). Indeed,

J
1
P(z) := Z (W (s;)'z; + G(zj,85)] = W'z + %z’Qz,
j=1
where W = (W(sy),...,W(s;)") and Q = diag(Qpn,...,9Qn). Hence,
®(z) is uniquely minimized at z = —(Inm) "' Q7'W = (—(Inm) "t Q' W (s;)
1< j < J). Thus, (Zu(s;),1 < < J) S (Zoo(sy),1 < j < J) by the

convexity lemma of [Knight| (1989). O

Lemma 7. Let {Y;,X;,i = 1,...,n} be an i.i.d. sequence. We have the

following statements for W, (-) and G,(-,-) in (SL3), as 7 — 0 and 7n —
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Q.

(a) For any constants s; >0, j=1,...,J,
(Wa(s17), -, Walsyr)) L (W(s1), ..., W(sy)') < N(0,%),

with B[W (s;)W (s0)'] = ((s5 A sj1)//3557 ) E(XX'), for j,j'=1,...,J.

(b) Var(G,(z,7)) — 0.
Proof. The proof of this lemma follows arguments similar to those used in
the proof of Lemma A.5 in He et al.| (2016).
(a) Let
W = (Wu(sim), ..., Wa(sy7)), B=(p,...,07),

where each 8; € RY j = 1,...,J. By the Cramér-Wold theorem, part

(1) can be proved by finding the limit distributions of the sequence of real

variables
J n
B'W = " BiW,(s;7) = Y Zim,
j=1 i=1
where, for all i = 1,...,n, the random variables Z, ,, are defined by

J
1
Ziw ==Y ——— (1Y, > XIB(s;7)] — 5,7) BiX.
= NS

Note that {Z; .}, is a set of i.i.d. random variables, and their expectation

and variance are

E(Zi,) = E[E(Zi|X:)] =0, Var(Z,) = —B'C(X)B,



S1. SEVEN LEMMAS19

where C(X) is the covariance matrix with sub-matrix defined for (j, ') €

{1,...,J} by

A (X) = Cov ((I[Y = X'B(s;7)] = 5;7) X, (IY = X'B(s;7)] = 5;:7) X)
= E{(I[Y = X'B(s;7)] = 5;7) (I[Y = X'B(s;:7)] — 557) XX}
= E{E ((I[Y’ 2 X'8(s;7)] — 5;7) (I[Y = X'B(s;7)] = 550m) XX'|X)}

= [(Sj A S]'/)T — Sij/TQ} E (XX/) .

Hence, Var(}_!" | Z;,) = 7 'B'C(X)B — B'YB as 7 — 0, where the sub-
matrix for (j,5) € {1,...,J}? is ;5 = ((s; A sy)/y/5557)E(XX'). In

addition, by the central limit theorem,

7
B'W 2 Zin
==t 4 N(0, 1).

\/ Var (g}l Zz»n) \/ var (é Zm)

Further, by Slutsky’s theorem, we have

B'W
Tosg V0.,

or equivalently, B'W 4, N(0,B'YB). Thereby, by the Cramér-Wold the-
orem, we get W 4 N(0,%) with E[W (s;)W(s;)] = ((s; A sj1)//5;557) X

E(XX).
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(b) By (SL.6)), we have
Coler) = 3 ( / [I (Y: = XjB(r) > 0) = L(¥; = X}B(r) > t/an>] dt) |

— NGD
Consequently, Var(G,(z,7)) = Var(\,)/7 for
Xz
N [ IO XIB() > 0) - LY - X(0) > b)) e
0
By (C3), [\l < Ka(2) il for pi = 1(Y; = XiB(7) > 0) = I(Y; = X5(T) >
X!z/a,) and some Ki(z) € (0,00). Therefore,
Var(A) = O (E (\?))
=0 (E (1)) (S1.17)
= O(E(|ml)), (S1.18)
where (BLTT) is by | < Ka(2)|| and SLI8) is by || € {0,1}. For
E(lpal), we have E(|pn[) = E[E(|u[|X1)], where
E ([ X1) =P (] = 11X)
<P =—1X1) + P (= 11Xy)

< L]+ |,
where
I =P (XiB(1) + Xiz/a, <Y; < XiB(7) X))

<|F (F7H(m) + Xiz/an) — F (F7(7))|

)
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and

I, = P(X{3(r) < Y < XB(7) + X

7

Accordingly, B(|n|[Xy) < 2[F;
ally, Fy(F; () + Xiz/an) — Fy(F7H (7)) ~ [fi(F;1(7))(X}2)] /an by (SL.7)
and (S1.8). Then,

'11 \
=
>
+
e

'z/an) — Fy(F7H(7))|. Addition-

E (Iml[X1) = O (|F (F7H(7) + Xjz/an) — F; (F7(7))])

fi (F7H() ~ K (Xa) fu (FH(7)) - (S1.19)

This leads to E(|u1]) = E[E(|1]1X1)] = O(|fu(F1(7))|/an). Moreover, by

(S1.15) and (S1.16) and the fact that —/n7/a, = K=%(ux)[F; (m7) —

_\/Ef’ (Fi_l(T)) N 1 ' Inm. (S1.20)

Combining (S1.19)) with ( m we have

K7 ) E2O)

which implies that |f,(F;1(7))|/a, = O(y/7/n). Hence, Var(G,(z,7)) =
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O(1/y/n7T) by noting that E(|u|) = O(y/7/n), and then Var(G,(z,7)) =

o(1) as nT — oo. O

S2. Two propositions

Proposition 1. Suppose condition (C5) holds. Let 7, — 0 as n — oo such
that k, = In¢,/In7, — Kk € (1,00). Under the location shift model in

(M1), we have the following results.
Case (i): f 0 < s < 1, e(2) = clnz/z with ¢ € (—00,0) U (0, 00), and

[(z) = ¢y > 0 as z — oo, then for each x € X,

@ (5,756 = 0 ((1n(1 /Tn))—1—9> ,

@ ()T, THED) = O ((1n<1/7n))*9) .

Case (ii): If 0 < s < 1, e(z) = 0 for any z > 0, and [(z) = A > 0, then

for each x € X,

@ (5,7/5®) = 0 ((in(1/m)) ).

@ ()T, T/ KDY = O ((1n<1/fn))—") .

Case (iii): If 0 < s < 1, e(2) = 1/Inz, and l(z) = alnz with a > 0,
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then for each x € X,

@ (5,74/5®) = 0 (n(1/7)) " (mn(1/7)) "),
@ (/7 72/ 59) = O (1n(1/7)) ™ (mIn(1/7)) ).

Proof. The proof of this proposition is a simplified version of proof of propo-

sition 2] and is therefore omitted here. O

Proposition 2. Suppose condition (C5) holds. Let 1, — 0 as n — oo such
that k, = In,/In7, = Kk € (1,00). Under the heteroscedastic model in
(M2), we have the following results.

Case (i): f 0 < s < 1, e(2) = clnz/z with ¢ € (—00,0) U (0,00), and

[(z) = ¢y > 0 as z — oo, then for each x € X,

@ (5,7/5®) = 0 ((nIn(1/7)(n(1/7.)) >V (in(1/7,)) ).
@ ()T, T/ E®) = O ((m In(1/7,))(In(1/7,)) " v (In(1 /Tn)),9> ,

Case (ii): If 0 < s < 1, e(z) = 0 for any z > 0, and [(z) = A > 0, then

for each x € X,

@ (5,7/5®) = 0 (n(1/m)) ).
@ (/T T KX ):0((111(1/7”))—9).

Case (iii): If 0 < s < 1, e(2) = 1/Inz, and l(2) = alnz with a > 0,
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then for each x € X,

w (s, T;/K(x)) =0 ((ln(l/Tn))_1 (lnln(l/Tn))d) ,

w (¢n/Tn,Tﬁ/K(x)) =0 ((ln ln(l/Tn))_Z) .

Proof. Because qu(7) = qu(7/5®))(1 + a(7)) for any 7 € (0, 1), we have

av (s71%)  qu ((s7)YECN) 1 4 afst) + X B, /gy ((s7)/EX)

o (71x) g (FYEC) 14 a(r) + /B, /qu (TV/EX)

It is easy to obtain that

1/K(x) a(sm,) — a(r,) + xS, [1/qu ((STn)l/K(X)) —1/q. (TnuK(x))]
w (S, Tn ) 14 a7, + X' B/ qu (T, 1/ K ()
I + X', 1
1+ a(r) + X6 /qu (1, /E®))’

where I, = a(sm,) — a(r,) and I = 1/q,((s7,)"/5®) — 1/q,(7,"/K®).

Similarly, we can get

I + x'B,I.
1/K(x)) _ 1 ri2
« (wn/TT“ Tn ) B 1+ 04(7_71) + Xlﬁr/‘]u (Tnl/K(x))’

where I; = a(i,) — a(7,) and I = 1/q, (v, /K™Y — 1/, (1, K®). Also,

for the heteroscedastic model in (M2), we can find that

alr) = (x6) s 1

Furthermore, we have

ol — (o Gu (8T0) (W)
Oé(STn) (n) ( 5) qu((STn)l/K(x)) Qu (Tnl/K(X))
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and

—alr) = (¥ Qu (@Zjn) _ Gu (Tn)
Oz(l/’n) ( n) ( 5) 0 (Q/Jnl/K(x)) Qu (Tnl/K(X))

First we study the convergence rate of w(s, 7,5 ®) — 0 as n — oo for

0 < s < 1. For I, by using q,(7) = H; (= In7) = (= In7)%l(—In7) for all

u

7€ (0,1) and x’¢ = K~%(x), we obtain

I - [(—In(s1)) (=) '
[(—In(s7,) /K(x)) I(=InT,/K(x))

Noting that I(z) = cexp{ [, e(t)/tdt} in (C5)(ii), we have

| et 7). B

::Il,l_>0 as ™ — 0

and

] - e [

=i —0 as 7, — 0.

Hence, if I1; —I12 # 0, [ = ef2(eft1=l2 — 1) ~ [} — 1 5 as 7, — 0. Note

that

—1In(s7y) —In(smn)/K(x)
Ly —1ip= / @du — / @du

In(rn) U In(r)/K(x) U

= J171 - ’]172' <S21>



26 Fengyang He, Huixia Judy Wang AND Tiejun Tong

Case (i): €(z) = c¢lnz/z with ¢ € (—00,0) U (0,00) and I(z) — ¢o > 0 as
z — 00.

By some calculations, we can derive that

T = {1 +In[ln(l/7)] 1+ ln[ln(l/(STn))]}
’ In(1/7,) In(1/(s7,))
and
 oK(x l1+Inn(l/m) —InK(x) 1+Inlkn(1/(s7)) —InK(x)
s = ) | LT e

Letting 7, = In(1/7,), A =1 — K(x) and B = K(x)In K(x), we have

Lh~hy—ho=Jin—Jig
(A+B)In(1/s) + Aln(1/s)In7, — A7, In (1 4+ In(1/s)/7,)

- 7 (In(1/5) + 7)

A In(1/s)In7,
_ cn(1/s) (1 — K(x))Inln(1/7,)
(In(1/7,))"

Case (ii): e(z) =0 for any z > 0 and I(z) = A > 0.

In this case, it is clear that I; = 0.
Case (iii): €(z) = 1/Inz and l(z) = alnz with a > 0.

For convenience, we let 7, = Inln(1/7,) and 75, = In(1 + Ins/In7,).
By some calculations, we get J; o = In{1 + [75,,/(7, —In K(x))]} and Jy 1 =
In{1 + (75n/7n)}-

Hence, by I; ~ I;1—1, 5 and (S2.1)), we have I ~ Insln K(x)/[In(1/7,)
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Inln(1/7,)]?, where

Tom In K (X)
_ =In(1- :
J1’1 J1,2 n ( T'rL (Tn —In K(X) + 7._3777,))

o _Tem In K (x)
Ea%
Insln K(x)
In(1/7,) Inln(1/7,)]*

~

For I, we have

L1 [ (m9)
C 0 (RVE) | gy (sm) VED)

_ 1 H'(-ln7/K(x) 11
Gu (1K) LHH (= In(s7,) /K (x))

_ 1 ( In 7, >9ll(—1nTn/K(X))> _1]

In(s7,) (—In(s,)/ K (x)

Y

B 1 InT, 6[ I
= 0 (Tnl/K(x)> ln(STn) 2,1+ 122

with In; = I(—In7,/K(x))/l(—In(s7,)/K(x))—1 and I 5 = (In7,/In(s7,))?
—1~#60lns/In(1/7,) as 7, — 0. For Iy, under Case (i) and Case (iii), from

the second order condition in (C5), we obtain

o nl(—ln(srn)/K x) ,( Inn n(s7n)/n 7 o1 .
A= T /K () ‘b< K(x))/l 1+ (L)

b In7, \ Ins
K(x)) InT,

Hence, I, = e™® — 1 ~ Ins[K(x)]7*b(—InT,)/In(1/7,). Under Case (ii),
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I,; = 0. Also, by qu(Tnl/K(x)) =[- lnTn/K(X)]‘9 l(—InT,/K(x)), we get

1 flns
Gu (1,5 In (1/7,)
(K (x)]091ns
[—In7,) "1 (= In7, /K (x))

Iy ~

Combining the results for I; and I3, we can obtain the results of Proposition
for (s, 7,/ K®),

For the convergence rate of @ (1, /7, 7,/ %X*)), with a similar argument
as those for I; and I, we have the following results.

Case (i): €(z) = clnz/z with ¢ € (—00,0) U (0,00), and I(z) — ¢y > 0
as z — 00.

Inln (1/7,)

I ~c(l - K(x)) (1—r7") n(1/m)

;K x))” [0 (1 +o(1)) — 1]
(In(1/7.))" (In (1/7,) /K (x))

~0 ((111(1/%))—9) .

Case (ii): e(z) =0 for any z > 0, and I(z) = A > 0.
=0 and L=0 ((1n(1/7n))—9) .

Case (iii): e(2) =1/Inz, and I(z) = alnz with a > 0.

[N In K(x)In(1/k)
(Inln (1/7,))*
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K [ (1 o(1) ~ 1]
(In(1/7,))" 1 (In (1/7,) /K (x))

=0 ((n(1/7))™ (mIn (1/7))7") .

Combining the results for _fl and jg, we hence establish the results of

@ (V[ Tn, Té/K(X)) in Proposition . 0

For the five important examples of Weibull-type distributions in (E1)-
(E5), the Gaussian, Gamma and extended Weibull distributions belong
to Case (i) of the above two propositions, and the Weibull and modified
Weibull distributions belong to Cases (ii) and (iii), respectively. By Propo-

sitions B.1 and B.2, we are able to give the desired rates of 7,,, respectively.

(E1) Let u follow N(, 0?) with o > 0,0 = 1/2 and b(In(1/7,,)) = Inln(1/7,)
/(41In(1/7,)).
Under both (M1) and (M2), w(s,rﬁ/K(x)) = O((In(1/7,))7%/?) with
0<s<1and @(@n/m, /™) = O((In(1/7,))~Y/2). Hence, if 7, =
ko(Inlnn)/n with ky > 0, then all the conditions of theoretical results

are fulfilled.

(E2) Let u follow I'(8, ) with § = 1 and b(In(1/7,)) = (1 — o) Inln(1/7,)
/In(1/7,).

Under (M1), @(s,/*™) = O((n(1/7,))72) with 0 < s < 1 and
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(/T T ) = O((In(1/7,))7Y). Hence, if 7, = ko(Inlnn)/n or
koInn/n with kg > 0, then all the conditions of theoretical results are

fulfilled.

Under (M2),w(s, /5™ = O((InIn(1/7,,))(In(1/7,,))~2) with 0 < s <
1 and @ /70, 7/ ™) = O((InIn(1/7,))(n(1/7,))"Y). Hence, if
Tn = ko(Inlnn)/n or kglnn/n with ky > 0, then all the conditions

of theoretical results are fulfilled.

(E3) Let u follow W(a, A) with a, A > 0, 0 = 1/ and b(In(1/7,)) = 0.

Under both (M1) and (M2), w(s, 7/ ™) = O((In(1/7,))~@+D/) with
0<s<1and @(thy/T, 7’ “®) = O((In(1/7,))"V*). Hence, if 0 <
a < 2, let 7, = ko(Inlnn)/n or kglnn/n with kg > 0; if a > 2, let
Tp = ko(Inlnn)/n with kg > 0, then all the conditions of theoretical

results are fulfilled.

(E4) Let u follow EW(a, 8) with § = 1/a and b(—In7,) = —FInln(1/7,)

/(a?InT,)%

Under (M1), we can obtain w(s, 7o/ ™) = O((In(1/7,))~@*+1/®) with
0<s<1and @w(t,/Tn, T K x)) O((In(1/7,))~%*). Hence, if 0 <
a < 2, let 7, = ko(Inlnn)/n or kylnn/n with kg > 0; if @ > 2, let

Tn = ko(Inlnn)/n with ks > 0, then all the conditions of theoretical
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results are fulfilled.

Under (M2),if0 < a < 1, @(s, 2/ *™) = O((In In(1/7,,)) (In(1/7,,)) ~2)
with 0 < s < 1 and w@w(¢, /7, Tn /K x ) = O((InIn(1/7,))(n(1/7,)71);
if a > 1, w(s, T,%/K(X)) O((In(1/7,))~@+V/*) with 0 < s < 1 and

(), KN = O((In(1/7,,))" V). Therefore, if 0 < o < 2,
let 7, = ko(Inlnn)/n or kglnn/n with kg > 0; if « > 2, let 7, =
ko(Inlnn)/n with ky > 0, then all the conditions of theoretical results

are fulfilled.

(E5) Let u follow MW (a) with 0 = 1/«, b(In(1/7,)) = 1/Inln(1/7,) and
a> 0.
Under (M1), @(s, /™) = O((In(1/7,,))~+)/e(InIn(1/7,))~!) with
0<s<1and @Wn/m ' ™) = O((In(1/7,))"Y*(In1n(1/7,))~L).
Hence, if 7, = ko(Inlnn)/n with ky > 0, then all the conditions of
theoretical results are fulfilled.
Under (M2), w(s, T%/K(x)) O((In(1/7,)) (Inln(1/7,))~%) with 0 <
s < 1 and @ (¥, /T, Tn Ta x)) O((Inln(1/7,))~?). Hence, if 7, =
ko(Inlnn)/n with ky > 0, then all the conditions of theoretical results

are fulfilled.
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S3. Proofs of the theorems

Proof of Theorem 1

By Lemma [T, we have

IOLAD

Z—00 zZ

=40.

Furthermore, if we let z = F;'(,,) — oo under 7,, = 0 as n — oo, then

- a (Fu_l (Tn)) In(1/7,) _
e L

Under (C1), (2.5), and Remark 1, we have Fy'(s7,|x) ~ K~%(x)F1(7,)

as 7, — 0 holds. For any s > 0 and x € X', we have

_ nty Fu_l (T_n) a ( 71:17(7—”)) hl(l/Tn)X/a (S)
an(s) X' (sm,) a (qul (Tn)) Ft () "
X (B (s1,) — B (STn)>

:\/WKG(X) (14+0(1))a ( Jlan)) ln(l/Tn)X/Z
an(s) a (qul (Tn)) Fot ()

~Inm (1 +o0(1) 5 (s
T VAHG) i)
:anm(l—i-o(l)) ,

VSH(x)
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according to a,(s) = /ns7,/[K~%(ux)(F (s7) — F, ' (smy))], H(x) =

[K(ux)/K(x)]? and Lemma |5 Hence,

G (51]%) s 0 -0 Zn(s1) op(1)
Gn (52|x) Olnm 0 s2x -+ 0 Zn(59) op(1)
T HX) "
_1 N
Gn (87]%) 0 0 ERICEES 4 Zn(87) op(1)

Using Lemma [0, we get

(Zutsa)' . Zn(sj)'>' b (Zo (1) s Zool52)) 2 N(0,92),

EZoo(5;) Zoo(s55) = MQO’
A /Sij/

where j, j' = 1,...,J, and Q = Q' Ox Q" In"> m. Consequently,

/ 1 d

(G (511%) -+ (571%)) 5 (Goo (51) -+ oo (50)) = N(O, Zy09),
where (Zyx));p = 02(x'Qz)H ?(x)(max(s;, ;7)) for 5,7/ = 1,...,J,
O = Q;'0xQy!, Qi = E[(H(X))'XX', H(x) = [K(ux)/K(x)) and

Ox = E(XX).

Proof of Theorem 2
Define 1,41 = Ing,(sj17|x) — Ingy (7,|x) and I; = Ing,(s;7.|x) —
Ingy (ra]x). By I; = In(qy (8;7]%)/qy (1a]%)) + In(Gn (870 ]%) /@y (557a X)),

we have by Lemma [2] that

o (qﬁﬁg)) - Eﬁﬁ;; [9 o <_11?(:Z)> (1+ 0(1))} + @ (55,7 E™) + R, ,
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where R, ; = O((In(1/7,)) 72V @?(s;, 7,/K®)). In addition, let §,(s;7,|x)
[ay (s;Ta|x) = 1+ 0,&,, where 0,' = /n7,In(1/7,). It follows that

(Ents - Ens) 2 N(0,Sy00) by Theorem 1. We then yield

i 0+ (R 0+

+ @ (s, Tnl/K(x)) + R, ;.

Ij :O-ngn,j + Op (0'721) +

In a similar way, we can also get

L1 =001+ Op (07) +

ey (R

+w (Sj+1, Tnl/K(x)) + Rn,j—H-

Hence,

L1 — Ij =0y (§nj+1 — &ng) +

i 17+ (g 4 o)

+ 0 ((n(1/m) 7V (Vi [ (55,7 ™)) + Or (07) -

Then,
. 1 J InT,
Vi (B30~ 0) = D (s = 5) g+ b (— ) (1 0(0)
+0 (A v (V1) Vi [ (55 5 )
+ Op ((v/nm In(1/7,)) ")
S (g — wy) €+ 0p(D), (53.1)

In(1/r) ‘=
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where (S3.1)) holds by conditions /n7, max (1/In(1/7,), [b(In(1/7,))]) — 0

Therefore, \/n7,(0,p(x) — 6) 4 N(O, (Inr) 2W'Sy W), where W =

;.
(wo—wl,...,wj_l—wj,...,wj_l—wJ) with WQ:wJ:O.

Proof of Theorem 3
Let T; = Ingy(s;mn|x) — Ingy (7,|x) and Ty = In[g,(7,]x)/qv (1,]x)].
Noting that T; = In(gy (s;7./%)/qy (Tn|X)) + In(Gn(5;70|%) /qy (s;70|X)), we

have by Lemma [2] that

T = Eﬁfiﬁ {9 +b <—%> (1+ 0(1))] + @ (55,7 /5®) + R, ;,

where R, ; = O((In(1/7,)) 72 V @?(s;, 7,/ K®)) for j =1,2,...,J.
In addition, it follows from Theorem 1 that

G (5570 |X)

=1+ O—ngn, j )
Gy (8jTalx) ’

where (&,1,...,&0) N N(0,2yx)) and 0,,' = \/n7,In(1/7,). Hence,

Ty =0n6n; + Op (07) + Egﬁ_ﬁ {0 +b <— In 7, ) (1+ 0(1))}

+w (Sjy 7_nl/l((X)) + Rn,ja

forj=1,2,...,J,and Ty = 0,£,,1+O0p(c?). Then, we can get the following

expansion
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\/n_m(én,H(x) — 9) NS (m 1/7,) (Z In(1/s;) ) Z (T; — Tp) — )
éfn’j — (= D InT,
= +\/n_Tnb( (;)) (14 0(1))
> In(1/s;)

7j=1

0 (LT (0 ) (4L 7)) )
+O0p ((\/n_mln(l/Tn))fl)
= <Z ln(l/sj)> [anj 1)&nn

-+ OP(l),

(93.2)

where (S3.2)) holds by conditions |/n7, max (1/ In(1/7,),b(In(1/7,))|) — 0

Jo=(1—J,1,...,1), then JoSqp0p = 02(x'Qux) H2(x) (X, ((2( — ) +

1)/s;) — J?). Hence,

VT (O (x) — 0) 5 N(0, Ay H2(x)6% (X' %)),

where

Ay = (Z<<2<J—y)+1 /55) = )(Zleg 1/sj) .

j=1

The proof of this theorem is completed.
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Proof of Theorem 4

The following expansion can be obtained easily,

VT e (Ynlx) _ /170 [mqn (To|X) + 0, In £y, — 10 gy (¥]%)

Mk, qr(alx)  Inky,
_ jy o Nty qn( nlx)
i (en 9) o e
+ lvnn/: (1n qQy (Tn’X) In qy(¢n|x) +01n Hn)
= Il + 12 + I3.

Under the assumptions of the theorem,
I, = /n7, (én — 9) LN N(0, 7).

By Theorem 1, we have

ln(l/Tn)\/n_Tnln Gn (7n|x) — Op (#) =o(1).

In(1/7)Ink, gy (Ta]x) 1/7,)

Finally, according to the second order condition in (C5) and lim,_,~, b(Cz)/b(2) =

Iy =

¢? for any ¢ > 0, the term I3 can be written as

nt, Gu (/)
Iy =~ In x,, n Tu <( nl/K(x))> +In (1 +w (Q/Jn/Tna Tnl/K(x))) —0lnk,
L= Inyn/K(x) VG .
lnﬁn ( I[(—=In7,/K(x )) (w"/ KE ) (1+ (1))>
VI (b ( o7, > 1L (1 + 0(1)) + w ()7, 7K (14 0(1))>
I{m_n (b (=In7,) K7( )/jn te71dt (1 + 0(1)) + @ (Y /7oy 7/ E™) (1 +O(1)))

= o(1) (S3.3)
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where we use the condition /n7, max{|b(In(1/7,))|, |@(Vn/Tn, T/ EEN |}

— 0 to get (S3.3). The proof of this theorem is completed.
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Figure 1: The root mean integrated squared error of different estimators versus ky,

where the dashed dotted horizontal line denotes the RMISE of the conventional quantile

1.01

regression estimator ¢, of gy (1, |x) with ¢,, = 1/n*-%!. Here, ko is the constant involved

in 7, = ko(Inlnn)/n, G

:CE, (jE:}E, and QZIVE are the proposed extrapolation estimators
based on the Pickand-type tail-coefficient estimators with constant and linear weights,

and the Hill-type tail-coefficient estimator, respectively.
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