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Abstract: Multiple hypothesis testing is a central topic in statistics. However,

despite abundant research on the false discovery rate (FDR) and the corresponding

Type-II error concept known as the false nondiscovery rate (FNR), we do not yet

have a fine-grained understanding of the fundamental limits of multiple testing.

The main contribution of this study is to derive a precise nonasymptotic trade-

off between the FNR and FDR for a variant of the generalized Gaussian sequence

model. Our approach is flexible enough to permit analyses of settings where the

problem parameters vary with the number of hypotheses n, including various sparse

and dense regimes (with o(n) and O(n) signals). Moreover, we prove that the

Benjamini–Hochberg and Barber–Candès algorithms are both rate-optimal up to

constants across these regimes.
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1. Introduction

The problem of multiple comparisons has been a central topic in statistics

ever since Tukey’s influential book (Tukey (1953)). In broad terms, suppose we

observe a sequence of n independent random variables, X1, . . . , Xn, of which some

unknown subset are drawn from a null distribution, corresponding to the absence

of a signal or effect. The remainder are drawn from a non-null distribution,

corresponding to signals or effects. Within this framework, we can pose three

problems of increasing hardness: the detection problem, testing whether or not

there is at least one signal; the localization problem, identifying the positions of

the nulls and signals; and the estimation problem, which returns estimates of the

means and/or distributions of the observations. Note that these problems form

a hierarchy of difficulty: identifying the signals implies that we know whether at

least one exists, and estimating each mean implies we know which are zero and

which are not. This study focuses on the problem of localization.

There are a variety of ways of measuring type-I errors for the localization
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problem. For example, the family-wise error rate measures the probability of

incorrectly rejecting at least one null, and the false discovery rate (FDR) is the

expected ratio of incorrect rejections to total rejections. An extensive body of

literature has developed around both metrics, resulting in algorithms geared to-

wards controlling one or the other. Our focus is the FDR metric. Although the

FDR has been widely studied, relatively little is known about the behavior of

existing algorithms in terms of the corresponding Type-II error concept, namely

the false nondiscovery rate (FNR). Indeed, it is only recently that Arias-Castro

and Chen (2017), working with a version of the sparse generalized Gaussian

sequence model, established asymptotic consistency for the FDR − FNR local-

ization problem. Informally, in this framework, we receive n independent obser-

vations, X1, . . . , Xn, of which n1−βn are non-nulls. The remainder are nulls. The

n−n1−βn null variables are drawn from a centered distribution with tails decaying

as exp(−(|x|γ)/γ), whereas the non-nulls are drawn from the same distribution,

shifted by (γrn log n)1/γ . Using this notation, Arias-Castro and Chen (2017) con-

sidered the setting with fixed problem parameters rn = r and βn = β, and showed

that when r < β < 1, all procedures must have risk FDR + FNR → 1. They

also showed that in the achievable regime r > β > 0, the Benjamini–Hochberg

(BH) procedure is consistent, meaning that FDR + FNR → 0. Finally, they

proposed a new “distribution-free” method inspired by the knockoff procedure

of Foygel Barber and Candès (2015), and showed that the resulting procedure is

also consistent in the achievable regime.

These existing consistency results are asymptotic. However, to date, no

studies have examined the important nonasymptotic questions that are of interest

in comparing procedures. For instance, for a given FDR level, what is the best

achievable FNR? What is the best nonasymptotic behavior of the risk FDR +

FNR attainable in finite samples? In addition, and perhaps most importantly,

nonasymptotic questions on whether procedures such as BC and BH are rate-

optimal for the FDR+FNR risk, remain unanswered. The main contributions of

this study are to develop techniques to address such questions, and then to use

these techniques to solve the problems in the context of the sparse generalized

Gaussians model.

Specifically, we establish the trade-off between the FDR and FNR in finite

samples (and, hence, also asymptotically), and we use the trade-off to determine

We follow Arias-Castro and Chen (2017) in defining the FNR as the ratio of undiscovered to total
non-nulls, which differs from the definition of Genovese and Wasserman (Genovese and Wasserman
(2002)).
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the best attainable rate for the FDR+FNR risk. Our theory is sufficiently general

to accommodate sequences of parameters (rn, βn), and enabling it to reveal new

phenomena that arise when rn − βn = o(1). For a fixed pair of parameters (r, β)

in the achievable regime r > β, our theory leads to an explicit expression for

the optimal rate at which FDR+FNR can decay. In particular, defining the γ-

“distance” Dγ (a, b) : =
∣∣a1/γ−b1/γ

∣∣γ between pairs of positive numbers, we show

that the equation

κ = Dγ (β + κ, r)

has a unique solution κ∗. Moreover, the combined risk of any threshold-based

multiple testing procedure I is lower bounded as Rn(I) & n−κ∗ . Furthermore,

using a direct analysis, we prove that the Benjamini–Hochberg (BH) and the

Barber–Candès (BC) algorithms both attain this optimal rate.

At the core of our analysis is a simple comparison principle. The flexibility

of the resulting proof strategy allows us to identify a new critical regime in

which rn − βn = o(1). However, in this regime, the problem is infeasible, which

means that if the FDR is driven to zero, then the FNR must remain bounded

away from zero. Moreover, we are able to study challenging settings in which

the fraction of signals is a constant π1 ∈ (0, 1) and not asymptotically vanishing.

This corresponds to the setting βn = log(1/π1)/ log n, such that βn → 0. Perhaps

surprisingly, even in these regimes, the BH and BC algorithms continue to be

optimal, although the best rate can weaken from polynomial to subpolynomial

in the number of hypotheses n.

1.1. Related work

As described above, our work provides a nonasymptotic generalization of

the recent work by Arias-Castro and Chen (2017) on asymptotic consistency in

localization, using FDR+FNR as the notion of risk. Note that this notion of risk

is distinct from the asymptotic Bayes optimality under sparsity (ABOS) studied

by Bogdan et al. (2011) for Gaussian sequences, and more recently, by Neuvial

and Roquain (2012) for binary classification with extreme class imbalance. The

ABOS results concern a risk derived from the probability of incorrectly rejecting

a single null sample (false positive; FP) and the probability of incorrectly fail-

ing to reject a single non-null sample (false negative; FN). Specifically, we have

RABOS
n = w1 · FP + w2 · FN for some pair of positive weights (w1, w2), which

need not be equal. Because this risk is based on the error probability for a single

sample, it is much closer to a misclassification risk or a single-testing risk than
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it is to the ratio-based FDR + FNR risk examined here.

Using our notation, the work of Neuvial and Roquain (2012) can be under-

stood as focusing on the setting r = β, a regime the authors refer to as the

“verge of detectability.” Furthermore, their performance metric is given by the

Bayes classification risk, rather than the combination of FDR and FNR studied

here. In comparison, our results provide additional insight into models that are

close to the verge of detectability. Even when βn = β is fixed, we can provide

quantitative lower and upper bounds on the FDR/FNR ratio as rn → β from

above. Moreover, these bounds depend on how quickly rn approaches β. A fur-

ther transition in rates occurs when r = β exactly, for all n; however, we do

not explore this case in depth. We suspect that our methods may offer sufficient

precision to answer the nonasymptotic minimaxity questions posed by Neuvial

and Roquain (2012) on whether any threshold-based procedure can match the

Bayes optimal classification error rate, up to an additive error � 1/log n.

For the special case of γ = 2, Ji and Jin (2012) and Ji and Zhao (2014) prove

bounds for localization that are closely related to, but distinct from, our bounds

on the overall risk. Both deal with a sparse high-dimensional regression. The

former work proposes a new method for variable selection, called UPS, that has

advantages over the lasso and subset selection methods in certain settings. The

latter builds on the first to prove upper and lower bounds for multiple testing,

using the so-called mFNR and mFDR. These metrics replace the expected ratio

in the definitions of FDR and FNR (see definition (2.3) below) with a ratio of

expectations—a modification that should lead to qualitatively similar behavior as

n becomes large. The resulting bounds in both works can be used to recover our

bounds up to polylogarithmic factors in the special case where γ = 2. The main

advantage of their work, relative to ours, lies in how they handle the dependence

between the p-values. Unlike our work, however, they do not establish the trade-

off between the FDR and FNR when both quantities can decay to zero at different

rates; in addition, as mentioned, they only consider the case of γ = 2. Nor do

they consider regimes where the sparsity and signal strength vary with n. Our

results can handle this more general setting, which encompasses dense regimes

with qualitatively different behavior from the more commonly investigated sparse

one.

The above line of work is complementary to the well-known asymptotic re-

sults of Donoho and Jin (2004, 2015) on phase transitions in detectability using

Tukey’s higher-criticism statistic, which employs standard type-I and type-II er-

rors for testing of the single global null hypothesis. Note that Donoho and Jin
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use the generalized Gaussian assumption directly on the PDFs, whereas our as-

sumption (2.5) is on the survival function. Just as in Arias-Castro and Chen

(2017), Donoho and Jin consider the asymptotic setting with rn = r and βn = β,

which they sometimes call the RW (rare and weak) model. We are not aware of

any nonasymptotic results for detection that are similar to those proposed here

for localization.

Our study also complements work on estimation, the most notable result

being the asymptotic minimax optimality of BH-derived thresholding for denois-

ing an approximately sparse high-dimensional vector (Abramovich et al. (2006);

Donoho and Jin (2006)). The relevance of our results to the minimaxity of BH for

approximately sparse denoising problems lies primarily in the use of deterministic

thresholds as a useful proxy for BH, as well as other procedures that determine

their threshold in a manner that has complex dependence on the input data

(Donoho and Jin (2006)). Unlike the strategy of Donoho and Jin (2006), which

depends on establishing the concentration of the empirical threshold around the

population-level value, we use a more flexible comparison principle. Determinis-

tic approximations to optimal FDR thresholds are also studied by Chi (2007) and

Genovese, Roeder and Wasserman (2006). Other related papers are discussed in

Section 5, when discussing directions for future work.

The remainder of this paper is organized as follows. In Section 2, we provide

some background on the multiple testing problem, as well as the particular model

we consider. In Section 3, we provide an overview of our main results: the optimal

trade-offs between the FDR and FNR, which imply lower bounds on the FDR +

FNR risk, and optimality guarantees for the BH and BC algorithms. In Section 4,

we prove our main results. We first focus on the lower bounds, and then provide

matching upper bounds for the well-known and popular BH and BC algorithms

for multiple testing with FDR control. The proofs of some technical lemmas are

given in the online Supplementary Material.

2. Problem Formulation

In this section, we provide background and a precise formulation of the

problem under study.

2.1. Multiple testing and the FDR

Suppose that we observe a real-valued sequence Xn
1 : = {X1, . . . , Xn} of n

independent random variables. When the null hypothesis is true, Xi is assumed
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to have a zero mean; otherwise, it is assumed that the mean of Xi is equal to

some unknown number µn > 0. The binary labels {H1, . . . ,Hn} indicate whether

the null hypothesis holds for each observation; the setting Hi = 0 indicates that

the null hypothesis holds. We define

H0 : = {i ∈ [n] | Hi = 0}, and H1 : = {i ∈ [n] | Hi = 1}, (2.1)

corresponding to the nulls and signals, respectively. Our task is to identify a

subset of indices that contains as many signals as possible, while not containing

too many nulls.

More formally, a testing rule I : Rn → 2[n] is a measurable mapping of

the observation sequence Xn
1 to a set I(Xn

1 ) ⊆ [n] of discoveries, where the

subset I(Xn
1 ) contains those indices for which the procedure rejects the null

hypothesis. There is no single unique measure of performance for a testing rule

for the localization problem. We employ the FDR and FNR for this purpose.

These can be viewed as generalizations of the type-I and type-II errors for single

hypothesis testing.

We begin by defining the false discovery proportion (FDP) and the false

nondiscovery proportion (FNP), respectively, as

FDPn(I) : =
card(I(Xn

1 ) ∩H0)

card(I(Xn
1 )) ∨ 1

, and FNPn(I) : =
card(I(Xn

1 )c ∩H1)

card(H1)
. (2.2)

Because the output I(Xn
1 ) of the testing procedure is random, both quantities

are random variables. The FDR and FNR are given by taking the expectations

of these random quantities; that is,

FDRn(I) : = E
[

card(I(Xn
1 ) ∩H0)

card(I(Xn
1 )) ∨ 1

]
, and FNRn(I) : = E

[
card(I(Xn

1 )c ∩H1)

card(H1)

]
,

(2.3)

where the expectation is taken over the random samples Xn
1 .

Note that our definitions of the FNP and FNR, which follow those of Arias-

Castro and Chen (2017), differ from an alternative definition of the FNRalt, where

the denominator is set to the number of nonrejections. In general, however, the

number of nonrejections will be close to n for any procedure with low FDR. Thus,

in the sparse regime, the FNRalt would trivially go to zero for any procedure that

controls the FDR at any level strictly below one. Our definition is therefore better

suited to studying transitions in difficulty in the multiple testing problem.

We measure the overall performance of a procedure in terms of its combined

risk,

Rn(I) : = FDRn(I) + FNRn(I). (2.4)
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Finally, when the testing rule I is clear from the context, we frequently omit an

explicit reference to the dependence on the testing rule.

2.2. Tail generalized Gaussian model

In this paper, we describe the distribution of the observations for both nulls

and non-nulls in terms of a tail generalized Gaussian model. Our model is a

variant of the generalized Gaussian sequence model, studied in Arias-Castro and

Chen (2017) and Donoho and Jin (2004); the only difference is that whereas a

γ-generalized Gaussian has a density proportional to exp(−(|x|γ)/γ), we focus on

distributions with tails proportional to exp(−(|x|γ)/γ). This alteration is in line

with the asymptotically generalized Gaussian (AGG) distributions studied by

Arias-Castro and Chen (2017), with the important caveat that our assumptions

are imposed in a nonasymptotic fashion.

For a given degree γ ≥ 1, a γ-tail generalized Gaussian random variable with

mean zero, written as G ∼ tGGγ(0), has a survival function Ψ(t) : = P
(
G ≥ t

)
that satisfies the bounds

e(−|t|γ)/γ

Z`
≤ min{Ψ(t), 1−Ψ(t)} ≤ e(−|t|γ)/γ

Zu
, t ∈ R, (2.5)

for some constants Z` > Zu > 0. (Note that t 7→ Ψ(t) is a decreasing function,

and becomes smaller than 1 − Ψ(t) at the origin.) As a concrete example, a

γ-tail generalized Gaussian with Z` = Zu = 1 can be generated by sampling

a standard exponential random variable E and a Rademacher random variable

ε, and then letting G = ε
(
γE
)1/γ

. We use the terminology “tail generalized

Gaussian” because the survival function of a two-tail Gaussian random variable

is of the order of exp(−|x|2/2), whereas that of a Gaussian is of the order of

(1/poly(x)) exp(−x2/2). In particular, this observation implies that a tGG2 ran-

dom variable has tails that are equivalent to those of a Gaussian in terms of their

exponential decay rates.

In terms of this notation, we assume that each observation Xi is distributed

as

Xi ∼
{

tGGγ(0) if i ∈ H0,

tGGγ(0) + µn if i ∈ H1,
(2.6)

where our notation reflects the fact that the mean shift µn is permitted to vary

with the number of observations n. See Section 3.1 for further discussion of the

scaling of the mean shift.
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2.3. Threshold-based procedures

Following prior work (Arias-Castro and Chen (2017); Donoho and Jin (2004)),

we restrict our attention to testing procedures of the form

I(Xn
1 ) =

{
i ∈ [n] | Xi ≥ Tn(Xn

1 )
}
, (2.7)

where Tn(Xn
1 ) ∈ R+ is a data-dependent threshold. We refer to such methods

as threshold-based procedures. The BH and BC procedures both belong to this

class. Moreover, from an intuitive standpoint, the observations are exchangeable

in the absence of prior information, and we are testing between a single unimodal

null distribution and a single positive shift of that distribution. In this setting, it

is difficult to conceive of reasonable procedures that would reject the hypothesis

corresponding to one observation, while rejecting a hypothesis with a smaller

observation value.

In particular, as part of our argument, it will be important to analyze the

performance metrics associated with rules of the form

It(Xn
1 ) =

{
i ∈ [n] | Xi ≥ t

}
, (2.8)

where t > 0 is a prespecified (fixed, nonrandom) threshold. In this case, we adopt

the notation FDRn(t), FNRn(t), and Rn(t) to denote the metrics associated with

the rule Xn
1 7→ It(Xn

1 ).

2.4. The BH and BC procedures

Arguably the most popular threshold-based procedure that provably controls

FDR at a user-specified level qn is the BH procedure. More recently, Arias-Castro

and Chen (2017) proposed a method that we refer to as the BC procedure. Both

algorithms are based on estimating the FDPn that would be incurred at a range

of possible thresholds, and then choosing the largest one possible (maximizing

discoveries), while satisfying an upper bound linked to qn (controlling FDRn).

Furthermore, they both only consider thresholds that coincide with one of the

values Xn
1 , which we denote as the set Xn =

{
X1, . . . , Xn

}
. The data-dependent

threshold for both can be written as

tn
(
X1, . . . , Xn

)
= min

{
t ∈ Xn : F̂DPn

(
t
)
≤ qn

}
. (2.9)

The two algorithms differ in the estimator F̂DPn
(
t
)

they use. The BH procedure

assumes access to the true null distribution through its survival function Ψ and

sets
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F̂DP
BH

n

(
t
)

=
Ψ
(
t
)

#
(
Xi ≥ t

)
/n
, for t ∈ Xn. (2.10)

The BC procedure instead estimates the survival function Ψ(t) from the data

and, therefore, does not need to know the null distribution. This approach is

viable when #
(
Xi ≤ −t

)
/n is a good proxy for Ψ

(
t
)
, which our upper and lower

tail bounds guarantee; more typically, the BC procedure is applicable when the

null distribution is (nearly) symmetric, and the signals are shifted by a positive

amount (as they are in our case). Then, the BC estimator is given by

F̂DP
BC

n

(
t
)

=

[
#
(
Xi ≤ −t

)
+ 1
]
/n

#
(
Xi ≥ t

)
/n

, for t ∈ Xn. (2.11)

With these definitions in place, we are now ready to describe our main results.

3. Main Results

We now state our main results and examine their consequences. Our first

main result (Theorem 1) characterizes the optimal trade-off between the FDR and

FNR for any testing procedure. By optimizing this trade-off, we obtain a lower

bound on the combined FDR and FNR of any testing procedure (Corollary 1).

Our second main result (Theorem 2), shows that the BH procedure achieves the

optimal FDR-FNR trade-off up to constants, and that the BC procedure almost

achieves optimality. In particular, our result implies that, with the proper choice

of target FDR, the BH and BC procedures can both achieve the optimal combined

FDR-FNR rate (Corollary 2).

3.1. Scaling of sparsity and mean shifts

We study a sparse instance of the multiple testing problem, in which the num-

ber of signals is assumed to be small relative to the total number of hypotheses.

In particular, motivated by related works on multiple hypothesis testing (Arias-

Castro and Chen (2017); Donoho and Jin (2004, 2015); Jin and Ke (2016)), we

assume that the number of signals scales as

card(H1) = mn = n1−βn for some βn ∈ (0, 1). (3.1)

Note that, to the best of our knowledge, all previous results in the literature

assume that βn = β is actually independent of n. In this case, the sparsity

assumption (3.1) implies that all but a polynomially vanishing fraction of the

hypotheses are null. In contrast, as indicated by our choice of notation, the

setup in this study allows for a sequence of parameters βn that can vary with the
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number of hypotheses n. As a result, our framework is flexible enough to handle

relatively dense regimes (e.g., those with n/log n or even O(n) signals).

The non-null hypotheses are distinguished by a positively shifted mean µn >

0. It is natural to parameterize this mean shift in terms of a quantity rn > 0 via

the relation

µn =
(
γrn log n

)1/γ
. (3.2)

As shown by Arias-Castro and Chen (2017), when the pair (β, r) are fixed such

that r < β, the problem is asymptotically infeasible, meaning that there is no

procedure such that Rn(I) → 0 as n →∞. Accordingly, we focus on sequences

(βn, rn), for which rn > βn. Furthermore, even though the asymptotic consis-

tency boundary of r < β versus r > β is apparently independent of γ, we find

that the rate at which the risk decays to zero is determined jointly by r, β, and

γ.

3.2. Lower bound on any threshold-based procedure

In this section, we assume:

βn
(i)

≥ log 2

log n
⇐⇒ n1−βn ≤ n

2
, and (3.3a)

max

{
βn,

1

log(γ−1/2)/γ n

}
(ii)
< rn

(iii)
< rmax for some constant rmax < 1.

(3.3b)

Condition (i) requires that the proportion π1 of non-nulls is at most 1/2. Con-

dition (ii) asserts that the natural requirement of rn > βn is not sufficient,

but further insists that rn cannot approach zero too fast. The constants log 2

and (γ − 1/2)/γ are somewhat arbitrary and can be replaced, respectively, by

log(1/(πmax)) for any 0 < πmax < 1 and (γ − 1 + ρ)/γ for any ρ > 0. However,

we fix their values in order not to introduce unnecessary extra parameters. With

regard to condition (iii), although the assumption rn < 1 is imposed because the

problem becomes qualitatively easy for rn ≥ 1, the assumption that it is bounded

away from one is a technical convenience that simplifies some of our proofs.

Our analysis shows that the FNR behaves differently depending on the close-

ness of the parameter rn to the boundary of feasiblity given by βn. In order to

characterize this closeness, we define



OPTIMAL TRADEOFFS IN MULTIPLE TESTING 751

rmin = rmin(κn) : =


βn + κn +

log(1/(6Z`))

log n
if κn ≤ 1− βn −

log(3/log 16)

log n
,

1 +
log(1/(24Z`))

log n
otherwise.

(3.4)

Here, κn is interpreted as the “exponent” of a target FDR rate qn, in the sense

that qn = n−κn . The rate qn may differ from the actual achieved FDRn, but it

is nonetheless useful for parameterizing the quantities in our analysis. When we

need to move between qn and κn, we shall write κn = κn(qn) = log(1/qn)/log n

and qn = qn(κn) = n−κn . For mathematical convenience, we wish to have the

target FDR qn be bounded away from one; therefore, we impose one further

technical, but inessential assumption in this section:

qn ≤ min

{
1

24
,

1

6Z`

}
⇐⇒ κn ≥

log max{24, 6Z`}
log n

. (3.5)

The theorem that follows applies to all sample sizes n > nmin,` (the subscript `

denotes lower), where

nmin,` : = min

{
n ∈ N : exp

(
− n1−rmax

24(Z` ∨ 1)

)
≤ 1

4

}
(3.6)

=
⌊
[24(Z` ∨ 1) log 4]1/(1−rmax)

⌋
, (3.7)

which is an explicit known function of the problem parameters, and can therefore

be computed whenever the problem setting is fixed.

Finally, for γ ∈ [1,∞) and nonnegative numbers a, b > 0, we define the

associated γ-“distance” as follows:

Dγ (a, b) : =
∣∣a1/γ − b1/γ

∣∣γ . (3.8)

Our first main theorem states that for rn > rmin(κn), the FNR decays as a power

of 1/n, with the exponent specified by the γ-distance.

Theorem 1. Consider the γ-tail generalized Gaussian testing problem with spar-

sity βn and signal level rn, satisfying conditions (3.3a), and (3.3b) and with

sample size n > nmin,`, from definition (3.7). Then, for any choice of exponent

κn ∈ (0, 1) satisfying condition (3.5), there exists a minimum signal strength

rmin(κn) from definition (3.4), such that any threshold-based procedure I that

satisfies FDRn(I) ≤ n−κn must have its FNR lower bounded as

FNRn(I) ≥


1

32
if rn ∈

[
βn, rmin

]
,

c(βn, γ)n−Dγ(βn+κn,rn) otherwise,
(3.9)
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where c(βn, γ) : = c0 exp
(
c1β

(1−γ)/γ
n

)
, with (c0, c1) being positive constants de-

pending only on (Z`, Zu, γ).

The proof of this theorem is provided in Section 4.1. Note that the theorem

holds for any choice of κn ∈ (0, 1). In the special case of constant pairs (β, r),

this choice can be optimized to achieve the best possible lower bound on the

risk Rn(I) = FDRn(I) + FNRn(I). Because we obtain this lower bound by

optimizing the sum of the FDR and FNR lower bounds from Theorem 1, we

want to balance the contributions from these two bounds. Doing so requires that

we set the FDR rate κ equal to the corresponding FNR rate Dγ (β + κ, r), which

leads to a fixed-point equation for the overall rate, as summarized below.

Corollary 1. When r > β, let κ∗ = κ∗(β, r, γ) > 0 be the unique solution to the

equation

κ = Dγ (β + κ, r) . (3.10)

Then, the combined risk of any threshold-based multiple testing procedure I is

lower bounded as

Rn(I) & n−κ∗ , (3.11)

where & denotes inequality up to a prefactor independent of n.

The proof of this corollary is provided in the Supplementary Material, Section

S3. Figure 1 shows the predictions in Corollary 1. In particular, panel (a) shows

how the unique solution κ∗ to equation (3.10) is determined for varying settings

of the triple (r, β, γ). Panel (b) shows how κ∗ varies over the interval (0, 0.5),

again for different settings of the triple (r, β, γ). As would be expected, the fixed

point κ∗ increases as a function of the difference r − β > 0.

3.3. Upper bounds for some specific procedures

Thus far, we have provided general lower bounds that can be applied to any

threshold procedure. We now turn to the complementary question—how do these

lower bounds compare to the results achievable by the BH and BC algorithms

introduced in Section 2.3? Remarkably, we find that up to the constants defining

the prefactor, both procedures achieve the minimax lower bound of Theorem 1.

We state these achievable results in terms of the fixed point κ∗ from equa-

tion (3.10). Moreover, they apply to all problems with sample size n > nmin,u

(the subscript u denotes upper), where
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Figure 1. Visualizations of the fixed-point equation (3.10). (a) Plots comparing the
left- and right-hand sides of the fixed-point equation. (b) The optimal exponent κ∗ as a
function of r and β.

nmin,u : = min

{
n ∈ N : exp

(
−n

1−rmax

24

)
≤ 1

Zun

}
= min

{
n ∈ N : n ≥ [24 log(Zun)]1/(1−rmax)

}
. (3.12)

As in the case of (3.7), this lower bound on n is explicitly computable from the

problem parameters.

In order to state our results cleanly, let us introduce the constants

cBH : =
Zu

36Z`
, cBC : =

Zu
48Z`

, and ζ : = max

{
6Z`,

1

6Z`

}
, (3.13)

and require in particular that rn ≥ rmin (κn (cAqn)) for algorithm A ∈ {BH,BC}.
Note that cA < 1 because Z` ≥ Zu, by definition, and that the introduction of

cA into the argument of rmin only changes the minimum allowed value of rn by

a conceptually negligible amount of O(1/log n).

Lastly, note that the BC procedure requires an additional mild condition

that the number of non-nulls n1−βn is large relative to the target FDR qn = n−κn

(otherwise, in some sense, the problem is too hard if there are too few non-nulls

and a very strict target FDR). Specifically, we need that both quantities cannot

simultaneously be too small, formalized by the assumption:

∃nmin,BC, such that, for all n ≥ nmin,BC,

we have
3cBC

4
· qn

log(1/qn)
· n1−βn ≥ 1. (3.14)

Note that when rn = r and βn = β are constants, this decay condition is satisfied
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by qn = n−κ∗ .

Our second main theorem delivers an optimality result for the BH and BC

procedures, showing that under some regularity conditions, their performance

achieves the lower bounds in Theorem 1, up to constant factors.

Theorem 2. Consider the βn-sparse γ-tail generalized Gaussian testing problem

with target FDR level qn, upper bounded as in condition (3.5).

(a) Guarantee for BH procedure: Given a signal strength rn ≥ rmin(κn(cBHqn))

and sample size n > nmin,u, as in condition (3.12), the BH procedure satis-

fies the bounds

FDRn ≤ qn and FNRn ≤
2ζ

2β(1−γ)/γ
n

BH

Zu
· n−Dγ(βn+κn,rn),where ζBH : =

ζ

cBH
.

(3.15)

(b) Guarantee for BC procedure: Given a signal strength rn ≥ rmin(κn(cBCqn))

and sample size n > max{nmin,BC, nmin,u}, as in condition (3.14), the BC

procedure satisfies the bounds

FDRn ≤ qn and FNRn ≤
2ζ

2β(1−γ)/γ
n

BC

Zu
· n−Dγ(βn+κn,rn) + qn,

where ζBC : =
ζ

cBC
. (3.16)

The proof of the theorem can be found in Section 4.2. For constant pairs

(r, β), Theorem 2 can be applied with a target FDR proportional to n−κ∗ to show

that the BH and BC procedures both achieve the optimal decay of the combined

FDR-FNR up to constant factors, as stated formally below.

Corollary 2. For β < r and q∗ = c∗n
−κ∗, with 0 < c∗ ≤ min

{
1/24, 1/(6Z`)

}
,

the BH and BC procedures with target FDR q∗ satisfy

Rn . n−κ∗ . (3.17)

The proof of this corollary is given in the Supplementary Material, Section

S5. To help visualize the result of the corollary, Figure 2 displays the results

of simulations of the BH procedure that show the correspondence between its

performance and the theoretically predicted rate of n−κ∗ .

Despite the optimality, Figures 1 and 2 suggest that the methods may not

be practical. Although asymptotic consistency can be achieved when r > β, the

convergence of the risk to zero can be extremely slow, exhibiting “nonparametric”

rates far slower than n−1/2. Figure 2 shows in particular that the decay to zero
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Figure 2. Results of simulations comparing the predicted combined risk with the actual,
experimentally observed risk for the BH procedure. Agreement is good and improves as
the gap (r − β) increases, which we believe occurs because the sampling error becomes
a smaller fraction of the risk as the separation increases.

may be barely evident, even for sample sizes as large as n = 250,000, and with

comparatively strong signals. The “nonparametric” nature may arise because

the dimensionality of the decision space increases linearly with the sample size.

Thus, asymptotically, the advantage of having a greater amount of data seems to

only just overcome the disadvantage of having to make an increasing number of

decisions. However, nonasymptotically, one cannot hope to drive both the FDR

and the FNR to zero at any practical sample size in this general setting, at least

when the mean signal lies below the maximum of the nulls (i.e., rn < 1).

Intuition for the γ-distance. The distance Dγ plays a crucial role because of

the scaling of order statistics under the tGGγ model. If W1, . . . ,Wn are indepen-

dent and identically distributed (i.i.d.) from a tGGγ(0) model, then—ignoring

constants inside the logarithm—we expect the ith-largest order statistic W(i) to

be around (γi log n)1/γ if i� n/2, and around −(γi log n)1/γ if n−i� n/2. If an

algorithm is to achieve an FNR on the order of n−κ
′
, it must successfully identify

all but the smallest n−κ
′

fraction of true signals. Thus, the algorithm’s cutoff

for rejection must exceed the m − n−κ′m order statistic of the signals, which is

approximately

µ−
(
γ log

m

n−κ′m

)1/γ
= (γr log n)1/γ − (γκ′ log n)1/γ . (3.18)

If we suppose that the FDR is also vanishing at a rate n−κ, then first of all the

algorithm must identify about (1± o(1))m indices as signals, because otherwise

either the FDR or FNR would fail to vanish. Second, it must be that the n−κmth
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or, equivalently, the n1−β−κth largest null is of the order of the quantity in (3.18).

Combining these insights, we obtain the relation

(γ(β + κ) = (γr log n)1/γ − (γκ′ log n)1/γ ,

which, after rearranging, yields the heuristic

κ′ =
(
r1/γ − (β + κ)1/γ

)1/γ
. (3.19)

The theorems and corollaries in this paper together show that this intuition is

exactly right.

Regime of linear sparsity. We turn to the regime of linear sparsity—that is,

when the number of signals scales as π1n, for some scalar π1 ∈ (0, 1). Recalling

that we have parameterized the number of signals as n1−βn , some algebra leads to

βn = (log(1/π1))/log n; thus, both Theorem 1 and Theorem 2 predict an upper

and lower bound on the risk of the form

c0 exp

(
c1

[
log n

log(1/π1)

](γ−1)/γ
)
· n−κ∗ . (3.20)

Note that here we overload the exponent κ∗ to the case when it is nonconstant. In

order to interpret this result, observe that if rn = r is constant, then κ∗ = r/2γ−
o(1); thus, the rate is n−r/2

γ

up to subpolynomial factors in n. On the other hand,

if rn = 1/(log(γ−1/2)/γ n) is at the extreme lower limit permitted by the lower

bound (ii) in (3.3b), then it is not difficult to see that κ∗ ≈ log−(γ−1/2)/γ n, which

ensures that nκ∗ � exp
(

log(γ−1)/γ n
)
, so that the risk (3.20) still approaches zero

asymptotically, albeit subpolynomially, in n.

4. Proofs

We now turn to the proofs of our main results, namely Theorems 1 and 2.

The proofs of the associated corollaries can be found in the Supplementary Ma-

terial.

4.1. Proof of Theorem 1

The main idea of the proof is to reduce the problem of lower bounding the

FNRn of threshold-based procedures that use random, data-dependent thresh-

olds Tn to the easier problem of lower bounding the FNRn of threshold-based

procedures that use a deterministic, data-independent threshold tn. We refer

to the latter class of procedures as fixed-threshold procedures, and we parame-

terize them by their target FDR qn = n−κn . Specifically, we define the critical



OPTIMAL TRADEOFFS IN MULTIPLE TESTING 757

threshold, derived from the critical regime boundary rmin from equation (3.4), by

τmin(κn) : =
(
γrmin

(
κn
)

log n
)1/γ ≡ τmin(qn) : =

(
γrmin

(
log(1/qn)

log n

)
log n

)1/γ

.

(4.1)

Here, and throughout the proof, we express τmin and rmin as functions of qn
rather than κn; this formulation makes certain calculations in the proof simpler

to express.

From data-dependent threshold to fixed threshold. Our first step is to reduce

the analysis from data-dependent to fixed-threshold procedures. In particular,

consider a threshold procedure, using a possibly random threshold Tn, that sat-

isfies the FDR uppper bound FDRn(Tn) ≤ qn. We claim that the FNR of any

such procedure must be lower bounded as

E[FNPn
(
Tn
)
] ≥ FNRn

(
τmin

(
4qn
))

16
. (4.2)

This lower bound is crucial, because it reduces the study of random threshold

procedures (LHS) to the study of fixed-threshold procedures (RHS). Its proof

can be found in the Supplementary Material, Section S1.

Our next step is to lower bound the FNR for choices of the threshold t ≥
τmin(qn):

Lemma 1. For any t ≥ τmin(qn), we have

FNRn(t) ≥


ζ2β(1−γ)/γ

n

Z`
· n−Dγ(βn+κn,r) if r > rmin

(
κn(qn)

)
,

1

2
otherwise,

(4.3)

where ζ is defined as in (3.13).

The proof of this lemma can be found in the Supplementary Material, Section

S2. Using Lemma 1 and the lower bound (4.2), we can now complete the proof

of Theorem 1. We split the argument into two cases:

Case 1. First, suppose that r ≤ rmin(κn(4qn)). In this case, we have

FNRn(Tn)
(i)

≥ FNRn

(
τmin

(
4qn
))

16

(ii)

≥ 1

32
,

where step (i) follows from the lower bound (4.2), and step (ii) follows by lower

bounding the FNR by 1/2, as is guaranteed by Lemma 1 in the regime r ≤
rmin(κn(4qn)).
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Case 2. Otherwise, we may assume that r > rmin(4qn). In this case, we have

FNRn(Tn)
(i)

≥ FNRn

(
τmin

(
4qn
))

16

(ii)

≥
(
4ζ
)2β(1−γ)/γ

n

Z`
· n−Dγ(βn+κn,r).

Here, step (i) follows from the lower bound (4.2), whereas step (ii) follows from

applying Lemma 1 in the regime r > rmin(κn(4qn)). With some further algebra,

we find that

FNRn(Tn) ≥ 1

Z`
exp

(
2 log

(
4ζ
)
· β(1−γ)/γ

n

)
n−Dγ(β+κn,r)

= c0 exp
(
c1β

(1−γ)/γ
n

)
n−Dγ(β+κn,r),

where c0 : = 1/Z` and c1 : = 2 log(4ζ). Note that because Z` > 0 and ζ ≥ 1, the

constants c0 and c1 are both positive, as claimed in the theorem statement.

4.2. Proof of Theorem 2

We now sketch the proof of Theorem 2, which states that the BH and BC

algorithms achieve the minimax rate (3.9) when rn > rmin(κn(cAqn)), where

A ∈ {BH, BC} and cA is the algorithm-dependent constant defined in (3.13).

For reasons of space, the details are relegated to the Supplementary Materials,

Section S4.

The proof strategy for both algorithms is essentially the same. Given a target

FDR rate qn, we apply each algorithm with qn as the target FDR level, and then

prove that the resulting threshold satisfies tA ≤ τmin(cAqn) with high probability.

Letting τmin,A = τmin

(
cAqn

)
, we can formulate the specific claims we seek as:

P
(
tBH > τmin,BH

)
≤ exp

(
−n

1−rmax

24

)
(4.4)

and

P (tBC > τmin,BC) ≤ qn + exp

(
−n

1−rmax

24

)
. (4.5)

The known properties of the algorithms guarantee the required FDR bounds

(as studied by Arias-Castro and Chen (2017); Foygel Barber and Candès (2015);

Benjamini and Hochberg (1995)). The following converse to Lemma 1, coupled

with the probabilistic upper bounds (4.4) and (4.5), provides the requisite upper

bounds on the FNR.

Lemma 2. If rn > rmin(cqn) and t ≤ τmin(cqn), for some c > 0, then we have

FNRn

(
t
)
≤
(

max
{
c, 1/c

}
· ζ
)2β(1−γ)/γ

n

Zu
· n−Dγ(βn+κn,r),
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where constant ζ is defined in (3.13).

5. Discussion

Despite considerable interest in multiple testing with FDR control, we have

relatively little understanding of the nonasymptotic trade-off between controlling

FDR and the analogous measure of power known as the FNR. In this study, we

explored this issue in the context of the sparse generalized Gaussian model, de-

riving the first nonasymptotic lower bounds on the sum of the FDR and FNR.

We complemented these lower bounds by establishing the nonasymptotic mini-

maxity of both the BH and the BC procedures for FDR control. The theoretical

predictions are validated using simple simulations, and our results include re-

cent asymptotic results (Arias-Castro and Chen (2017)) as special cases. Our

work introduces a simple proof strategy based on a reduction to deterministic

and data-oblivious procedures. We suspect this core idea may apply to other

multiple testing settings. In particular, because our arguments do not depend on

the CDF asymptotics in the way that many classical analyses of both global null

testing and FDR control procedures do, we hope they can be adapted to other

problems as well, as described below.

As mentioned after the statement of Theorem 2, the practical implications

of our results are somewhat pessimistic. Even for rather simple problems with

r− β of constant order, the resulting rate at which the risk tends to zero can be

far slower than n−1/2. (Indeed, it seems such a parametric rate is only achievable

when γ = 1, rn → 1, βn → 0.) Hence, in practice, one must carefully consider

whether a good FDR or a good FNR is more important, because achieving both

may not be possible, unless most of the signals to be identified are rather large.

Future directions

We have focused on establishing a nonasymptotic trade-off between the FDR

and FNR in what is arguably the simplest interesting model of the problem.

By way of contrast, much of the recent multiple testing literature focuses on

developing valid FDR control procedures that can gain power or precision by

explicitly using prior knowledge and structure in various ways, including using

null-proportion adaptivity (Storey (2002); Storey, Taylor and Siegmund (2004)),

grouping of hypotheses (Foygel Barber and Ramdas (2016); Hu, Zhao and Zhou

(2010)), prior or penalty weights (Benjamini and Hochberg (1997); Genovese,

Roeder and Wasserman (2006)), or other forms of structure (Li and Foygel Barber
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(2016); Ramdas et al. (2017)).

Similarly, the issue of dependence—either positive or arbitrary—between test

statistics has been an area of focus (Benjamini and Yekutieli (2001); Blanchard

and Roquain (2008); Ramdas et al. (2017)). (Dependence has already been ex-

plored for the higher criticism statistic applied to the detection problem (Hall

and Jin (2008); Jin and Ke (2016); Hall and Jin (2010))). Still others have stud-

ied the nonexchangeability of hypotheses, either in the context of multiple scales

of signal strength, or in the context of online FDR procedures (Foster and Stine

(2008); Javanmard and Montanari (2015)).

Owing to the increasing importance of structured, dependent, and nonex-

changeable settings, developing analogues of our results for such settings is a

worthwhile direction for future work. Furthermore, it is far from clear that known

procedures are optimal under assumptions of structure, dependence, or various

kinds of non-exchangeability, so that an improved understanding of the funda-

mental difficulty of the multiple testing problem under such assumptions may

yield improved algorithms. Chen and Arias-Castro (2017) have made progress

in this direction by providing upper bounds for existing procedures for the on-

line FDR problem (Javanmard and Montanari (2015)), but much still remains

unknown.

Finally, a general proof technique for establishing nonasymptotic lower bounds

in multiple testing remains an important direction for future work. In this study,

we pursued an approach based on a reduction to a class of nonadaptive proce-

dures, a principle that could perhaps be applied to other multiple testing prob-

lems. However, our arguments are, however, based on analytical calculations

and, therefore, are sensitive to the specific observation model under consider-

ation. Thus, an especially pressing problem is that of developing approaches

that depend on the intrinsic structural properties of the test statistic distribu-

tions, and that are less brittle when it becomes inconvenient to reason about the

analytical forms.

Supplementary Material

The online Supplementary Material contains proofs that—for space reasons—

we could not accommodate in the main body of the paper. These include parts

of the proofs of the theorems, as well as proofs of the corollaries and technical

lemmas.
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