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S1 Assumptions for the theoretical properties of the

proposed method

Let [|A| = {tr (ATA)}¥/2 be the norm of matrix A and C denote a positive

constant. The following assumptions are needed to establish the theoretical

properties in Section 3.3.

(C1) Factors: E(||w|*) < C < oo, ny' Y1, W Wiy, 2 ¥, and
n~' S wew, 5 3, for some r x r positive definite matrix X,
where Wy, is an r x 1 vector from the tth row of W) € R™*".

(C2) Factor loadings: || Ai|| < A < oo and [|[ATA/q — 3,|| — 0 for some

positive finite value A and some r x r positive definite matrix X,.

(C3) Weak dependence: (i) E(ey) = 0, E(ley|®) < C; (i) E(euery) = 7
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q —1 q q
i— 17_11 X C q j=1 ‘Tijl < C’

if t = [ and 0 otherwise, ¢ *
=1 ‘sz| C.q! q ;1 17'12] < O (iii) ¢~ ! q 1{E(e%i€?j)_

Tin < C; (iv) BE(lg7V2 3L {ewen — E(ewen)}*) < C for every (t,1).
_ 2
(C4) B{g™ XL, Iny 7 20 Wapequll?} < €

(05) For any t = 17 sy N, E(H(nlq)_l/2 ;‘1:1 ?:11 W(l)tA—z!—e(l)ti”2> <C

and E(”(nlwil/2 Zl W [e(l)lZ E{e i€ tz}]HQ) <C.

(C6) Predicting model: E(g;) =0, E(¢?) < C' < 00, n~' 3.7 wye; = 0 and

|| < 0.

Assumption (C1) is general for the factor model where components of
factor variables are correlated. Assumption (C2) ensures that each factor
has a nontrivial contribution to the variance of z;. Here we only consider
non-random factor loadings for simplicity. Assumption (C3) is the weak
correlation assumption. Given Assumption (C3)(i), the remaining assump-
tions in (C3) are satisfied if the e;;’s are independent for all i. Assumptions
(C3)(iii) and (iv) imply that the fourth and the eighth moments are bound-
ed, respectively. Thus, the proposed method is applicable for sub-Gaussian
cases. The assumption that > 7_, |7;;| < C for all i in Assumption (C3)(ii)
implies that the eigenvalues of the covariance matrix of random error e; are

bounded, since the largest eigenvalue of the covariance matrix is bounded by
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max; y7_, |7i;|. Assumption (C4) provides weak dependence between fac-
tors and random errors. When factors and errors are independent, which
is a standard assumption for conventional factor models, Assumption (C4)
is implied by Assumptions (C1) and (C3), although independence is not
required for Assumption (C4) to hold. Assumption (C5) is not restrictive
since the sums in Assumption (C5) involve zero mean random variables.
Assumption (C6) is a standard set of conditions that implies consistency of

the ordinary least square estimator in the predicting model.

S2 The accuracy of screening for high-dimensional

block-wise missing data

Let M, be the collection of indices for nonzero parameters in true sparse
model y = 25:1 XyB¢+¢€, and p, be the number of elements in M,. Define
E — COV($) and i((f) = XE)Z)E(;;/Q fOI' 7 = ]_7 e K, Where Xgl) iS an no(i) X S;

matrix of observed values from the ith data source and X;) is the corre-

sponding submatrix of ¥. Thus, the covariance matrix of the transformed

matrix X$ is I,,. The following assumptions are needed for the accuracy

of screening.
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(A1) Var(y) = O(1), and for some k > 0 and ¢y, ¢y > 0,

. C1 ) _1
R —— d X)) = .
Py |Be| = Ny 1y an b lcov (B, 'y, Xo)| = ¢

(A2) For i = 1,..., K, X% has a continuous and spherically symmetric
distribution. If there are some c3 > 1 and C; > 0 such that the de-
viation inequality Pr{Anax(s; 15(,8“)?5}”) > €3 OF Apin(S; 15{5,”5(9”) <
1/cs} < exp(—Cine)) holds, where Apax(-) and Ayin(-) are the largest
and smallest eigenvalues of a matrix, respectively. Also, ¢ ~ N(0, 0?)

for some o > 0.

(A3) There are some 7 > 0 and ¢4 > 0 such that Ay (Xp)) < cang, for

i=1,..., K.

(A4) p > n and log(p) = O(n?) for some p € (0,1 — 2k), where & is given

by condition (A1).

The following lemma gives the accuracy of screening for high-dimensional

block-wise missing data.

Lemma 1. (accuracy of screening) Under Conditions (Al1)-(A4), if 2k+7 <
1 then there is some v € (0,1) such that, when v — 0 in such a way that

An!T2T 5 00 as n — oo, we have, for some C' > 0,

Pr(M,Cc M,)=1-0 (exp[—C’ min{lmin Si, min ni(i)z’{/log(no(i))}]) ,

<K I<i<K
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where M., = {1 <i < p: |wis among the first [yp] largest of all}.

Proof. The lemma can be proved similarly to the argument of Fan"and
Il (2008). The key difference in proof is that the Lemma 4 and Lemma 5
in Fan_and Ly (200R) have different conclusions in our proof. In our proof,
Lemma 4 is that for + = 1,..., K and any C > 0, there are constants c;

and ¢y with 0 < ¢; < 1 < ¢9 such that
Pr ((S(i)el,eﬁ < C1Mo(i)/S;i or > czno(i)/si) < 4exp{—Cmin(nyu, s) },

where S(;) = (f(&i)io(i))*i&i)io(i) and e; € R? is a unit vector with the
Ith entry 1 and 0 elsewhere. Lemma 5 is that let Spyer = (Vioy, - - -, Viiyss )
fore=1,..., K, given that the first co-ordinate V|;); = v, the random vector
(Viy2, - - -» Viys;) " is uniformly distributed on the sphere S*~%(v — v2)~1/2;

moreover, for any C' > 0, there is some ¢ > 1 such that
/2 — :
Pr <]V(z)2\ > cnoé)si 1\14]) < 3exp{—Cmin(nee),s; — 1)},

where A is an independent N (0, 1)-distributed random variable. With the
Lemma 4 and Lemma 5, we are able to prove this lemma similarly to Fan

and Ll (200R).
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S3 Proof of Theorems

For the proof of theorems, we introduce some notations as follows. Let
|A|l = {tr (ATA)}/2? denote the norm of matrix A, T be the collection of
row indices in the jth data group Z;), and M,; and M,,; be the collections of
column indices of observed data and missing data in the jth data group Z;),
respectively. Denote 6 = min(\/n1,/q), Hy = (ATA/q)(WL)W(l)/nl)V(_l;,
and \Nf(l) as the r x r diagonal matrix of the first r largest eigenvalues of
Z(l)ZE)/(nlq) in decreasing order. Let Dy = {(dy — ex)du;i = 1,...,q}
for t = 1,...,n, where d;; = 1 if Z}; is missing and d;; = 0 otherwise, and
~T _ T

dti = A@'Wt — Aiwt.

We provide the proof of some lemmas and theorems. Lemma B, @ and
B are the lemmas from Bai (2003), and Lemma B is theorem 1 in Bai-and

Ngl (2002), which are needed subsequently in the proof of theorems.
Lemma 2. Under Assumptions (C1)-(C4), as ny,q — oo:
(i) Wi {ZwZy/ (ma)}Way = Vi) =V,

() TN MMV 1y,

ni q ni

where 'V s the diagonal matrix consisting of the eigenvalues of 33, .
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Lemma 3. Under Assumption (C1)-(C4), we have
WY Wi~ HIW i 2 = 0,(07%).
u=1
Lemma 4. Under Assumption (C1)-(C5), we have
i (W) — Wy H) W) = 0,(672).

Lemma 5. Under Assumption (C1)-(C5), we have

nr' Y (W — HIWay)equ = 0,(67%) for i=1,....q.

u=1

Lemma 6. Under Assumption (C1)-(C5), we have

Xi—H_l)\iei:O <q—]> for ZET‘,':2,...71€.
IG%OJ( 1 ) l p mln(\/n_l, q) irJ

Proof. From A = ZB)W(l)/nl and Zg) = W(l)AT—l— e(1), we have A =
AW\ W i) /i +e(y W) /n1. Writing Wiy = W) — W Hy '+ W Hy !
and W{l)w(l)/nl = I,., we obtain
A = W{l)w(l))\i/nl + >0 W(l)te(l)m—/nl
= W[,(Wa) — WH A /ng + H A
+ 300 (W — HTW e /m + HL S0 Wey/ma
= (Wu) - Wy H) (W) = Wy H A /mg
+HIW], (W) — Wy H A /g + HT
+ 300 (W — HIW (1)) eqye/ny + HL S0 Wnee /i
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Thus, we have

Ai — H1_1>\i = HI 221:1 W(l)u€(1)m’/n1
+H(Way — Wy H) (W) — Wy HT A /g
($3.1)
+ > (W — H{Wgy,)eqyui/na .

Thus, 3,cp (A — Hi'A)ey = I + I + Iy + I, where

L = Zz’eMoj HI 221:1 W(l)ue(l)m'eli/nly

L = Y, (Wa — WoHD) (Wa) — Wy H) Ae/na,
Iy = ZiEMOj HTWIl)(W(l) - W(I)Hl_l))‘z‘eli/nla

I = ZieMoj Zﬁil(w(l)u - H—{W(l)u)e(l)uieli/nl-

Note that ||H;|| = O,(1) because

Wi, W

ni

1/2 1/2

ATA (W W S
B < = HH T Vel

and each of the matrix norms is stochastically bounded by Assumption (C1)
and (C2) together with W{DW(D/M = I, and Lemma B. By Assumption

(C3) and (C4), we have

. n 1/2 1/2
160 < IHTE {2 S, |55 S0k Waweanil?} {2 S, 2}

- o,(3)

By Assumption (C2) and (C3), we have > ..,/ Aiei/\/@; = Op(1) since

E(Xien,, Miew/ /@) = 0and E(|| Xienr,, Miew//GIIP) < N Xien,, i/ 45 <
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C. By Lemma B, we obtain

1L = 1 Sl (W — HiW ) (W, — HTWq),)T|

<|HT Y senr,, Nieail

< (XM Wy — HIW P IH Y G I=5 Sien,, Aieull

= O,(¥%2).

By Lemma B, we have
sl < TS S0, W Wy — Hy W)l [H |
X VGl 7= Yien,, Ml

< O,().

By Lemma B and Assumption (C3), we have

L~ 1/2
15l < VG {E S, I S (W — HIW el
. L\ 1/2
VA <q_j 2 ien,, eli)
< Op(3)-
Thus, we obtain

> N —H{ ' Aeu =0, (ﬁmq)) |

iEMoj

Lemma 7. Under Assumption (C1)-(C5), we have

Z "XZ—Hfl)\l"2:Op (L> for ]:2,716

; 2
e min(ny, ¢?)

Proof. Since equation (831) and (z +y + 2z + u)? < 4(2? + y* + 22 + u?),
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we have 37,/ IXi — HU G2 < 4(J + Jo + Js + Jy), where

Joo= Yiem,, IHI 0L Wayeqyu/nal?,

T = Yiew, W) = Wiy H) (W) — Wy H)HEA /)%,
Js = Diem, HHIWL)(VV(U - WoH)H /)%,

Jio= Yien, I 20 (Wae = HIW ) eq/ml >

By Assumption (C4), we have

1 q;
S - [H || Z |——= ZW weill®) < Op(=2).

n
1€M 1

By Assumption (C2) and Lemma B, we have
o <l 0t (W = HIWay,) (W, — HTW )12
S IH (e, IN2)
< (G XL Wy — HfW ., [[2)?0,(1)g;0
= Op(g;0™).

By Assumption (C2) and Lemma B, we have

Ty < HPIE 205 WauWau = HEW ) IPIHT P (e, [12607)

= Op(Qj5_4)'

By Lemma B, we have J;, = O,(¢;6~*). Then we obtain

X —H-IA2 = B
S IR - HEA =0 ().

Z'eMoj

Lemma 8. Under Assumption (C1)-(C5), as ¢,n1 — oo, we have
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(i) W(l)t —H{W(); = 0, ((min(ny, \/7))7!) fort=1,...,n,
(i1) ;\i—Hl_l)\ = O, ((min(y/n1,q))7") fori=1,....q,

(Z’L’L) W(])t—H—ll—W(j)t = Op (m) fOT’j k andt = 1 n;.

Proof. Since W(l) and ;\Z are obtained in the complete observed data block
Z 1), the proofs of part (i) and (ii) are similar to Bai (2003). The details
are omitted.

Consider part (iii). Since W(j) = zo(j)KO(j)(Kz(j)Ko(j))—l and Z,(;) =
W(])A )+ oy for j =2,... k, then we have, for t = 1,...,ny,

~T

~T ~ AT ~T ~ B
Wi = (Ao Ao) ™ Aoy Aoy Wiy + (Agy Aoi)) ™ Ay €otine

~T ~ ~T ~
= HIW) + (A Aoti) T Ay (Aog) — Aoy H) W5

+H(A ) Aoi) T (Ao — Aoy HT ) ey
~T ~ B
+(A, ) Ao)) ' H IAI(j)eO(j)t'
That is

W — HIW )
= (A Aor) H(Aog) — Aoy HT T (Ao — Aoy HD) W,
+HI1AI(]-)(A0@> — Ay H)W ()

+( Aoy — Moy Hy )eoy + Hi AL €0y}

~T

= Aoy hoiy) (L + I+ I3 + ).
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By Lemma B, we have

~T o~ o~ AT
Ay Aoy = 221 Xo(iidog)i
Z)ZT
< YL = AA =g AW, 200w )
= Op(Q)'
Thus, by Assumption (C1) and Lemma @, we have
Il = 11 sens,, (N = HEA) (A = H )T H Wl
< Diem, X —HUIA[0,(1)
_ qj
o Op(min(nl,q2)>'
By Assumption (C1)-(C2) and Lemma @, we have
LI = I Y ear, Ai(x = H )T E Wy

< Op(N)(Cienr,, 1N (iens,, X — Hi A %)Y

< O VaA0, ()
:(Mm&m)
By Lemma B, we have
~ B i
I3]| = )\Z—Hl)\zel =0 —] for L €T;.
Il =1 32 G =Nl = Oy iy j

By Assumption (C2) and (C3), we have

[[Mall = [Hy 1H\/EH Z Aiewll < Op(va5)-

1€MOJ

Thus, we have

. "
Wi —HW.y <O S .
G — Hy W p(qmln(\/n_l, \/q_j))
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The proof of part (iii) is completed.

Proof of Theorem 1. Based on Lemma B, we can obtain va?t —Aw =
(A — H7'A) (W, — Hjw,) + (A — Hy'A) Hw, + A HT (W, — Hiw,) =
Op{ /@ (min(\ /1G5, q))~'}. The proof of theorem is completed.

Lemma 9. Under Assumption (C1), (C2) and (C3), we have

IAD,/q|| = O, ((min(y/n1,/q))™Y)  for t €Ty j=2,... k.
Proof. Based on the definition of ]3,5, we have for t € T; (j = 2,...,k)

IAD./qll = 1|, Ai(dei — ew)du/all = | > ien,,; Nildu =€)/
< N 2 ien,,; Mida/all + 112 e, Miew/all-

Based on Assumption (C1) and (C2), we have

~TN
||% ZieMmj Aidy|| = ||% Zz‘eMmj Ai( AWy — )‘th)H
= 12 Siean, ML = HU'A) (W, — Hwy)
+(A — H'A)Hlw,

+AH (W, — Hlwy) }|

/N

MR =0 Yiear,,, 1A = HUA|[[W, — Hiw|

AN - S e, 1A= H [ ][ w|

q 49-qj

1 2 AT 1W: — Hiw|

< Oy() + 0,05,

For Assumption (C2) and (C3), we have ||% D ien,,; Nedl = Op(\/ia). Thus,
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1

we obtain [|2ATD|| = O, (srA=m

). The proof of the lemma is complet-

ed.

Lemma 10. Under Assumption (C1)-(C5), we have

1 <, A , _ :
v Z le;Dq|*> = O, ((min(nq,q))™") for teT;,j=2,...k.
=1
Proof. Based on the definition of ]ADt, we have fort € T;,j = 2,...,k

nq2 Zz Llle Dt”2 = n%z Z?:1 | Zgﬂ eii(dii — e4:) 0|
= nq2 Zl l ZZeM eii(dii — ew)|?

a7 ot | Zien,,, cudull?

tooz i | Dien,,, euenll®.

For Assumption (C3), we have

—ZH 2 eudull® < Z Y odts Y d=00. ¥

I=1 €My, 1921 iént, 1 iEnt,, 1 ient,

(93.2)

N

Based on Lemma [@ and B, we can obtain
~T~
%ZieMmj i, = % EieMmj (A We = Ajwy)?
= 3 Cie,, {0 — HIA) (W, — Hiw))

+(X — HU I Hw, + AHY (W, — Hlwy))?

N

Clora (A5 | — Hy A1) [ — Hw 2
(A Siear,, I = HT 2 [ H 2w |

A2 H P W — Hyw?}

N

Op() + Op(3).
(93.3)
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Thus, we have 5 37", || Dicn,, euidiil* < Op(5-) + Op(55). For Assump-

tion (C3), we have

E{%z 27:1 | Zz’eMmj 6li6ti||2} = % 27:1 ZieMmj ZueMmj E(eierernern)
- % ZieMmj ZueMmj i
+niq ZiEMmj ZuEMmj{E(egietQu) — T}
< C.

Thus, -0 >0 | Xiens,,, cuciill® = Op(3)- From equation (8372), we have

anﬁ ey ||elT]/j,5||2 = O,(==£—). The proof of lemma is completed.

min(ni,q)

Lemma 11. Under Assumptions (C1)-(C5), we have

1 i A2 = O, <maX2<j<k(”j)) .

n n
q =1

Proof. Based on the definition of f)l, we have

1 n =N 2 n q 2 n q
0 > IAD? < na SO Nduidul* + ne STID " Newdull® (83.4)
=1 =1 =1 =1 =1

Then, we have

a7 2oy 1100 Xidud|?
n% Doy 2oy INiduil [P0

C L S INIP I = B2 — H w26

N

N

e S oy AP I = H OGP |12 w260
O S I P 2w, — Hwy ||

= L+ L+
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For Lemma [@ and B, we have

I

N

e (X IA = Hy ) [ — Hiwi|6:
= O s (e, 1A = HYA ) W0 — Hw|P1(1 € T5)

n k (4—4;)4}
S %1 Zl:l Zj:2 Op(q2 min(m,q]')jmgn(nl,q?))I(l € TJ)

2
njqj

k
- Zj:Q Op(nq2 min(ny,q;) min(ni,q?) )’

where I(+) is a indicator function. Similarly, we have
2 g —
I < Gyl i A —Hy P

= O ol en,, X — HYAPI( € T3))

k nj
Zj:Q OP(W;H,QQ))’

N

and

k 2

n;q;
E:AATEjEj —Hlw|2I(l € T)) Op(—5—2—).
” H HWl WlH € ; p nq2nlin(n1,CIj))

=1 j=2

Thus, - ng Sy 20 Nididu||? < (w)—k() (W)} For

nni nq?

Assumptions (C2) and (C3), we have

E{%] Do 1220 Avewidu |}
= 'n,iq S ol 3 B Aerer6iii)
< Zz 1 w1 E(erien)0ion,
- i_z 2 E?zQ{ZieMmj > uen,,; Eleiew) (1 € Tj)

- /\2 Zy =2 Z]q €M ZUEMmj |Tm|

< O (maX2<j<k(nj))
" )

n
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n

From inequality (834), we have .- 37" IATD,||2 = O, (Zex2si<ki)y e

proof of lemma is completed.

Lemma 12. Under Assumptions (C1)-(C5), we have

1 = = mang-gk(n-)
n_qQZHD—lretHQ :Op{.;] for t=1,...,n
=1

nmin(ny, q)

Proof. Based on the definition of ]51, we have

1 n R 9 n q 9 n q
TL_C]2 Z ||DlTet||2 < n_qz ZZ I Z; dlieti61i|l2+n_qz ZZ I Z; elieti55i||2, (S3.5)
=1 -1 = -1 =

where 5 350 || 300 diewdn||? < o 200 (0, didn) (5 20 ef). Based

on Assumption (C3), we know E{ >4 ez} < C. From (833), we have

nq Zl 1 q 6[1 - % 2?:1 2522(5 ZIGM dlZ>I(l - 7})

< p{maXQ<]<k ny) }+0, {maXKZL;k(nglJa)}
Thus, o5 S0 |20 duendul? < Op{ m22sselily 4 O (meesis(un)y,

Based on Assumption (C3), we have

E{nLq > i 1220 eneniduil|*}
= e i i1 Eleesieiuen) il
= g 2in Zfzz{ZiGMmj 2 uen,,; Elenenenen)l(l € Th)}
Z?:Q{% Zz‘eMmj ZueMm] T ng ZzGMmJ ZueMmJ (E(efier,) — i)}

Op(maX2<j<k(nj) ).

n

/A

/N

Thus, niqg S ISSL eednll? = O, (2=2<i<k)) - From inequality (S3H),

nq
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we have & 37" IDJe,||? = Op(%). The proof of lemma is com-

pleted.
Lemma 13. Under Assumptions (C1)-(C5), we have

1 G aom . .
—QZHDlTDtHQ:Op{W} for t € Tyu=2,....k
n

nmin(ny, q)

Proof. Based on the definition of f)l, we have
2 IDIDYP = L S [ 5L, DDl
= LY IS (di — en)(di — e0)80ull?
Clogz 2o 1 220 didiidndsil|®
+$ Z?:l I Z?ﬂ dlieti(sli(sti“2
+n+12 2o 1201 eridydiiu*
e S | 0 enendidal”)

- C(Il —I— IQ —f-]g + 14)

N

From (8333), we have
I < nq2 21 1( dlz5h)( ;;1:1 d?ifsti)

= 1 Zl 1 Z ( ZzeMmJ dIQz)I(l €T )( Zz’eMmu dz%z)
< OP(MW) + O(W) +0 (M’W‘).

nny nnigq? p nqg

Based on Assumption (C3) and (8333), we have

I, < nqz > ( d7:0) (D21, €7:0u)

= w2 ZL(& it T € T)(G Xiens,,,, €55)

O (maXQngk(nj)) +O(maxz<3<k(nglb))
f ] e —— — ),

nni nq?

N
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Similarly, we have

I3 < # 27:1( 3 1 elz5lz)( ;]:1 d7:01)
= % > Z?:z(% ZZEM ep)(l € TJ)(% D i, d3;)

< O, (Rxesisilng)y 4 o(maxess<k(ny)auy

nni 7’“1

Based on Assumption (C3), we have

_ 1 n q q
Iy = nT?Zz:1 i=1 Zazl €1i€1a€ti€1a01i01a0ti0ta

k
= nlq ijz Z?:l{% ZieMmj N Mo ZaeMm]- N Mo ei€iaericra (1 € Tj)

Op( maX2<7§k(nj) )

N

since
1
E{E ZieMmj ﬂ Mmu ZaGMm]‘ m Mmu elielaetieta}

= %ZzeMmj N Minu ZaeMm]. O Mon Tfa <C if [ #t
and
E{% DMy () Mo 240 Myns () Mo Eli€laCtiCta }
- éZiEMma‘ N M ZaeMmJ- ﬂMmu{E(etzeta) — T}
+% ZieMmijmu ZaeMmJﬂM 2 <Cif 1=t
Thus, we can obtain n+12 Sy ”ﬁlTﬁtHQ — p{“:z?;@zi(;g)} The proof of

lemma is completed.

Lemma 14. Under Assumptions (C1)-(C5), we have

maxaoc i<k (1q;) 1 ,
- d%6; = A A Op| ——— | f§ =1,....,q.
Z ' { ng? }+ . (min(q27n1)> T et
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Proof. Based on the definition of d;;, we have

n n T~
% Zt:l dz%iéti = % Zt:l()‘i Wi — AZTWt)%ti

N

C{LS0 I — HI|2[ %, — Hw |20
FLS I — HUIGRIEL2w 26
LS NP2 W, — H w20,

= C(L+L+15).

Based on Lemma B, we have

k ~ v _ .
L= 53, W = Hiw|?) X — HU A PI( € M)

N

k n;q? .
Zj:Q Op{ ng? min(nl,;j)]min(nl,qQ) }I(l € MmJ)

For Assumption (C1), we have Ir < ||A; — Hy " A2 Hy |2 (E>3 W) =

O,( For Assumption (C2), we have

m1n(n1 q? )>

k _ ~ )
Iy = %Zj:Q ZteT— ||’\1H2||H1 1HQHWt - H¥Wt||21(@ € Mmj)

> ,0, (rrrmiatrs nﬁ;‘lm )i € Myy).

N

Thus, we can obtain = > | d70,; < Op{w} + O, ( The

P\min(q? nl))
proof of lemma is completed.

Proof of Theorem 2. Using the definition of W, we have nLquFW =

WV where V is a diagonal matrix whose diagonal elements are the first r
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cigenvalues of ZZ'/(nq) in decreasing order. We have
W, = LVIWZZ,
= LV-'W'(Z+D)(Z + D)
= LV'WI(WA"+e+D)(Aw,; + e, + D))
= LV H{WWAAw, + WWA'e, + WWA'D, + W'eAw,
+W'ee;, + W'eD, + WDAw,; + W'De, + WDD,}.
Thus, we obtain
w; — H'wy
= \A/'_l{r%q\/N\rWATet + niq\/ﬂ\/'TWATﬁt + T%q\/N\reAwt + niﬁv*eet
+LWTeD, + LWDAw, + LW'De, + LW'DD,}
= V! Z?:l I;.

Using the definition of ﬁt, we have

A~

R V_1(11+13+I4+I6+I7) tely
W — HTWt =

vVYE teT, u=2 ...k

For Assumptions (C1), (C2) and (C3) together with @ =1, we

have
—~ = 111/2 1/2
10l = IEWWA e < & | S| [ 5 e
= Op(\/Lg)

where 1/,/q> -7 1 Aiey; = Op(1) since E{1/\/q>"7_; Aiesi} = 0 and

E(|1/va>>l, Neal®) < MaXl, 7 < C. Based on Assumption (C1)
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and (C3) with W'W /n = I, we have

1L = 1l WieAw || = |4 X0, %iwiAlel
< GG XL WP 2wl 220 M7 2 M)
- Op(\/Lg)

Based on Assumption (C3), we can obtain

1Ll = [AWee| = |4 S0, wefe
< LT IRV T efed?)? < 0,(L).

where - 37" [lejes]|* = Oy(1) and

E{ Y0 llefed®y = 4. _1 2 Eleweener)
= niq - ?:1{”TZ%+E<€;€%) 7
= é ?:1 g 1 U+nqz 3’:1{E(€?i€?]) TzQJ
< C.
W'W

Based on Assumption (C1), = I, and Lemma 8, we have for ¢ €

T u=2,. .. kL] = | EWWATD, || < || S0 |[1/2)| WIW 1/2) LATE, | —
nq n n q

P
For an = I, and Lemma [, we have

O,V ;ADy| = Oy b))

I < (S Wl 2 (e 0y llefDe|2)2

= 0,(1)(:& X D)2 = Oy (=)

fort €T, u= , k. For Assumption (C1), WTW = I, and Lemma [T,
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we have
sl = Il >0, Wiw[ATDy||

< LS I W G S IAD )2

maxag i<k (y/5)
< O (P

Similarly, for Lemma [, we have

I~ 1 «—,a maxocj<k(/7;)
]7 < (= W, 2\1/2/ - DTe 2\1/2 .
I < G, 2 ISl 3 IDfedl) }

S Op{\/ﬁmin(\/n_h q)

Based on Lemma [3, we can obtain

maxacj<k (/1)
Vnmin(y/ny, \/q)

1 e— 1 I
151 < (G D2 I 2z D IDIDY) 2 < Oy |
=1 =1

fort € T,, u=2,...,k. Similarly to the augment of Lemma Al, we can

obtain that V! is bounded. Thus, we have that

maX2gj<k<\/n_j> _ ;
nny )= Op(min(\/a’ \/n_1>)

~ 1
Wi — HTWt = Op(%) + Op{

for t € T}, and

~ 1
w,—Hw, =0,(——————) for teT,, u=2,...,k.

min(\/c_], V1)
The proof of the part (i) in theorem 2 is completed.
We prove the part (i) as the follow. From A = A /n=>", Z, W] /n
and Z; = Aw; + e, + D;, we have \; = IS WeW A 23T Weey +

1N S D s _ —1T —1T& e LNCWTW —
= > 1 WDy Writing w, = w,—H™"'w,+H™"'w, and using -W'W = I,
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we have
Ai—HA = LY (W - Hwy)(W, — Hwy) TH'\,
_% Z?:l H'w(w, — H'wy) H '\,
o 2 (W = Hi'wy e + 5 D00 Hwgey,
+15 (% — H'w,)D,; + 137 H'w, Dy
= S+ L+ Js+ i+ I+ Js.

Assumptions (C1) and (C2) together with WTW/TL = I, imply that ||H|| <

T e ~
A WIW ) 172 W 172 G 1| = O,(1). Following the part (i) in The-
orem 2, we have

1

min(q7 nl)

[RAIIES Z IWe — H'w[* I < Oy )-

Based on Assumptions (C1)-(C2) and W'W /n = I, we have
Il < TG 328 well?) 205 220y (W — EE W [12) 2 [ [\
1
S Olemmaym):
For Assumption (C3), we have

n

1 e 12 1/2 < 1
I8 € G, DI = B 20 ) < Oyl ).
For Assumption (C4), we have ||Ji| = [H||||: >0, wiey|| = Op(\/iﬁ).
Based on the definition of f)t, we have
150 =I5 220 (We — H'we) (de; — e0i) |
< (G i We = H'w|[26,) V2 (5 320, diidu)'/?

+(% Do W — Hth||25ti)1/2(% D i e%0i)"?,
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where

X7 k ~ .
%Z?:l [W: — H'w, %6 = %Zj:2 ZtET Wi — H'w,||21(i € M,yj)
1
< O RE) = Ol b

For Assumption (C3), we have £ 3% €4, = O,(1). Based on Lemma

[, we have ||J5]| = } Similarly, we can prove ||Js]| =

{ mln(\f V/nt1)

} Thus, we can obtain A; — H™!A; = O p(———=—==). The

Olsmzars

min f\/i min \ff )

proof of part (ii) is completed.
Proof of Theorem 3. Based on the definite of &, we have
a = (WW)'Wy
= (O Wewy) T Y W
= {Zt 1( H'w £) (W — HTWt)T
+> (W —Hw)wH+H Y wi(w, — H'wy)'
+HT wow HY {3 (W — Hiwy )y + HT 30wy}
= {H' Y, wiow, H +0,(1)}
{H' Y0, wiwia + H 300 wiey + 0,(1)}
= Hla+H'Q L, wew,) Y0 wier +0,(1)
since ||H|| = O,(1) and Assumption (C1) together with Theorem 2 (i) holds.

Thus, from Assumption (C6), we can obtain

a— g wW,w, )~ g wier + 0p(1 20.
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The proof of part (i) is completed. Similarly, we have
aw,—a'w, = aw—(H'a)(Hw,)
= (a—-H'!'a)(w,—Hw)+(a—-H'a)Hw,
+(H1a) (W — H'wy)
= 0.

The proof of part (ii) is completed.
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