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Supplementary Material

PROOFS OF THE ASYMPTOTIC PROPERTIES.

In this part, we sketch the proofs for Theorems 1, 2 and 3. For this,

we will mainly use some results about empirical processes given in van der

Vaart and Wellner (1996).

Proof of Theorem 1.

To prove the consistency, we will verify the conditions of Theorem 5.7

of van der Vaart (1998). Let BV [τ1, τ2] denote the functions whose to-

tal variation in [τ1, τ2] are bounded by a given constant. Define Θ =
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A ⊗ B ⊗ BV ⊗K [τ1, τ2]. Define the metric ρ(θ, θ̃) on the parameter space

Θ as ρ(θ, θ̃) = ∥ζ − ζ̃∥2 +
∑K

k=1 supt∈[τ1,τ2] |Λk(t)− Λ̃k(t)|. Then the class of

functions

F =
{
Λk(Ck)e

XT
k β : β ∈ B,Λk ∈ BV [τ1, τ2]

}
is a Donsker class. By the condition (A4), we know that

∫
b

K∏
k=1

{
1− exp

[
−Gk

(
Λk(Ck) e

XT
k β b

)]}∆k

× exp
[
−Gk

(
Λk(Ck) e

XT
k β b

)]1−∆k

p(b|γ) db.

is bounded away from zero. Therefore, l(θ,O) = logL(θ, O) (L(θ, O) de-

fined in (2))belongs to some Donsker class due to the preservation property

of the Donsker class under the Lipschitz-continuous transformations. Then

we can conclude that supθ∈Θ |Pnl(θ, O)−Pl(θ0, O)| converges in probability

to 0 as n → ∞.

Now, we verify that another condition of Theorem 5.7 of van der Vaart

(1998) hold. That is, for any ϵ > 0,

sup
ρ(θ,θ0)>ϵ

Pl(θ, O) < Pl(θ0, O).

Note that this condition is satisfied if we can prove the model is identifiable.

By condition (A5) and similar arguments to the proof of Theorem 2.1 of

Chang et al. (2007), we can show the identifiability of the model parameter-
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s. Now, by Theorem 5.7 of van der Vaart (1998), we have ρ(θ̂n, θ0) = op(1),

which completes the proof of Theorem 1.

To prove the convergence rate of the proposed estimator in Theorem 2,

we need the following lemma.

Lemma 1. Let L = {log L(β, γ,Λ) | θ = (β, γ,Λ) ∈ Θ} and P be any prob-

ability measure on the sample space, then logN[ ](ε,L, L2(P )) = O(1/ε) as

ε decreases to 0.

Proof of Lemma 1.

Let A = {Λ = (Λ1, . . . ,ΛK) : M−1 < Λk < M, for k = 1, . . . , K},

its ε−bracketing number is of the order of O(e1/ε). That is, for each k,

there exists a set of functions, (ΛL
kj,Λ

U
kj), such that ∥ΛU

kj − ΛL
kj∥2 ≤ ε and

ΛL
kj ≤ Λk ≤ ΛU

kj for some j.

We define

lL(j,ζ)(O) = log

∫
b

K∏
k=1

{
∆k + (−1)∆k exp

[
−Gk

(
eX

T
k β [∆kΛ

L
kj(Ck) + (1−∆k)Λ

U
kj(ck)] b

)]}
p(b|γ) db.

lU(j,ζ)(O) = log

∫
b

K∏
k=1

{
∆k + (−1)∆k exp

[
−Gk

(
eX

T
k β [∆kΛ

U
kj(ck) + (1−∆k)Λ

L
kj(Ck)] b

)]}
p(b|γ) db.

Here, O is a vector whose components are covariates, censoring time and

the censoring indicators.
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f(ϑ,O) = log

∫
b

K∏
k=1

{
∆k + (−1)∆k exp

[
−Gk

(
Λk(Ck) e

XT
k β b

)]}
p(b|γ) db.

where ϑ = (ζ,Λ1, . . . ,ΛK). Let ϑ
′
= (ζ

′
,∆1Λ

U
1j+(1−∆1)Λ

L
1j, . . . ,∆KΛ

U
Kj+

(1−∆K)Λ
L
Kj).

Further, by mean value theorem, we have

lU
(j,ζ′ )

(O)− l(θ, O) = f(ϑ
′
, O)− f(ϑ,O) =

d+1∑
i=1

fi(ϑ̃, O)(ζ
′

i − ζi)

+
K∑
k=1

fi+d+1(ϑ̃, O)
{
∆k(Λ

U
kj − Λk)(Ck) + (1−∆k)(Λ

L
kj − Λk)(Ck)

}
Here, fi denotes the partial derivative of f with respect to ϑi and ϑi is the

ith component of ϑ. For (d+1) ≤ i ≤ (K+d+1), note that fi(ϑ, x)/(2∆i−1)

is positive, we have

lU
(j,ζ

′
)
(O)−l(θ,O) ≥ −a0∥ζ

′−ζ∥+a1

K∑
i=1

(2∆i−1)[∆k(Λ
U
kj−Λk)(Ck)+(1−∆k)(Λ

L
kj−Λk)(Ck)],

where a0, a1 are some positive constants. By the definition of ΛL
kj and ΛU

kj,

we know that lU
(j,ζ

′
)
(O)− l(θ,O) ≥ −a0∥ζ

′ − ζ∥+ a1ε. The same arguments

lead to lL
(j,ζ′ )

(O)− l(θ, O) ≤ a0∥ζ
′ − ζ∥ − b1ε for a positive constant b1.

Let ζ1, . . . , ζN be the points in Nζ0 such that for each ζ ∈ Nζ0 , ∥ζ −

ζm∥ ≤ min{a1ε/a0, b1ε/a0} for some m, where 1 ≤ m ≤ N and N is the

bracketing number of Nζ0 which is of the order of O(1/εd+1). Therefore,

for each (ζ,Λ) in Nζ0 × [1/M,M ]⊗K , there exists ζm, Λ
L
kj and ΛU

kj such that

lL(j,ζ)(O) ≤ l(θ,O) ≤ lU(j,ζ)(O).
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Furthermore, by mean value theorem, we have

∥lU(j,ζ)(O)−lL(j,ζ)(O)∥22,P ≤ E

(
b2

K∑
i=1

|ΛU
kj(Ck)− ΛL

kj(Ck)|2
)

= b2m∥ΛU
kj(Ck)−ΛL

kj(Ck)∥22,Q < b2mε2,

where b2 is a positive constant and Q denotes the distribution function for

the observation time C.

Therefore, by Example 19.11 of van der Vaart (1998), we get that

N[ ](ε,L, L2(P )) is of the order of O(e1/εε−d−1) and logN[ ](ε,L, L2(P )) =

O(1/ε) as ε decreases to 0. This completes the proof of Lemma 1.

Proof of Theorem 2.

By the Kullback-Leibler inequality, we know that Pl(θ,O) is maximized

at θ = θ0. So its first derivative at θ0 is equal to 0, then by Taylor ex-

pansion, we know that for every θ in a neighborhood of θ0, P(l(θ,O) −

l(θ0, O)) ≤ −C d2(θ, θ0) , where C is a positive constant. From the Lem-

ma 1, we know that the bracketing integral J[ ](η,L, L2(P )), defined as∫ η

0

√
logN[ ](ε,L, L2(P )) dε, is of the order of η1/2. Then the lemma 19.36

of van der Vaart (1998) gives

E∗ sup
d(θ,θ0)<η

∥
√
n(Pn − P)(l(θ, O)− l(θ0, O))∥ = O(1)η1/2

(
1 +

η1/2

η2
√
n
M1

)
,

where E∗ is the outer expectation and M1 is a positive constant. Let

ϕn(η) = η1/2
(
1 + η1/2

η2
√
n
M1

)
. Then ϕn(η)/η is a decreasing function, and
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n2/3ϕn(n
−1/3) = O(

√
n) for large n. Furthermore, by Theorem 1, we know

that θ̂n is consistent. According the theorem 3.4.1 of van der Vaart and

Wellner (1996), we can conclude that d(θ̂n, θ0) =
{
∥ζ̂n − ζ0∥2 +

∑K
k=1

∫
[Λ̂kn(c)− Λk0(c)]

2 fk(c)dc
}1/2

=

Op(n
−1/3), which completes the proof of Theorem 2.

Proof of Theorem 3.

The score functions for β and γ are denoted by Sβ(θ) and Sγ(θ), re-

spectively, where Sβ(θ) =
∂l(β,γ,Λ)

∂β
and Sγ(θ) =

∂l(β,γ,Λ)
∂γ

. For k = 1, . . . , K,

we let hk(t) be a nonnegative and nondecreasing function on [τ1, τ2]. De-

fine H = {h = (h1(t), . . . , hK(t))}. Consider parametric submodels Λϵ(t) =

(Λ1,ϵ(t), . . . ,ΛK,ϵ(t)), where Λk,ϵ(t) = Λk(t) + ϵhk(t). For each k, the score

function along the kth submodels is given by,

SΛk
(θ)[hk] =

∂l(β, γ,Λk,ϵ)

∂ϵ

∣∣∣∣
ϵ=0

= L(θ, O)−1

∫
b

K∏
k=1

Ak(β,Λ, O)
K∑
k=1

Bk(β,Λ, O)

 ∆k

1− exp
[
−Gk

(
Λk(Ck) eX

T
k β b

)] − 1

 p(b|γ) db,

where

L(θ, O) =

∫
b

K∏
k=1

{
∆k + (−1)∆k exp

[
−Gk

(
Λk(Ck) e

XT
k β b

)]}
p(b|γ) db,

Ak(β,Λ, O) = ∆k + (−1)∆k exp
[
−Gk

(
Λk(Ck) e

XT
k β b

)]
,
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Bk(β,Λ, O) = G′
k

(
Λk(Ck) e

XT
k β b

)
eX

T
k βhk(Ck)b.

The efficient score for ζ at (ζ0,Λ0) is l̃(ζ0,Λ0) = Sζ(ζ0,Λ0)−
∑K

k=1 SΛk
(ζ0,Λ0)[h

∗
k],

where Sζ(ζ0,Λ0) = (Sβ(θ0)
T , Sγ(θ0))

T , h∗
k is a (d+ 1)-vector function satis-

fying

P

(Sζ(ζ0,Λ0)−
K∑
k=1

SΛk
(ζ0,Λ0)[h

∗
k]

)T ( K∑
k=1

SΛk
(ζ0,Λ0)[hk]

) = 0,

for each hk in H. By following similar calculations in Section 3 of Chang

et al. (2007), we can establish the existence of h∗
k in the above equation.

The efficient Fisher information matrix I0 for ζ at (ζ0,Λ0) is defined

as P(l̃(ζ0,Λ0)l̃(ζ0,Λ0)
T ). In the following, we will show that I0 is positive

definite. If the I0 is singular, then there exists a nonzero vector ν ∈ R(d+1)

such that νT I0ν = 0. It follows that, with probability one, the score func-

tion along the submodel {ζ0 + ϵν,Λ10 + ϵνTh∗
1, . . . ,ΛK0 + ϵνTh∗

K} is zero.

Therefore,

νT

(
∂

∂ζ
+

K∑
k=1

h∗
k

∂

∂yk

)∣∣∣∣
(ζ,y1,...,yK)=(ζ0,Λ10(c1),...,ΛK0(cK))

log

∫
b

K∏
k=1

{
∆k + (−1)∆k exp

[
−Gk

(
yk e

XT
k β b

)]}
p(b|γ) db = 0.

Using the condition (A5), we know that ν = 0, this is a contradiction.

Therefore, we can conclude that νT I0ν = 0 implies ν = 0. That is, the

efficient Fisher information matrix is positive.
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Define

Sζ,k(θ)[hk] =
∂

∂ϵ

∣∣∣∣
ϵ=0

Sζ(θ; Λk = Λkϵ),

Sk,j(θ)[h̃k, hj] =
∂

∂ϵ

∣∣∣∣
ϵ=0

SΛk
(θ; Λj = Λjϵ)[h̃k]

for k = 1, . . . , K and j = 1, . . . , K, where ∂/∂ϵ|ϵ=0Λjϵ = hj. By Taylor

expansion, we can obtain

Pl̃(ζ0,Λ) = Pl̃(ζ0,Λ0)+P

{
K∑
k=1

Sζ,k(θ)[Λk − Λk0]−
K∑
k=1

K∑
j=1

Sk,j(θ)[h
∗
k,Λk − Λk0]

}

+Op

(
K∑
k=1

∥Λk − Λk0∥2
)
.

Note that Pl̃(ζ0,Λ0) = 0, P(Sζ(θ)SΛk
(θ)[hk]) = −P(Sζ,k(θ)[hk]),

P(SΛk
(θ)[h̃k]SΛj

(θ)[hj]) = −P(Sk,j(ζ)[h̃k, hj]), by the consistency and the

convergence rate of Λ̂n, we can conclude that Pl̃(ζ0, Λ̂n) = Op(n
−2/3),

which implies
√
nPl̃(ζ0, Λ̂n) = op(1). We know from Example 19.11 of

van der Vaart (1998) that the class of uniformly bounded functions with

bounded variations is a Donsker class. By using Theorem 2.10.6 of van

der Vaart and Wellner (1996), we can verify that l̃(ζ,Λ) is a uniformly

bounded Donsker class. In addition, we have proved that θ̂n is consistency.

Therefore,
√
n(Pn − P)(l̃(ζ̂n, Λ̂n) − l̃(ζ0,Λ0)) = op(1). Due to the fact that
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Pnl̃(θ̂n) = Pl̃(θ0) = 0 and Pl̃(ζ0, Λ̂) = op(1), we can have

−
√
nP(l̃(θ̂n)− l̃(ζ0, Λ̂n)) =

√
nPnl̃(θ0) + op(1).

By the mean value theorem, we have

−
√
nP

∂

∂ζ
l̃(ζ

′
, Λ̂n)(ζ̂n − ζ0) =

√
nPnl̃(θ0) + op(1),

where ζ
′
is a point between ζ̂n and ζ0. Since θ̂n is consistency and P(− ∂

∂ζ
l̃(θ0)) =

P(l̃(θ0)l̃(θ0)T ) = I0, we can conclude that

√
n(ζ̂n − ζ0) = I−1

0

√
nPnl̃(θ0) + op(1)

d−→ N(0, I−1
0 ).

This completes the proof of Theorem 3.


