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Appendix I. Description of the simulation.

1 Simulation

To investigate the finite sample properties of the proposed methods, and compare with

the commonly used local linear smoothing (Loess) and spline methods, we present here

several simulation studies, which are designed to mimic the practical situations with

moderate sample sizes. We consider separately the tests for the equality of two mean

curves and the tests for the correlation function between two stochastic processes. For

each case, the simulation is based on 5000 replications, and the mean values of estimates

over the replications are reported.
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1.1 Testing the Equality of Mean Curves

1.1.1 Simulation for Test with Two-Sided Alternatives

For testing the hypotheses (9), we generate the observations
{
Xn1 ,Yn2 ,

(
Xnxy ,Ynxy

)}
of{

X(t), Y (t) : t ∈ T
}

using the data structure (2) with n1 = n2 = 50 and nxy = 20 on

k(n) = 50 equally spaced time points
{
tj = j : j = 1, . . . , 50

}
, so that nx = ny = 30.

For subjects with only X(t) or Y (t) observed, we generate Xi(tj) + εi(tj) = µ(tj) +

ri sin(8 + tj/10)
/

30 + N(0, σ2(tj)), µ(t) =
[
(t + E[r]) sin(8 + t/10)

]/
30, where the ri’s

and r are iid random integers uniformly distributed on {1, . . . , 50} used to make the

curves more wiggly looking; similarly, Yi(tj) + ξi(tj) = η(tj) + Cri cos(8 + tj/10)
/

100 +

N(0, σ2(tj)), η(t) = µ(t) + CE[r] cos(8 + tj/10)
/

100. σ2(t) = 0.001 × t, ri’s and r

are iid random integers uniformly distributed on {1, . . . , 50} used to make the curves

more wiggly looking, and C is a constant characterizing the difference between µ(t)

and η(t). For subjects with
(
X(t), Y (t)

)
observed, we generate

{(
Xi(t) + εi(tj), Yi(t) +

ξi(tj)
)T ∼ N

((
µ(t), η(t)

)T
,Σ(t)

)
: i = nx+1, . . . , n1

}
, where the covariance matrix Σ(t)

is composed by the variance σ2(t) and the correlation coefficient ρ(t) = 0.01× (t/50).

1.1.2 Simulation for Test with One-Sided Alternatives

For testing the hypotheses (10), we generate the observations
{
Xn1 ,Y∗n2

,
(
Xnxy ,Y∗nxy

)}
of
{
X(t), Y (t) : t ∈ T

}
using the same method as Section 5.1.1, except that Yi(tj) +

ξi(tj) is replaced with Y ∗i (tj) + ξi(tj) ∼ N
(
η∗(tj), σ

2(tj)
)
, where η∗(t) = µ(t) +

[
C∗ (t+

2



E[r])
∣∣ cos(8 + t/3)

∣∣/100
]
. Here, C∗, which plays a similar role as C, is a constant

characterizing the difference between µ(t) and η∗(t).

1.2 Testing Correlation Functions

1.2.1 Simulation for Test with Two-Sided Alternatives

For simplicity, each of our simulated samples contains n1 = n2 = nxy = 50 subjects

observed on k(n) = 50 time points
{
tj = j : j = 1, . . . , 50

}
, so that, in view of (2),

the sample contains only the paired observations
{(
Xi(tj) + εi(tj), Yi(tj) + ξi(tj)

)T
: i =

1, . . . , 50; j = 1, . . . , 50
}

. For testing the hypotheses in (15) using the test statistic Sn, we

generate in each sample Xi(tj)+εi(tj) ∼ N
(
µ(tj), σ

2
1(tj)

)
, where µ(t) = t sin(8+t/10)/30

and σ2
1(t) = 0.01×t, and, conditional on Xi(tj) = xi(tj), Yi(tj)+ξi(tj) has the conditional

normal distribution,

Yi(tj)+ξi(tj)
∣∣xi(tj)+εi(tj) ∼ N

(
µ(tj)+ρ(tj)

[
σ2(tj)

/
σ1(tj)

][
xi(tj)+εi(tj)−µ(tj)

]
,
(
1−ρ2

)
σ2
2(tj)

)
,

(29)

where σ2
2(t) = 0.01 × t and ρ(t) = ρ sin(8 − t/10) for some ρ ≥ 0. Here, for any

t ∈ {1, . . . , 50}, ρ(t) is the true correlation coefficient between Xi(t) and Yi(t), and ρ

determines the difference of the correlation curve R(t) from zero.

Appendix II. Proofs.
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Proof of Theorem 1 (i). Since, by (3) and (4), Xi,k(n)(·) and Yi,k(n)(·) are two stochastic

processes on T , we denote by

µk(n)(t) = E[Xi,k(n)(t)] and ηk(n)(t) = E[Yi,k(n)(t)] (A.1)

the expectations of the random variables Xi,k(n)(t) and Yi,k(n)(t), respectively, for each

fixed t ∈ T . Then, we have√
n1n2

n

{[
µ̂n1(t)− µ(t)

]
−
[
η̂n2(t)− η(t)

]}
=
√

n1n2

n

{[
µ̂n1(t)− µk(n)(t)

]
−
[
η̂n2(t)− ηk(n)(t)

]}
+
√

n1n2

n

{[
µk(n)(t)− µ(t)

]
−
[
ηk(n)(t)− η(t)

]}
.

(A.2)

Note that by (2), (4) and the assumption E[εi(t)] = 0 for all t,

µk(n)(t) =
(tj+1 − t)E[Xi(tj) + εi(tj+1)] + (t− tj)E[Xi(tj+1) + εi(tj+1)]

tj+1 − tj

=
(tj+1 − t)µ(tj) + (t− tj)µ(tj+1)

tj+1 − tj
, t ∈ [tj, tj+1].

Thus, µk(n)(·) is the linear interpolation of µ(·) on the [tj, tj+1)]’s for j = 0, . . . , k(n) +

1 with t0 = inf{t ∈ T } and tk(n)+1 = sup{t ∈ T }. Similarly, ηk(n)(·) is the linear

interpolation of η(·) on T .

By the assumptions that µ(·) and η(·) are Lipschitz continuous on T which is

bounded, it follows that µk(n)(t) and ηk(n)(t) are uniformly continuous on T . Thus,

we have

inf
s∈[tj ,tj+1)

µ(s) ≤ µk(n)(t) ≤ sup
s∈[tj ,tj+1)

µ(s)

and

inf
s∈[tj ,tj+1)

η(s) ≤ ηk(n)(t) ≤ sup
s∈[tj ,tj+1)

η(s)

4



for t ∈ [tj, tj+1), j = 0, . . . , k(n) + 1. Let δk(n) = max{tj+1 − tj : j = 0, 1, ..., k(n)}. The

assumption of first order Lipschitz continuity implies there are 0 < c1, c2 <∞, such that

sup
s,t∈T ,|t−s|≤δk(n)

|µ(t)− µ(s)| ≤ c1δk(n) and sup
s,t∈T ,|t−s|≤δk(n)

|η(t)− η(s)| ≤ c2δk(n).

Thus by the condition
√
nδk(n) → 0, we get√

n1n2

n
sup
t∈T

∣∣∣[µk(n)(t)− µ(t)
]
−
[
ηk(n)(t)− η(t)

]∣∣∣ ≤ (c1 + c2)
√
nδk(n) → 0. (A.3)

Now, it suffices to show that in `∞(T ),√
n1n2

n

{[
µ̂n1(·)− µk(n)(·)

]
−
[
η̂n2(·)− ηk(n)(·)

]} D⇒ W (·). (A.4)

To prove (A.4), it suffice to show, in `∞(T ),

√
n1

[
µ̂n1(·)− µk(n)(·)

] D⇒ W1(·) and
√
n2

[
η̂n2(·)− ηk(n)(·)

] D⇒ W1(·). (5)

for some Gaussian processes W1(·) and W2(·).

We will use Theorem 2.11.23 in van der Vaart and Wellner (1996, P.221) to prove

(A.5). We only show the first in (A.5), that for the second is the same. Denote X̃i(·) =

Xi(·) + εi(·), then

µ̂n1(t)
1

n1

n1∑
i=1

(t− tj)X̃i(tj) + (tj+1 − t)X̃i(tj+1)

tj+1 − tj
:=

1

n1

n1∑
i=1

gn,t(X̃i), t ∈ [tj, tj+1],

where gn,t is the linear interpolation functional, with knots {t1, ..., tk(n)}, evaluated at

t ∈ T , and µk(n)(t) = Egn,t(X̃i) := Pgn,t(X̃i). Denote Pn1 the empirical measure of

X̃1, ..., X̃n1 , then the first in (A.5) is written as

n
−1/2
1 (Pn1 − P )gn,·(X̃i)

D⇒ W1(·), in `∞(T ). (A.6)
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To show the above, we only need to check the conditions of Theorem 2.11.23.

For any s, t ∈ T , let ρ(s, t) = |t − s|, then (T , ρ) is a totally bounded semi-metric

space. Let X̃ be an iid copy of the X̃i’s, and define Ỹi and Ỹ similarly. Let Gn =

{gn,t(X̃) : t ∈ T }. Then Gn = G = supt∈T [X̃2(t) + Ỹ 2(t)]1/2 is an envelope for Gn.

By the given condition PG2 < ∞, so PG2
n = PG = O(1), and P [G2

nI(Gn > δ
√
n)] =

P [G2I(G > δ
√
n)] → 0 for every δ > 0. Also, for every δn → 0, by the given conditon

δn → 0 sup|t−s|≤δn E
([
X(t) + ε(t)−X(s)− ε(s)

]2
+
[
Y (t) + η(t)− Y (s)− η(s)

]2)→ 0,

sup
ρ(s,t)<δn

P
(
gn,s(X̃)− gn,t(X̃)

)2 ≤ sup
ρ(s,t)<δn

P
(
X̃(s)− X̃(t)

)2 → 0.

Thus (2.11.21) in van der Vaart and Wellner (1996, P.220) is satisfied.

Let N[ ]

(
ε,Gn, L2(P )

)
be the number of ε-brackets needed to cover Gn under the

L2(P ) metric. Since for each n, there is one member gn,t ∈ Gn, let ln,t = un,t = gn,t,

then ln,t(X̃) ≤ gn,t(X̃) ≤ un,t(X̃) (t ∈ T ), and for all ε > 0, P
(
un,t(X̃) − ln,t(X̃)

)2
=

0 < ε‖G‖L2(P ), i.e., (ln,t, un,t) is a ε-bracket of Gn under the L2(P ) norm. Here we have

N[ ]

(
ε‖G‖L2(P ),Gn, L2(P )

)
= 1, thus

∫ δn

0

√
logN[ ]

(
ε‖G‖L2(P ),Gn, L2(P )

)
dε→ 0, for every δn → 0.

Now, by Theorem 2.11.23 in van der Vaart and Wellner (1996, P.221), (A.6) is true.

Next we identify the weak limit W (·). For each fixed interpolation gn,t ∈ Gn, gn,t(X̃)

is a random function in t, so W (·) is a process on T . For each positive integer k and

fixed (t1, ..., tk), by central limit theorm for double array, (W (t1), ...,W (tk))
T is the weak
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limit of the vector

√
n1n2

n

{[
µ̂n1(·)− µk(n)(tj)

]
−
[
η̂n2(·)− ηk(n)(tj)

]
: j = 1, ..., k

}
.

So (W (t1), ...,W (tk))
T is a mean zero normal random vector, and by the uniform weak

convergence showed above, W (·) is a Gaussian process on T . Clearly E[W (·)] = 0. The

covariance function R(s, t) = E[W (s)W (t)] is given by

R(s, t) = lim
n→∞

(n1n2

n

)
Cov

{[
µ̂n1(s)− µk(n)(s)

]
−
[
η̂n2(s)− ηk(n)(s)

]
,[

µ̂n1(t)− µk(n)(t)
]
−
[
η̂n2(t)− ηk(n)(t)

]}
.

Since

Cov
{[
µ̂n1(s)− µk(n)(s)

]
−
[
η̂n2(s)− ηk(n)(s)

]
,
[
µ̂n1(t)− µk(n)(t)

]
−
[
η̂n2(t)− ηk(n)(t)

]}
= Cov

{[ 1

n1

nx∑
i=1

[
Xi,k(n)(s)− µk(n)(s)

]
+

1

n1

n1∑
i=nx+1

[
Xi,k(n)(s)− µk(n)(s)

]
− 1

n2

n1∑
i=nx+1

[
Yi,k(n)(s)− ηk(n)(s)

]
− 1

n2

n2∑
i=n1

[
Yi,k(n)(s)− ηk(n)(s)

]]
,

[ 1

n1

nx∑
i=1

[
Xi,k(n)(t)− µk(n)(t)

]
+

1

n1

n1∑
i=nx+1

[
Xi,k(n)(t)− µk(n)(t)

]
− 1

n2

n1∑
i=nx+1

[
Yi,k(n)(t)− ηk(n)(t)

]
− 1

n2

n2∑
i=n1

[
Yi,k(n)(t)− ηk(n)(t)

]]}
=

1

n1

Cov
[
X1,k(n)(s), X1,k(n)(t)

]
− nxy
n1n2

Cov
[
X1,k(n)(s), Y1,k(n)(t)

]
− nxy
n1n2

Cov
[
Y1,k(n)(s), X1,k(n)(t)

]
+

1

n2

Cov
[
Y1,k(n)(s), Y1,k(n)(t)

]
,
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we have

R(s, t) = lim
n→∞

(n1n2

n

){
n−11 Cov

[
X1,k(n)(s), X1,k(n)(t)

]
− (n1 − nx)

n1n2

Cov
[
X1,k(n)(s), Y1,k(n)(t)

]
−(n1 − nx)

n1n2

Cov
[
Y1,k(n)(s), X1,k(n)(t)

]
+ n−12 Cov

[
Y1,k(n)(s), Y1,k(n)(t)

]}
= γ2R11(s, t)− γ12[R12(s, t) +R21(s, t)] + γ1R22(s, t). 2

Proof of Theorem 2. (i). By Theorem 1, we have that, under H0 of (9),

Ln
D→ 1

|T |

∫
T
W 2(t)dt. (A.9)

Since R(·, ·) is almost everywhere continuous and T is bounded, R2(·, ·) is integrable,

that is,
∫
T

∫
T R

2(s, t) dsdt < ∞. By Mercer’s Theorem (cf. Theorem 5.2.1 of Shorack

and Wellner (1986), page 208), we have that

R(s, t) =
∞∑
j=1

λjhj(s)hj(t), (A.10)

where λj ≥ 0, j = 1, 2, . . ., are the eigenvalues of R(·, ·), and hj(·), j = 1, 2, . . ., are the

corresponding orthonormal eigenfunctions.

Let
{
Z1, . . . , Zm, . . .

}
be the set of independent identically distributed random vari-

ables with Zm ∼ N(0, 1). Then Z(t) =
∑∞

j=1

√
λjZjhj(t) is a Gaussian process on T

with mean zero and covariance function R(s, t). Thus, the two stochastic processes,

W (t) and Z(t), have the same distribution on T ,

W (t)
d
= Z(t) =

∞∑
j=1

√
λjZjhj(t) (A.11)
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and, by (A.9) and (A.10),

1

|T |

∫
T
W 2(t)dt

d
=

1

|T |

∫
T

[ ∞∑
j=1

√
λjZjhj(t)

]2
dt =

1

|T |

∞∑
j=1

λjZ
2
j . (A.12)

The result of Theorem 2(i) follows from (A.9), (A.11) and (A.12).

(ii). By Theorem 1, we have that, under H0 of (10),

Dn
D→ 1

|T |

∫
t∈T

W (t) dt = U, (A.13)

where U has normal distribution with mean zero. To compute the variance of U , we

consider the partition
{

[sj, sj+1) : j = 1, . . . ,m
}

of T with δ = max
{
sj+1 − sj : j =

1, . . . ,m
}

. Then, it follows from (A.13) that

U = lim
δ→0

m∑
j=1

W (sj)(sj+1 − sj). (A.14)

Since E
[
W (sj)

]
= 0 for each fixed j, we have that, by (A.14) and the continuity condition

of R(·, ·),

V ar(U) = lim
δ→0

m∑
i=1

m∑
j=1

E
[
W (si)W (sj)

]
(si+1 − si)(sj+1 − sj)

= lim
δ→0

m∑
i=1

m∑
j=1

R(si, sj) (si+1 − si)(sj+1 − sj) =

∫
s∈T

∫
t∈T

R(s, t) ds dt.

The result of Theorem 2(ii) follows from (A.13) and V ar(U). 2

Proof of Theorem 3
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The proof is similar to derivation of (A.5) by substituting µ(·) and µn(·) with µ(·)

and µ̂n(·), respectively. The difference here is that we have order two polynomial inter-

polations for the terms
(
X2
i,k(n)(·), Y 2

i,k(n)(·), Xi,k(n)(·)Yi,k(n)(·)
)

in addition to the linear

interpolations for Xi,k(n)(·) and Yi,k(n)(·) with G2 playing the role of G in the derivation

of (A.5). The rest of the derivation is proceeded the same way. Then, the delta method

leads to the claimed result. To identify the matrix covariance function Ω(s, t), we note

that

µn(t) =
1

n

n∑
i=1

(
Xi,k(n)(t), Yi,k(n)(t), X

2
i,k(n)(t), Y

2
i,k(n)(t), Xi,k(n)(t)Yi,k(n)(t)

)′
:=

1

n

n∑
i=1

Zi(t).

Then, Ω(s, t) = Cov
(
Z(s), Z(t)

)
gives the expression for Ω(s, t). 2

Proof of Theorem 4.

The proof here is focused on the derivation of (28), as the proof of (27) can be

proceeded using the same approach here and the results of Theorem 3. We first note

that Wn(t) = H
[
µn(t)

]
and, under H0 of (15) and (16), H

[
µ(t)

]
= 0. It follows that

√
nWn(t) =

√
n
{
H
[
µn(t)

]
−H

[
µ(t)

]}
=
[
1 + op(1)

]√
n Ḣ

[
µ(t)

] [
µn(t)− µ(t)

]
.

Using result of Theorem 3, the delta method and the similar derivations as the proof of

Theorem 1, we have

√
nWn(·) P→ W̃ (·) in `∞(T ) uniformly on P ,
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where W̃ (·) is the mean zero Gaussian process on T with covariance function

Q(s, t) = Cov
{
Ḣ
[
µ(s)

]
X(s), Ḣ

[
µ(t)

]
Z(t)

]}
= Ḣ

[
µ(s)

]
Cov

[
Z(s), Z(t)

]
Ḣ ′
[
µ(t)

]
= Ḣ

[
µ(s)

]
Ω(s, t) Ḣ ′

[
µ(t)

]
.

The rest of the proof is the same as in that of Theorem 2. 2
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