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Abstract: Existing statistical methods for functional data analyses tend to use local

smoothing estimators or some known basis approximations. In many applications

with functional observations, the main objectives of statistical inferences are to test

(a) the equivalence of a set of unknown mean curves, and (b) the correlation curves

of the unknown stochastic processes. However, the unknown curves of the functional

data might not be approximated by a set of known basis functions. We propose

a class of simple test statistics for comparing the mean and correlation curves of

functional data, without relying on an estimation using local smoothing or basis

approximations, and study their basic asymptotic properties. Then, we apply the

proposed method to functional gene expression data, showing that it yields practical

and meaningful results with minimal assumptions. Numerical justifications of our

testing method are provided by a simulation study.

Key words and phrases: Comparing mean curves, correlation curve, functional data,

gene expression profile, testing functional equivalence, uniform normed convergence.

1. Introduction

Functional data analyses have been used extensively in biomedical stud-

ies to evaluate multiple mean and correlation curves over time. Nonparametric

analyses of functional data include the estimation and hypothesis testing of the

unknown curves, without relying on potentially unrealistic parametric assump-

tions. A popular approach for nonparametric inferences with functional data is

to assume that the unknown curves belong to a “structured regression model”

(Hastie, Tibshirani and Friedman (2009)), which can be approximated by some

expansions of a class of known basis functions. As a result, the estimation and

testing procedures can be constructed using the unknown coefficients of the ba-

sis expansions. Basis approximation methods have been proposed by Shi, Weiss

and Taylor (1996); Chiang, Rice and Wu (2001); Huang, Wu and Zhou (2002);

Müller and Yao (2008) and Li, Wang and Carroll (2010), among others. When

the objective is only a nonparametric estimation of the unknown curves, local

smoothing methods, such as local polynomials or smoothing splines, are often
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used in conjunction with structured regression models; for example, see Hoover

et al. (1998); Wu and Chiang (2000); Chiang, Rice and Wu (2001) and Fan and

Zhang (2000). Cai and Yuan (2011) studied the optimal convergence rate of gen-

eral estimators and a penalized smoothing estimator of the mean function. Kim

and Zhao (2013) introduced two self-normalization methods to overcome the ker-

nel smooth-convergence issue for the sparse and dense longitudinal model. Local

polynomials and smoothing splines are often used to estimate functional curves.

However, to the best of our knowledge, few studies have examined the statistical

properties of hypothesis testing with functional data.

In many biological studies, biological characteristics are measured over time.

Thus, we need to be able to compare the curves of various biological charac-

teristics and their correlations, but without a priori knowledge of suitable basis

functions with which to approximate the curves. For example, the objectives of

a temporal gene expression (TGE) study might include testing whether different

genes have the same mean expression profiles, or whether some gene expression

profiles are correlated.

Two sample hypothesis tests for functional data have been proposed. To

test the differences in the mean functions, Zhang and Chen (2007) applied a local

polynomial kernel smoothing technique and constructed an L2-norm-based global

test statistic. Cao et al. (2016) constructed a polynomial spline confidence band

for mean curves, and Degras (2011, 2017) constructed simultaneous confidence

bands. The hypothesis test problem is addressed by testing whether the bands

for a difference contain the zero function. Wang et al. (2017) considered unified

empirical likelihood ratio tests based on a functional concurrent linear model. An

extension to k independent samples of curves was provided by Cuevas, Febrero

and Fraiman (2004) who introduced an ANOVA-like test.

In order to test the equality of the distributions of two sets of curves, Hall

and Keilegom (2007) proposed a Cramer–von Mises (CVM)-type test based on a

second-order smoother. Estévez-Pérez and Vilar (2008) extended the method to

k sample cases and applied it to air quality data. Benko, Härdle and Kneip (2009)

studied this problem by first introducing a functional principal components de-

composition, along with a bootstrap. Pomann, Staicu and Gosh (2016) also

decomposed the curves using a functional principle component analysis (FPCA),

and applied the Anderson–Darling statistic. Some studies focus on detecting dif-

ferences in the covariance structures of curves. Gaines, Kaphle and Ruymgaart

(2011) used a likelihood ratio-type approach. Fremdt et al. (2012) developed

a chi-square asymptotic test statistic based on an FPCA. A regularized M-test
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based on the Hilbert–Schmidt norm was introduced by Kraus and Panaretos

(2012). Horváth and Kokoszka (2012) describe an estimation and testing ap-

proach for mean and covariance curves, in which they assume that subjects are

observed over a very dense set of time points. As a result, they are able to con-

struct statistical inferences if the entire curves are observed. This assumption is

unrealistic in most studies. The above methods can surely be applied in prac-

tice with moderately dense functional data, including the method proposed here.

However, both will produce inaccurate inferences if the observation grid is not

sufficiently dense.

We study the problem of testing the equivalence of mean curves or correla-

tion curves when the curves are observed at a set of time design points chosen

based on the scientific objectives. In addition, the estimated curves can be con-

structed through interpolations at the observed time points. As pointed out by

Cai and Yuan (2011, p.2332) when estimating the mean function, smoothing (i.e.

a more complicated method) does not result in an improved convergence rate.

Therefore, we propose a simple empirical linear interpolation mean as an esti-

mator of the mean curve to test the difference in the means, and for correlation

functions between two curves. The asymptotic results of our testing procedures

are more general, in the stronger uniform sense, than those given in Horváth

and Kokoszka (2012). The proposed method offers two main advantages. First,

existing methods first transform the observations into smoothed curves, and then

use these curves as functional data. Thus the results may deviate more or less

from the truth. In contrast, we use the observed raw data, which is particularly

important when the number of observation time points is not big, as in our prob-

lem. Second, the proposed method uses empirical mean functions to test the null

hypothesis, making it simple to use. In comparison, most existing methods use

splines, basis functions, reproducing kernels, kernel smoothers, and so on, which

are not as simple to use and require additional assumptions. The main limitation

of the proposed method is that it might not be applicable to problems outside

the mean, such as those involving a functional regression.

We describe the data and our testing procedures in Section 2, and investigate

the asymptotic properties of our proposed test statistics in Section 3. The finite-

sample properties of our test statistics are investigated using data from a TGE

study in Section 4, and by means of a simulation study in Section 5. We conclude

with a discussion in Section 6. The online Supplementary Material contains the

proofs of the main results.
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2. The Data and Hypothesis Testing

2.1. The data

Functional data can be viewed as observed stochastic processes on the real

line, or as random functions in some functional spaces (e.g., Ramsay and Sil-

verman (2005)). For bivariate functional data, we consider stochastic processes{(
X(t), Y (t)

)T
: t ∈ T }, where, given t ∈ T , a bounded subset in [0,∞), X(t)

and Y (t) are real-valued random variables, which may be correlated. For each

fixed t ∈ T , let µ(t) = E[X(t)] and η(t) = E[Y (t)] be the mean curves of X(t)

and Y (t), respectively, and

R(t) =
E
{

[X(t)− µ(t)][Y (t)− η(t)]
}

σX(t)σY (t)
(2.1)

be the correlation curve of X(t) and Y (t), where σX(t) and σY (t) are the cor-

responding standard deviations of X(t) and Y (t). Because t changes within T ,

µ(t) and η(t), σX(t) and σY (t), and R(t) are the curves for the means, standard

deviations, and correlation coefficient, respectively, over t ∈ T .

In real applications, subjects are assumed to be independent, but some sub-

jects may have only X(·) or Y (·) observed. Therefore, we denote by SX the

set of subjects with observations of X(·) only, SY the set of subjects with

observations of Y (·) only, and SXY the set of subjects with observations of

(X(·), Y (·))T . Let nx, ny, and nxy be the numbers of subjects in SX , SY , and

SXY , respectively. The number of subjects with observations of X(·), that is,

in SX ∪ SXY , is n1 = nx + nxy. The number of subjects with observations of

Y (·), that is, in SY ∪ SXY , is n2 = ny + nxy. The total number of subjects is

n = nx + ny + nxy = n1 + n2 − nxy. For simplicity, we assume that our observa-

tions of X(·) and Y (·) are made at k(n) distinct time points t1 < · · · < tk(n). Our

results can be generalized directly to cases of X(·) and Y (·) observed at different

time points, but at the expense of more complex notation. The observations for{
X(t) : t ∈ T },

{
Y (t) : t ∈ T }, and

{
(X(t), Y (t))T : t ∈ T } are given by

Xn1
=
{
Xi,j = Xi(tj) + εi(tj) : i = 1, . . . , n1; j = 1, . . . , k(n)

}
,

Yn2
=
{
Yi,j = Yi(tj) + ξi(tj) : i = nx + 1, . . . , nx + n2; j = 1, . . . , k(n)

}
,(

Xnxy
,Ynxy

)
=
(
Xi,j , Yi,j

)T
: i = nx + 1, . . . , nx + nxy; j = 1, . . . , k(n)

}
,

(2.2)

where εi(·) and ξi(·) are measurement noises independent of Xi(·) and Yi(·), εi(·)
is independent and identically distributed (i.i.d.) ε(·), and ξi(·) is i.i.d. ξ(·), with

the typical assumption that E[εi(t)] = E[ξi(t)] = 0, for all t ∈ T . Clearly, the
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subjects in
(
Xnxy

,Ynxy

)
are the subjects in both Xn1

and Yn2
.

Let Xi(t) and Yi(t) be the unknown subject-specific curves of X(t) and Y (t),

respectively, for the ith subject. To define the curve observations of Xi(t) and

Yi(t) at any t1 ≤ t ≤ tk(n) based on {Xn1
,Yn2

} of (2.2), we consider those

observations based on the linear interpolations
Xn1

=
{
Xi,k(n)(t) : i = 1, . . . , n1

}
,

Yn2
=
{
Yi,k(n)(t) : i = nx + 1, . . . , nx + n2

}
,(

Xnxy
,Ynxy

)
=
{(
Xi,k(n)(t), Yi,k(n)(t)

)T
: i = nx + 1, . . . , nx + nxy

}
,

(2.3)

where Xi,k(n)(t) is the linear interpolation based on Xi,j , defined by
Xi,k(n)(t) = Xi,1, if t ≤ t1 and t ∈ T ,
Xi,k(n)(t) = Xi,k(n), if t ≥ tk(n) and t ∈ T ,
Xi,k(n)(t) = ((tj+1 − t)Xi,j + (t− tj)Xi,j+1)/(tj+1 − tj), if tj ≤ t ≤ tj+1,

(2.4)

and Yi,k(n)(t) is the linear interpolation based on Yi,j , which is defined similarly.

Then, Xi,k(n)(t) and Yi,k(n)(t) are the observed subject-specific curves of Xi(t)

and Yi(t), respectively. Although the curve observations can also be constructed

using other smoothing methods, such as splines, the linear interpolation is com-

putationally simple and does not depend on the choice of smoothing parameters.

2.2. Curve estimates

The mean curves µ(t) and η(t) of X(t) and Y (t), respectively, can be natu-

rally estimated using the sample means

µ̂n1
(t) =

1

n1

n1∑
i=1

Xi,k(n)(t) and η̂n2
(t) =

1

n2

nx+n2∑
i=nx+1

Yi,k(n)(t), (2.5)

respectively. To evaluate the covariance curve of X(t) and Y (t), we need to first

consider the moments and their estimators. Let µ(r1,r2)(t) = E
[
Xr1(t)Y r2(t)

]
,

and let µ(r1,r2,r3,r4)(s, t) = E
[
Xr1(s)Xr2(t)Y r3(s)Y r4(t)

]
be the moments of

(
X(t),

Y (t)
)T

with nonnegative integers r, k, and rl, l = 1, . . . , 4. The estimators of

µ(k,r)(t) and µ(r1,r2,r3,r4)(s, t) constructed using
(
Xi,k(n)(t), Yi,k(n)(t)

)T
are given

by

µn,(r1,r2)(t) =
1

nxy

nx+nxy∑
i=nx+1

Xr1
i,k(n)(t)Y

r2
i,k(n)(t)

and
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µn,(r1,r2,r3,r4)(t) =
1

nxy

nx+nxy∑
i=nx+1

Xr1
i,k(n)(s)X

r2
i,k(n)(t)Y

r3
i,k(n)(s)Y

r4
i,k(n)(t),

respectively. By (2.1), the estimator of R(t) based on
(
Xi,k(n)(t), Yi,k(n)(t)

)T
is

Rn(t) =
µn,(1,1)(t)− µn,(1,0)(t)µn,(0,1)(t)√[

µn,(2,0)(t)− µ2n,(1,0)(t)
][
µn,(0,2)(t)− µ2n,(0,1)(t)

] . (2.6)

Let u(t) =
(
µ(1,0)(t), µ(0,1)(t), µ(2,0)(t), µ(0,2)(t), µ(1,1)(t)

)T
be the vector of mo-

ments. Then, the estimator of u(t) is

un(t) =
(
µn,(1,0)(t), µn,(0,1)(t), µn,(2,0)(t), µn,(0,2)(t), µn,(1,1)(t)

)T
, (2.7)

and we can evaluate the asymptotic distribution of Rn(t) using the asymptotic

properties of un(t).

2.3. Hypotheses and test statistics

2.3.1. Testing the equivalence of mean curves

As illustrated in Duan, Keerthi and Poo (2003) and Fang et al. (2012), a

primary scientific question is to test whether two stochastic processes
{
X(t) : t ∈

T } and
{
Y (t) : t ∈ T } have the same mean profiles; that is, µ(t) = η(t), for all

t ∈ T . A well-known approach for testing the equivalence of two mean curves

is the Kolmogorov–Smirnov test statistic, n supt∈T
∣∣µ̂n1

(t) − η̂n2
n(t)

∣∣. However,

this is not robust because the supremum may be influenced by outliers.

We propose two test statistics, based on ‘two-sided’ and ‘one-sided’ alterna-

tive hypotheses. Our ‘two-sided’ null and alternative hypotheses are

H0 : µ(t) = η(t) for all t ∈ T , vs.H1 : µ(t) 6= η(t) on some A ⊂ T . (2.8)

The ‘one-sided’ null and alternative hypotheses are

H0 : µ(t) = η(t) for all t ∈ T , vs.H1 : µ(t) > η(t) for all t ∈ T , (2.9)

where A has a positive Lebesgue measure. To test H0 vs. H1 in (2.8), we use

the test statistic

Ln =
1

|T |
n1n2
n

∫
T

[
µ̂n1

(t)− η̂n2
(t)
]2
dt, (2.10)

where |T | is the length of T . To test H0 vs. H1 in (2.9), we use the test statistic

Dn =
1

|T |

√
n1n2
n

∫
T

[
µ̂n1

(t)− η̂n2
(t)
]
dt. (2.11)

Let dn(tj) = µ̂n1
(tj)− η̂n2

(tj). Because µ̂n1
(t)− η̂n2

(t) is obtained through a

linear interpolation on Tn = {t1, . . . , tk(n)},
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dn(t) =
(t− tj)dn(tj) + (tj+1 − t)dn(tj+1)

tj+1 − tj
, t ∈ [tj , tj+1].

If we define µ̂n1
(t) = η̂n2

(t) ≡ 0 for t ≤ t1 or t ≥ tk(n), then Ln and Dn simplify

to

Ln =
1

3|T |
n1n2
n

k(n)−1∑
j=1

(
d2n(tj+1) + d2n(tj) + dn(tj)dn(tj+1)

)
(tj+1 − tj) (2.12)

and

Dn =
1

|T |

√
n1n2
n

k(n)−1∑
j=1

dn(tj) + dn(tj+1)

2
(tj+1 − tj), (2.13)

respectively. The approximate critical values for Ln and Dn are derived from

their asymptotic distributions in Section 3.

2.3.2. Testing the correlation function

The second objective is to test whether X(t) and Y (t) are correlated for

t ∈ T , based on the correlation curve R(t) defined in (2.1). A natural formulation

is to test the null hypothesis that X(t) and Y (t) are uncorrelated for all time

points in T versus the ‘two-sided’ alternative

H0 : R(t) = 0 for all t ∈ T , vs. H1 : R(t) 6= 0 on some A ⊂ T , (2.14)

or that X(t) and Y (t) are uncorrelated versus the one-sided alternative

H0 : R(t) = 0 for all t ∈ T , vs. H1 : R(t) > 0 (or R(t) < 0) for all t ∈ T .

(2.15)

The ‘one-sided’ alternative in (2.15) suggests that the processes X(t) and Y (t)

are always positively (or negatively) correlated, for all t in T . In this case, we

only consider n = n1 = n2 = nxy, because a correlation inference requires paired

data sets. Although other cases can also be handled using missing data methods,

they are not our main goal here. Based on the empirical correlation curve Rn(t)

in (2.6), and in the definition of µn,(k,r)(t) and µn,(r1,r2,r3,r4)(t), replacing the

summation sign
∑nx+nxy

i=nx+1 with
∑n

i=1, we consider the test statistics

Sn =
n

|T |

∫
T
R2
n(t)dt and Wn =

√
n

|T |

∫
T
Rn(t)dt (2.16)

for the hypotheses in (2.14) and (2.15), respectively, where, as in (2.10), |T | is

the length of T . The approximate critical values for Sn and Wn are derived in

Section 3.
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3. Asymptotic Distributions of Test Statistics

Here, we derive the asymptotic distributions of the test statistics presented

in Section 2. These asymptotic distributions lead to the critical values of the

test statistics. The proofs of the theorems in this section are given in the online

Supplementary Material.

3.1. Asymptotic distributions of mean test statistics

We first consider the hypotheses given in (2.8) and (2.9) and their testing

statistics Ln and Dn, as defined in (2.12) and (2.13), respectively. Let

d(t) = µ(t)− η(t) and dn(t) = µ̂n1
(t)− η̂n2

(t)

be the real and estimated differences, respectively, of the mean curves. Let

Rxx(s, t) = Cov
[
X(s), X(t)

]
, Ryy(s, t) = Cov

[
Y (s), Y (t)

]
, Rxy(s, t) = Cov

[
X(s),

Y (t)
]
, Ryx(s, t) = Cov

[
Y (s), X(t)

]
, Rε(s, t) = Cov

[
ε(s), ε(t)

]
, and Rξ(s, t) =

Cov
[
ξ(s), ξ(t)

]
be the covariance curves of the corresponding stochastic processes.

Denote

R11(s, t) = Rxx(s, t) +Rε(s, t), R12(s, t) = Rxy(s, t),

R21(s, t) = Ryx(s, t), R22(s, t) = Ryy(s, t) +Rξ(s, t).

For the asymptotic properties described below, we denote by `∞(T ) the

space of functions on T equipped with the supreme norm, and
D⇒ as the uniform

weak convergence in `∞(T ). The following theorem shows that, under some mild

conditions, dn(t) − d(t) can be uniformly weakly approximated by a Gaussian

process, in the sense that the process [(n1n2)/n]1/2[dn(·)−d(·)] converges weakly

to a Gaussian process. This result of weak convergence as a whole process on

T , instead of pointwise convergence on some t ∈ T , allows us to study the weak

limit of the test statistics constructed using the functional of µ̂n(·) and η̂n(·),
such as Ln and Dn. Let δk(n) = max{tj+1 − tj : j = 0, 1, . . . , k(n)}.

Before starting Theorem 1, we provide an outline of the proof. Note that√
n1n2
n

{[
µ̂n1

(t)− µ(t)
]
−
[
η̂n2

(t)− η(t)
]}

=

√
n1n2
n

{[
µ̂n1

(t)− µk(n)(t)
]
−
[
η̂n2

(t)− ηk(n)(t)
]}

+

√
n1n2
n

{[
µk(n)(t)− µ(t)

]
−
[
ηk(n)(t)− η(t)

]}
.

We show that under the given conditions, the second term on the right-hand side

is o(2.1) uniformly in t. Then, we deal with the first term using empirical process
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theory, check the conditions for a uniform Donsker class, and identify the weak

limit process.

Let P and Q be collections of all probability measures (P,Q) of the random

processes (X(·) + ε(·), Y (·) + η(·)). Denote G = supt∈T
(
[X(t) + ε(t)]2 + [Y (t) +

η(t)]2
)1/2

.

Theorem 1. Assume that T is bounded, limn→∞ nj/n = γj, for j = 1, 2,

limn→∞ nxy/n = γ12,
√
nδk(n) → 0, E(P,Q)

(
G2
)
< ∞, and, for δn → 0,

sup|t−s|≤δn E(P,Q)

([
X(t)+ε(t)−X(s)−ε(s)

]2
+
[
Y (t)+η(t)−Y (s)−η(s)

]2)→ 0.

Then, as n1n2/n→∞,√
n1n2
n

{[
µ̂n1

(·)− µ(·)
]
−
[
η̂n2

(·)− η(·)
]} D⇒W (·), (3.1)

where W (·) is the mean zero Gaussian process on T , with covariance function

R(s, t) = E[W (s)W (t)] = γ2R11(s, t)− γ12[R12(s, t) +R21(s, t)] + γ1R22(s, t).

The following remarks illustrate several special cases of Theorem 1.

Remark 1. In practice, the condition sup(P,Q)∈(P,Q)E(P,Q)(G
2) < ∞ in Theo-

rem 1 is not stringent, because T is a bounded set.

Remark 2. Because γ12 ≤ min{γ1, γ2}, if n1 > 0 and γ1 = 0, then γ12 = 0,

γ2 = 1, and R(s, t) = R11(s, t). Similarly, if n2 > 0 and γ2 = 0, then R(s, t) =

R22(s, t). For these two cases (i.e., n1 = o(n) or n2 = o(n)), we cannot test the

equivalence of the mean curves µ(t) and η(t). If n12 = 0 or γ12 = 0, the samples

for X(t) and Y (t) are independent or asymptotically independent; therefore,

R(s, t) = γ2R11(s, t) + γ1R22(s, t).

Remark 3. If n1 = n2 = nxy, we observe only the paired sample
(
X(t), Y (t)

)T
.

In this case, R(s, t) =
[
R11(s, t) − R12(s, t) − R21(s, t) + R22(s, t)

]
/2, and we

modify Theorem 1 by replacing
√
n1n2/n with

√
n =
√
n2 =

√
n1.

3.2. Rejection regions for mean test statistics

By definition, an R(s, t) is symmetric and square integrable on T × T , and

there are eigenvalues λ and an associated eigenfunction h(t), such that∫
s∈T

R(s, t)h(s)ds = λh(t), t ∈ T . (3.2)

Following the results of Theorem 1, the next theorem summarizes the asymp-

totic distributions of the test statistics Ln and Dn given in (2.10) and (2.11),

respectively.
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Theorem 2. Assume that the conditions of Theorem 1 are satisfied, and that

R(t, s) defined in (3.1) is continuous. Then, under the null hypothesis H0 of

(2.8) and (2.9),

(i) Ln → |T |−1
∑∞

k=1 λkZ
2
k in distribution as n→∞, and

(ii) Dn → N
(
0, σ2

)
in distribution as n→∞,

where σ2 = |T |−2
∫
T ×T R(s, t)dsdt, the λj’s are the eigenvalues of R(s, t), and

Zj are i.i.d. N(0, 1) random variables.

From Theorem 2, the asymptotic variances of Ln and Dn depend on the

unknown eigenvalues λk and σ2 = |T |−2
∫
T ×T R(s, t)dsdt. Therefore, a consistent

estimator of R(s, t) is needed to compute the approximate critical value for the

test statistic. In practice, R11(s, t) can be estimated as

R̂11(s, t) =
1

n1

n1∑
i=1

[
Xi,k(n)(t

∗
s)Xi,k(n)(t

∗
t )
]

− 1

n21

[
n1∑
i=1

Xi,k(n)(t
∗
s)

][
n1∑
i=1

Xi,k(n)(t
∗
t )

]
, (3.3)

where, for a = s and t, t∗a = arg min
{
|tj − a| : j = 1, . . . , k(n)

}
. Similarly,

R12(s, t), R21(s, t), and R22(s, t) can be estimated using their corresponding es-

timates R̂12(s, t), R̂21(s, t) and R̂22(s, t). Consequently, R(s, t) can be estimated

as

R̂(s, t) =
n1
n
R̂11(s, t)−

nxy
n

[R̂12(s, t) + R̂21(s, t)] +
n2
n
R̂22(s, t).

Given that the function R(t, s) does not have a closed-form expression, the

eigenvalues λk are unknown and have to be estimated from the data. Let R̂k(n)

be the k(n) × k(n) matrix Rk(n) =
(
R̂(ti, tj)

)
of the estimators of R(s, t) at

the observed times Tn = {t1, . . . , tk(n)}. As typical in practice, we compute the

eigenvalues λ̂1, . . . , λ̂k(n) of R̂k(n), and approximate the limit distribution of Ln
by the distribution of

L̂n =
1

|T |

k(n)∑
j=1

λ̂jZ
2
j . (3.4)

For a given significance level α, the rejection region for the null hypothesis in

(2.8) is

Ln > Qn(1− α), (3.5)

where the approximate critical value Qn(1 − α) is the (1 − α)th upper quantile
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of the distribution of L̂n.

Remark 4. Results for eigenvalue estimations can be found elsewhere. For

example, let λ1, . . . , λp be the p largest eigenvalues, and let λ̂j be the estimates.

Then, by Theorem 2.7 in Horváth and Kokoszka (2012, p. 30), E(λ̂j − λj)2 =

O(n−1), for all 1 ≤ j ≤ p, for any fixed p. In practice, we only need the

first p largest eigenvalues, for some fixed p, such as p = 10. Recall that in

basis expansions, often only the first k(≤ 10) bases are required for a good

approximation; here, the situation is similar.

For the rejection region of the test statistic Dn, we replace
∫
T ×T R(s, t)dsdt

with a summation of R̂(s, t), and estimate σ2 as

σ̂2n =
1

|T |2

k(n)∑
j1=1

k(n)∑
j2=1

[
R̂(tj1 , tj2)(tj1+1 − tj1)(tj2+1 − tj2)

]
. (3.6)

Given that Dn is approximately normal when n is sufficiently large, the rejection

region for the null hypothesis in (2.9) is approximated by

Dn > σ̂nΦ−1(1− α), (3.7)

for a given significance level α, where Φ(·) is the cumulative distribution function

of the N(0, 1) distribution.

The power for Dn to detect the difference ∆ = |T |−1
∫
T

[
µ(t)−η(t)

]
dt under

H1 of (2.9) is

β(∆) = P [Dn > σΦ−1(1− α)|H1] ≈ 1− Φ

[
Φ−1(1− α)−

√
n∆

σn

]
,

and the estimated power is

P̂ [Dn > σΦ−1(1− α)|H1] = 1− Φ

[
Φ−1(1− α)−

√
n∆

σ̂n

]
.

3.3. Asymptotic distributions of moment curves

To obtain the asymptotic distributions of the correlation test statistics Sn
and Wn of (2.16), we first develop the asymptotic properties of the moment

estimates un(t) in (2.7). For notational simplicity, our derivation is for the case

of nxy = n only. However, the results in this section also hold for the case nxy < n

by replacing n with nxy. The next theorem shows that the stochastic process√
n
[
un(·)−u(·)

]
converges weakly to a R5-valued mean zero Gaussian process on

T . This result is used to derive the asymptotic distributions of the test statistics

Sn and Wn in (2.16).
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Theorem 3. Assume the conditions in Theorem 1 hold. Then, as n→∞,
√
n
[
un(·)− u(·)

] D⇒W(·),

where W(·) is the R5-valued mean zero Gaussian process on T with matrix co-

variance function Ω(s, t) = Cov
[
Z(s),Z(t)

]
and Z(t) =

(
X(t) + ε(t), Y (t) +

ξ(t), [X(t) + ε(t)]2, [Y (t) + ξ(t)]2, [X(t) + ε(t)][Y (t) + ξ(t)]
)T

.

Because the test statistics Sn and Wn are functions of the moment process

u(t), Theorem 3 suggests that the asymptotic distributions of Sn and Wn can be

derived from the distribution of the Gaussian process W(t) and the covariance

structure Ω(s, t) of Z(t).

3.4. Rejection regions for correlation test statistics

Based on the results of Theorem 3, we first derive the asymptotic distri-

butions of the test statistics Sn and Wn, and then present their approximate

rejection regions for the tests given in (2.14) and (2.15).

For any R5-valued vector z = (z1, . . . , z5), we define

H(z) =
z5 − z1z2√

(z3 − z21)(z4 − z22)
, (3.8)

and its derivative Ḣ(z) =
(
∂H(z)/∂z1, . . . , ∂H(z)/∂z5

)
, where

∂H(z)

∂z1
=
z1z5 − z2z3
z3 − z21

∂H(z)

∂z5
,
∂H(z)

∂z2
=
z2z5 − z1z4
z4 − z22

∂H(z)

∂z5
,

∂H(z)

∂z3
=

z1z2 − z5
2(z3 − z21)

∂H(z)

∂z5
,

∂H(z)

∂z4
=

z1z2 − z5
2(z4 − z22)

∂H(z)

∂z5
,

∂H(z)

∂z5
=

1√
(z4 − z22)(z3 − z21)

.

Based on the results of Theorem 3, the next theorem describes shows the asymp-

totic distributions of the statistics Sn and Wn.

Theorem 4. Assume that the conditions of Theorem 3 are satisfied. Under the

null hypothesis H0 of (2.14) and (2.15), we have that, as n→∞,

Sn → |T |−1
∞∑
j=1

λjZ
2
j in distribution (3.9)

and

Wn → N
(
0, σ22

)
in distribution, (3.10)

where σ22 = |T |−2
∫
T ×T Q(s, t)dsdt, Q(s, t) = Ḣ

[
u(s)

]
Ω(s, t)ḢT

[
u(t)

]
, with
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Ω(s, t) defined in Theorem 3, the λj’s are the eigenvalues of Q(s, t), and Zj
are i.i.d. N(0, 1) random variables.

From Theorem 4, for a given nominal level α, we obtain the asymptotic

rejection regions for H0 of (2.14) and (2.15), based on Sn and Wn, respectively,

as

Sn > G−1(1− α), and Wn > σ̂2,nΦ−1(1− α),

where G−1(1−α) is the (1−α)th upper quantile of the distribution on the right-

hand side of (3.9), and the empirical estimator σ̂2,n is a consistent estimate of

σ2.

The power for Sn to detect the difference ∆ = |T |−1
∫
T R

2(t)dt under H1 of

(2.14) is

β(∆) = P
[
Sn > χ2(1− α)− n∆

∣∣H1

]
≈ 1−G

[
χ2(1− α)− n∆

]
,

where G(·) is the distribution function of the right-hand side of (3.9).

The power for Wn to detect the difference ∆ = |T |−1
∫
T R(t)dt under H1 of

(2.15) is

β(∆) = P
[
Wn > σ2Φ

−1(1− α)|H1

]
≈ 1− Φ

[
Φ−1(1− α)−

√
n∆

σ̂2,n

]
.

4. Application to TGE Data

Here, we apply the proposed testing procedures of Sections 2 and 3 to the

TGE data analyzed by Fang et al. (2012). The data set contains repeated ob-

servations from high-throughput gene expressions of 18 genes in P. aeruginosa,

expressed in 24 different biological conditions, with various antibiotics (e.g., AMp,

kam, Cm, Tc, etc.) at different concentrations. Here, the 24 biological condi-

tions can be viewed as 24 independent samples. The gene expression outcome

was measured as log-scaled counts per second (CPS) every 30 minutes for 24

hours, yielding 48 equally spaced observation time points. For further details on

the design and biological objectives of the experiment, refer to Duan, Keerthi

and Poo (2003) and Fang et al. (2012). Two of the main statistical objectives

of the experiment are to test whether two selected genes of interest (a) have the

same mean expression curves, and (b) are correlated over time.

For the purpose of illustration, we apply our testing methods of Sections 2

and 3 to the gene expression data on three genes, PA3897 (narL), PA2997 (nqrC),

and PA0649 (trpG); see Table 1 of Fang et al. (2012). PA2997 and PA0649 are

important genes related to energy metabolism, and PA3897 is related to the two-
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Table 1. Hypotheses, test statistics, and the corresponding p-values for two selected
pairs of genes from the Temporal Gene Expression Study.

Gene pair Hypotheses Proposed Loess Spline
Statistic Value P-value Value P-value Value P-value

PA2997 vs PA3897 µ = η vs µ ≥ η Dn 4.0621 < 0.0001 4.0684 < 0.0001 4.0618 < 0.0001
µ = η vs µ 6= η Ln 19.6430 < 0.0001 19.6964 < 0.0001 19.6082 < 0.0001
R = 0 vs R > 0 Wn 0.2852 0.3016 0.3324 0.2721 0.1224 0.4120
R = 0 vs R 6= 0 Sn 0.9652 0.1907 1.0568 0.1559 1.0011 0.1686

PA0649 vs PA2997 µ = η vs µ ≥ η Dn −0.2261 0.7209 −0.2246 0.7196 −0.2261 0.7209
µ = η vs µ 6= η Ln 0.5424 0.0852 0.5423 0.0896 0.5417 0.0796
R = 0 vs R > 0 Wn 2.3851 < 0.0001 2.3978 < 0.0001 1.0017 0.0040
R = 0 vs R 6= 0 Sn 6.5203 0.0011 6.5846 0.0007 6.5297 0.0008

Figure 1. The observed expressions of three genes, PA3897 (narL), PA2997 (nqrC),
and PA0649 (trpG), in 24 “biological conditions” over 21 hours. The red lines are the
corresponding estimated mean functions of the expression profiles.
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Figure 2. The estimated correlation coefficient curves of two pairs of genes over 21 hours.
Top panel: PA2997 vs. PA3897. Bottom panel: PA0649 vs. PA2997.

component response regulator NarL. Figure 1 shows the observed gene expression

trajectories of these three genes among the 24 “biological conditions.”

We computed the test statistics Ln and Dn for testing the equality of two

log-scaled CPS mean curves in (2.8) and (2.9), and the test statistics Sn and Wn

for testing the log-scaled CPS correlation curve of two genes in (2.14) and (2.15).

Table 1 shows the values of the test statistics for the genes “PA2997 vs. PA3897”

and “PA0649 vs. PA2997,” the corresponding hypotheses, and the approximated

p-values of the test statistics, computed using the asymptotic distributions of

Sections 3.2 and 3.4. The results show that the mean expression functions of

gene PA2997 and gene PA3897 are significantly different, with p < 0.001 for the

test statistic Ln, and that there is no significant difference between the mean

expression functions of gene PA2997 and gene PA0694, with p = 0.284 and

p = 0.319 for the test statistics Ln and Dn, respectively. The mean expressions

of gene PA2997 are higher across the 24-hour period than that of gene PA3897,

with p < 0.001 for the test statistic Dn.

Figure 2 shows the estimated correlation coefficient functions of the gene

pairs (PA2997, PA3897) and (PA0649, PA2997) across the 24-hour period. The

results of Table 1 for hypotheses (2.14) and (2.15) show that genes PA3897 and
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Table 2. Test statistic Ln, empirical Type-I error, and powers under different values of
C and effective differences ∆1 for the two-sided test of the mean curves. All results are
based on N = 5,000 replicates.

Time Constant Effective Proposed Loess Spline
point k C difference ∆1 Ln Power Statistic Power Statistic Power

10 0 0 0.0928 0.0394 0.0910 0.0398 0.0870 0.0382
0.24 0.0076 0.2348 0.1410 0.2332 0.1298 0.1903 0.0878
0.28 0.0103 0.2880 0.2186 0.2847 0.2118 0.2327 0.1304
0.32 0.0135 0.3479 0.3658 0.3441 0.3536 0.2838 0.2076
0.36 0.0170 0.4148 0.5738 0.4115 0.5580 0.3440 0.3514
0.40 0.0210 0.4899 0.7832 0.4868 0.7772 0.4138 0.5636

30 0 0 0.0964 0.0590 0.0860 0.0472 0.0809 0.0460
0.24 0.0076 0.3181 0.3784 0.3061 0.3404 0.2286 0.1616
0.28 0.0103 0.4013 0.6740 0.3856 0.6254 0.2910 0.2956
0.32 0.0135 0.4938 0.9086 0.4774 0.8802 0.3662 0.5622
0.36 0.0170 0.6026 0.9892 0.5814 0.9836 0.4544 0.8342
0.40 0.0210 0.7171 0.9994 0.6976 0.9996 0.5554 0.9722

50 0 0 0.0948 0.0530 0.0812 0.0482 0.0794 0.0470
0.24 0.0076 0.3272 0.4192 0.3042 0.3408 0.2436 0.1920
0.28 0.0103 0.4111 0.7324 0.3847 0.6380 0.3118 0.3658
0.32 0.0135 0.5079 0.9432 0.4776 0.9026 0.3932 0.6668
0.36 0.0170 0.6176 0.9942 0.5829 0.9858 0.4876 0.9152
0.40 0.0210 0.7403 1.0000 0.7006 0.9998 0.5951 0.9896

100 0 0 0.0952 0.0594 0.0781 0.0508 0.0768 0.0508
0.24 0.0076 0.3313 0.4522 0.3055 0.3688 0.2586 0.2354
0.28 0.0103 0.4159 0.7824 0.3878 0.6862 0.3326 0.4604
0.32 0.0135 0.5142 0.9668 0.4827 0.9304 0.4198 0.7920
0.36 0.0170 0.6256 0.9994 0.5903 0.9964 0.5202 0.9688
0.40 0.0210 0.7502 1.0000 0.7106 1.0000 0.6337 0.9992

PA2997 are not significantly correlated across the 24-hour period with p = 0.280

and 0.5048 for the test statistics Wn and Sn, respectively. Furthermore, PA2997

and PA0694, which are related to energy metabolism, have a significant and

positive correlation across the 24-hour period with p < 0.001 for the one-sided

test based on Wn, and p = 0.045 for the two-sided test based on Sn.

5. Simulation

To investigate the finite-sample properties of the proposed methods, and to

compare them with those of the commonly used local linear smoothing (Loess)

and spline methods, we present here several simulation studies, which are de-

signed to mimic practical situations with moderate sample sizes. We consider
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Table 3. Test statistic Dn, empirical Type-I errors, and powers under different values of
C∗ and effective differences ∆2 for the one-sided test of the mean curves. All results are
based on N = 5,000 replicates.

Time Constant Effective Proposed Loess Spline
point k C difference ∆2 Dn Power Statistic Power Statistic Power

10 0 0 0.0002 0.0970 0.0003 0.1046 0.0002 0.0964
0.10 0.0315 0.1059 0.3917 0.1183 0.4423 0.1067 0.3959
0.15 0.0472 0.1587 0.6075 0.1772 0.6649 0.1598 0.6107
0.20 0.0629 0.2116 0.7972 0.2362 0.8472 0.2129 0.8028
0.25 0.0786 0.2644 0.9252 0.2951 0.9512 0.2659 0.9262

30 0 0 0.0010 0.0764 0.0009 0.0862 0.0009 0.0766
0.10 0.0315 0.0994 0.3399 0.1050 0.3637 0.1006 0.3435
0.15 0.0472 0.1486 0.5534 0.1571 0.5840 0.1503 0.5606
0.20 0.0629 0.1978 0.7611 0.2092 0.7845 0.2000 0.7669
0.25 0.0786 0.2470 0.9083 0.2612 0.9193 0.2496 0.9125

50 0 0 −0.0038 0.0624 −0.0039 0.0708 −0.0038 0.0632
0.10 0.0315 0.0949 0.3206 0.0992 0.3396 0.0957 0.3232
0.15 0.0472 0.1442 0.5277 0.1508 0.5541 0.1454 0.5311
0.20 0.0629 0.1935 0.7397 0.2023 0.7582 0.1950 0.7435
0.25 0.0786 0.2429 0.9001 0.2539 0.9083 0.2445 0.9035

100 0 0 −0.0001 0.0644 −0.0002 0.0730 −0.0001 0.0648
0.10 0.0315 0.0983 0.3156 0.1006 0.3292 0.0987 0.3170
0.15 0.0472 0.1476 0.5274 0.1510 0.5414 0.1481 0.5302
0.20 0.0629 0.1968 0.7565 0.2014 0.7623 0.1975 0.7567
0.25 0.0786 0.2460 0.9099 0.2518 0.9087 0.2468 0.9105

separately the tests for the equality of two mean curves and the tests for the

correlation function between two stochastic processes. For each case, the simu-

lation is based on 5,000 replications, and the mean values of the estimates over

the replications are reported. A detailed description of the simulation is given in

the online Supplementary Material; here, we only describe the results.

5.1. Testing the equality of mean curves

5.1.1. Simulation for test with two-sided alternatives

For a series of alternatives determined by the C-values, Table 2 shows the

corresponding differences ∆1 = |T |−1
∫
T
[
µ(t)−η(t)

]2
dt, values of the test statis-

tic Ln, empirical Type-I errors and empirical powers under different values of ∆1.

These results suggest that the Type-I error of the test is close to the nominal

level of 0.05, and that the power of the test is greater than 80% if C ≥ 0.50 or

∆1 ≥ 0.035.
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Table 4. Test statistics, empirical Type-I errors, and empirical powers under different
values of ρ and effective differences ∆3 for testing a zero correlation function with two-
sided alternatives. All results are based on N = 5,000 replicates.

Time Constant Effective Proposed Loess Spline
point k ρ difference ∆3 Sn Power Statistic Power Statistic Power

10 0 0 1.1160 0.0724 1.1160 0.0724 1.1156 0.0734
0.12 0.0069 1.4678 0.2138 1.4678 0.2138 1.2849 0.1378
0.15 0.0108 1.6694 0.3166 1.6694 0.3166 1.3832 0.1780
0.18 0.0156 1.9166 0.4574 1.9166 0.4574 1.5040 0.2314
0.20 0.0192 2.1069 0.5566 2.1069 0.5566 1.5979 0.2766

30 0 0 1.0277 0.0460 1.0360 0.0540 1.0340 0.0432
0.12 0.0069 1.3653 0.3178 1.3640 0.2814 1.1613 0.1000
0.15 0.0108 1.5553 0.5280 1.5491 0.4484 1.2349 0.1436
0.18 0.0156 1.7877 0.7426 1.7755 0.6442 1.3242 0.2022
0.20 0.0192 1.9662 0.8630 1.9494 0.7530 1.3922 0.2520

50 0 0 1.0207 0.0456 1.0208 0.0570 1.0211 0.0394
0.12 0.0069 1.3529 0.4124 1.3436 0.2720 1.1558 0.1010
0.15 0.0108 1.5401 0.6792 1.5254 0.4148 1.2307 0.1476
0.18 0.0156 1.7690 0.8952 1.7478 0.5886 1.3229 0.2064
0.20 0.0192 1.9449 0.9620 1.9187 0.7018 1.3945 0.2566

100 0 0 1.0096 0.0442 1.0122 0.0592 1.0106 0.0630
0.12 0.0069 1.3390 0.6514 1.3334 0.2690 1.2165 0.1570
0.15 0.0108 1.5243 0.9162 1.5136 0.4088 1.3331 0.2158
0.18 0.0156 1.7509 0.9922 1.7338 0.5862 1.4747 0.2942
0.20 0.0192 1.9249 0.9994 1.9029 0.7034 1.5841 0.3592

5.1.2. Simulation for test with one-sided alternatives

Table 3 shows the values of the test statistic Dn, empirical Type-I errors

and empirical powers under a series of C∗-values and their corresponding values

of ∆2 = |T |−1
∫
T
(
µ(t) − η∗(t)

)
dt. These results show that the Type-I error for

Dn is close to the nominal level of 0.05, and that the power is more than 80% if

C∗ ≥ 0.30 or ∆2 ≥ 0.096.

5.2. Testing correlation functions

5.2.1. Simulation for test with two-sided alternatives

Table 4 shows the values of the test statistic Sn, empirical Type-I errors

and empirical powers under a series of ρ-values and their corresponding values

of ∆3 = |T |−1
∫
T R

2(t)dt. These results show that the Type-I error for Sn is

close to the nominal level of 0.05, and that power is above 80% if ρ ≥ 0.115 or

∆3 ≥ 0.0066.
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Table 5. Test statistics, empirical Type-I errors, and empirical powers under different
values of ρ and effective differences ∆4 for testing a zero correlation function with one-
sided alternatives. All results are based on N = 5,000 replicates.

Time point Constant Effective difference Proposed Loess Spline
k ρ ∆4 Wn Power Statistic Power Statistic Power
10 0 0 0.0096 0.0500 0.0096 0.0500 0.0119 0.0580

0.05 0.0306 0.2225 0.1688 0.2225 0.1688 0.1710 0.1124
0.07 0.0428 0.3077 0.2364 0.3077 0.2364 0.2352 0.1436
0.08 0.0489 0.3503 0.2780 0.3503 0.2780 0.2671 0.1618
0.10 0.0611 0.4355 0.3748 0.4355 0.3748 0.3317 0.2062

30 0 0 0.0020 0.0556 −0.0004 0.0536 −0.0045 0.0552
0.05 0.0306 0.2162 0.3402 0.2136 0.2408 0.1320 0.1326
0.07 0.0428 0.3018 0.5130 0.2991 0.3574 0.1865 0.1736
0.08 0.0489 0.3446 0.6060 0.3419 0.4264 0.2141 0.2006
0.10 0.0611 0.4264 0.9234 0.4275 0.5660 0.2684 0.2576

50 0 0 −0.0014 0.0568 0.0059 0.0636 0.0047 0.0590
0.05 0.0306 0.2125 0.4736 0.2192 0.2208 0.1449 0.1392
0.07 0.0428 0.2980 0.7000 0.3046 0.3266 0.2012 0.1842
0.08 0.0489 0.3408 0.7910 0.3473 0.3848 0.2293 0.2122
0.10 0.0611 0.4264 0.9234 0.4326 0.5140 0.2854 0.2736

100 0 0 −0.0001 0.0530 0.0052 0.0648 0.0039 0.0626
0.05 0.0306 0.2138 0.7188 0.2184 0.2258 0.1790 0.1500
0.07 0.0428 0.2994 0.9230 0.3037 0.3338 0.2491 0.1960
0.08 0.0489 0.3421 0.9678 0.3464 0.3944 0.2842 0.2210
0.10 0.0611 0.4277 0.9962 0.4317 0.5282 0.3545 0.2754

5.2.2. Simulation for test with one-sided alternatives

To test the hypotheses in (2.15) using the test statistic Wn, our samples are

generated in the same way as in Section 5.2.1, except that ρ(t) in (29) in the

Supplementary material is replaced with ρ∗(t) = ρ
∣∣ sin(8 − t/10)

∣∣, so that ρ∗(t)

does not change signs. Here, ρ determines the difference of the correlation curve

R(t) from zero.

Table 5 shows the values of the test statistic Wn, empirical Type-I errors,

and empirical powers under a series of ρ-values and their corresponding values

of ∆4 = |T |−1
∫
T R(t)dt. These results confirm that, the Type-I error for Wn is

close to the nominal level of 0.05, and that the power is above 80% if ρ ≥ 0.08

or ∆4 ≥ 0.0575.

6. Discussion

We have developed a class of simple nonparametric procedures based on

linear interpolations of observed functional data for testing multiple mean and

correlation curves. As a direct response to a practical need in biological studies,

such as the TGE study of Section 4, our testing procedures serve as an alter-
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native to existing methods, such as basis expansions, splines, smoothing, and

so on, and is simple to use. Our testing procedures also have the advantage of

being computationally simple and having straightforward biological interpreta-

tions. The asymptotic properties of the test statistics suggest that our testing

procedures can be justified theoretically under minimal assumptions, which is

crucial in many biological studies. However, actual use still requires approxi-

mate eigenvalues, similarly to other methods such as the FPCA. In addition,

inference inaccuracy is expected owing to the sparcity of the data. Our simula-

tion results demonstrate that the approximate rejection regions obtained from the

asymptotic distributions of the test statistics exhibit satisfactory performance,

in general, under practical settings. Further extensions of our method may in-

clude testing procedures for structured nonparametric models with time-varying

covariates, or for functional linear models.

Supplementary Material

Ming T. Tan is the corresponding author. The online Supplementary Mate-

rial provides a detailed description of the simulations, including the test for the

equality of mean curves and the test for correlation functions, and the proofs of

Theorems 1–4.
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