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S1 Theorem Proofs

We first present some preliminaries. Let ¥,;, = T/¥,T; and ¥,, =
T,%,T,. It follows from (2.1) that ||g(8)|| = O,(||B(OLS)||). Multiplying

both sides of equation (2.2) by (X'X)"HX'X + A\,D(8)} yields
g(B) + \(X'X)"'D(B)g(B) = By + (X'X) ' X'e. (S1.1)

Then, transform (S1.1) by T” and we have

T(g(8) - ) + T’ 'D(B)g(B) = T(X'X) ' X'e,

which is equivalent to

T {g(8) ~ B0} + 21,5, D(B)s() = TI(X'X)Xe, (51
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T,{a(8) — B} + T4 D(B)g(8) = THX'X)'Xe.  (S13)

Note that T,8y = 0. The equality (S1.3) can be written as

Tie(8) + T8, Dy(B)s(8) + LT, Du(A)s(8)
(S1.4)

= TL(X'X) ' Xe,

where Dy (8) = X0, dudl /(8) and Dy(B) = Y, |, dudl/3(B). Fur-
thermore, let X*, = T,X Ty, Since d,T; = 0 for k = q, + 1,..., K,,

equation (S1.4) equals

A A
Tig(8) + ST, "Dy (B)g(8) + 55, TiDy(8)g(5)
(S1.5)

= T)(X'X) ' Xe.

S1.1 Proof of Lemma 1

Proof. 1t follows from assumption (A1) that

E(|TH(X'X) ' X'e|?) = Eltr{e/X(X'X) ' T, TH(X'X) ' X'e}]
= tr{(X'X) ' T, TH(X'X) ' X' E(ee’) X}

02
= —tr{TH,3 Ty}
n

-of%)
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Recall that B = {8 € R : ||3 — Bol| < 0,\/Pn/n}. According to assump-

tions (A2)—(A3), we have

21,1, (@)g(8)]| < 215 sup D1 (B)e(9)]
BeB

sup
BeDB

-0, () o).

2
nb? n

Therefore, (S1.5) equals

Tg(B) + %222T3D2<ﬂ>g<ﬂ>H = op(\/p%"). (SL.6)

sup
BeB

Since d;, T; = 0, we have

D, (8)g(8) = D2(8)TT'g(B)

= {0 : Dy(B)T,} g(8)
T,

= D,y(B)T,Tyg(B).

Set v*(8) = T,g(8) and Dy(8) = T,D5(8)T,. Then, by multiplying both

sides of equation (S1.6) with v*(8)'S5,/|lv*(8) ||, we obtain

Y BEFY(8)  MrBDBy B _ ¢ [
Zﬁg{ ERC IR }‘Op<\/:>' G110
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Note that here we are assuming that ||[v*(8)|| # 0. Observe that both terms

inside the supremum in equation (S1.7) are nonnegative. Therefore,
A (B)Da(B)v*(B) Pn
— sup =0 — ). S1.8
T S T (V) oL

Kn Kn

by = 35 Thdils g DT, S iy
D2<IB)_ Z Q(ﬁ) o Z (d/TQT kZ {d }27

Ck,
k=qn+1 k=qn+1

where d; = T,d; and v(3) = T4, it follows from (S1.8) that

My LT alE) S IS
" i, APV O P B %)

On the other hand, since ® is a linear space spanned by dg, +1,...,dxk

n

with orthonormal basis Ty, for any unit vector a in ®, there exist some

€ {dj,qg. +1 < k < K,} such that \&;‘f’a| > ¢3, for some constant
c3 > 0. Let (;l;‘ be such that |El;"’y*(ﬁ)| > c3||v*(8)]|. Note that |(~i;"'7(ﬁ)| <
1d5"[ ¥ (B)[|- Then,

BN 1igey Idy] Ay (8)]
T I RAG o RN rrey

(DY B i
= — J df/ d»f/ Op '
@@yl @) NP

Since T8y = 0 and v(3) = T,3, for B € B, we have ||[v(8)|| < onr/Pn/n.

(S1.9)

Together with d,p,/\, — 0, (S1.9) implies that with probability tending

to 1,

qup B _ I Toe(B)] _ Op(%) — o,(1). (S1.10)

=sup —————
pes [[Y(B)I pem T8 An
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This proves statement (b) in Lemma 1.
To show that with probability tending to 1, g(+) is a mapping from the

ball B to itself, it suffices to show that

P (sup 1T {g(8) - Bo} < 5\/5) Y
BeDB n

In a similar, we rewrite equation (S1.2) as

T/ {&(8) - Ao} 2T, D, (B)a(f)

+ 20531, ()8 (8) = T}(X'X) "X

Similar to equation (S1.6), we have

sup HT’l{g(ﬁ) — Bo} + %TSE#DQ(B)g(B)H = Op( &>-

Observe that

ﬁT&E;le)g(mH — sup

>\n / — / /
—T12n1TzTgDz(ﬁ)TzT2g(ﬁ)H

sup
Bes || N BeB || N
-
< sup —”DQ(B)V*(ﬁ)H TS|
pes || 1
A v*(B)'Da(B)7v*(8)
— n O, (1
e Sy Py G

The last equation comes from (S1.8). Hence, we have

sup [T {6(8) — B} = 0, (y/22)

It follows that

/ Pn
P (;gg 1T} {8(8) — Bo} ] < a\/;) S (SL11)
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On the other hand, the statement (S1.10) implies

P (sup Ty e(0) - Aol <6n/22) 21 (st

Hence, (S1.11) combined with (S1.12) yields

p (sup 1(8) - Boll < a\/i) St
Bc®B n

This proves that g(-) is a mapping from B to itself with probability tending

to 1. ]

S1.2 Proof of Lemma 2
Proof. Recall that
{Xi X, + \.D(T}B)}H (T} 8) = Xy,
where X; = XT; and
I did,

D(T8) =T} Z m'ﬂ with &,(T}8) = d, T, T8
k=1 k\ 71

Similarly, we have
An a1 _
F(T18) - 8, + S ID(TIB)(TB) = (X X)) 'Xie,
where 6y = T)8y. Recalling that B, = {T18 € R : | T|8 — T8 <
dn\/Pn/n}. 1t is straightforward to show that f(-) is a mapping from 9B, to

itself. In fact,

060 Xiell = 0,(y/™) =y (1/22)
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and

sup
BEDB

S ADTBTS)| < 1%

D(T/B)f(T\3)|
= op(—"q”\/m_”).

2
nb?

Then, from assumption (A2), it follows that

sup
BEeB,

RS ADTTE)| o).

Therefore,

P (sup IECT;) - Tigl < 6,2 ) o1
BeB, n
This completes the proof that f(-) is a mapping from B, to itself

We next show that f(-) is a contraction mapping. Since

1 A, 1
{Ixix,+ 2Dmip) brery) - xiy, (51.13)
differentiating both sides of equation (S1.13) with respect to 3’ yields

An _ 2\ T dyd), T, f (T, 8)d, T, T
E + D T/ T/ 1 k 1 k 1
{ nl ( 1/8)} ( 1B) n ; (d%TlTllﬁ)?’

Hence, according to assumptions (A2) and (A3)

sup
BEDB,

{za+ 2Dm) )i

2\, i T)d;d, T, f(T;,8)d, T, T,
no G(T18)

_ oan_;g\/m—n) — 0,(1).

= sup
BEB,
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Furthermore, since

sup
BEB,

{za+ 2nimig) )i

> s —||f(T'1[3)T'1|| R —||D(T'15) (T18) T4,
€8,

it follows from assumption (A2) that
sup [|[£(T}8) Ty || = sup [[E(T)8)|| = o,(1).
BEB, BEB,

Therefore, f(-) is a contraction mapping from B; to itself. This indicates
that there exists one unique fixed point of f(-) in the region 98 denoted as

0° such that

£(0°) = {X!X; + A, D(6°)} 'Xy.

Hence, by the first order resolvent expansion formula (H + A)~!' =H™! —
H'AH+ A)~!, we have

6° — 0,

= {X{Xi +A.D(6°)} X1y — 6o

= (X1X1) "' Xiy — 6p — (X1X1)T'AD(°){Xi X, + A, D(6°)} ' Xy

= (X)X1) ' Xe — (X1X1) T 'AD(0°){X] X, + A\, D(6°)} X (X180, + €)
~ <é°>}_1 2

An -~ . X'e
— 223-ID(0°) {1, + =X 1D(6° »-o1=
v 51067 { n+nnl<>} e

n
n

— (X! X,)'Xe ——2 1D(6°) {
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Therefore, we have

Vns;tal (0° — 6,)

Xie A
_Sfla/ an 7 ;1 ;L
1 \/— \/—

\ —1

A a, 371 D(6°) {1, + 23 D(6° 3,

- D D) {1, + 25D
1 Xie

nl \/— -

By assumption (A2) and the condition infgey, (d}, T1T)3)? > ¢1(d}, T160)?,

. VR
>-1D(6°) {Imn+ ”le(OO)} 6,

s ’E L — L.

we have

An
1] < ﬁCQ
)\n 2111 A
< %C D(6°)6o[|{1 + 0,(1)}
A
< Lc?
Vil

Ann
=0 ( ) — 0.
P\y/mb?
On the other hand,

D(6°) {Imn o s iD(e° )}_1 0,

i T dd; T, 6,

e | A

)\n 3 )(/1s o )‘nQn mp o
I < = Clan —Op(\/ﬁb%)Op( ) = 0,(1),
As a result,
Vsl (67— 6p) — s~ S IE Lo ),
n 0

nl \/—

It follows from the Lindeberg-Feller central limit theorem that

Vs tal (68° — 6y) — N(0,1).
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This completes the proof of Lemma 2. O

Proof of Theorem 1. Observe that Lemma 1 implies that

P (lim T,/3Y) = O) — 1, as n — oo.

Jj—00
We show that with probability tending to 1, lim;_,., T4’ B(j) exists. Since

d, T, =0, forall k =¢,+1,...,K, and
T{X'X + A.D(B8)}TT'g(8) = T'Xy,
we have
{XiX1 4+, TiD1(8)T1}T1g(8) +{X i X2+ A, T D1 (8) T2} T5g(8) = Xy,

{X5X0 + A T5D1 (8) T1 T8 (8) + { X5 X + A THD(8) T2} Thg(8) = Xoy.

(S1.14)
Define Thg(B) = 0 if T, = 0. Then T'g(3) is continuous. In fact,
from (S1.14), we have limy g0 T5g(8) = 0. On the other hand, since
infgess, (4, T1T)8)% > ¢1(d}, T1T;B0)? holds for 1 < k < ¢, and assumption

(A3) hold, we have

(=}
3

T,d,d, T,
T)D,(8)T, = Lok
1 1(ﬁ) 1 e (d;CTlTllﬁ+d§€T2T/2/6)2
qn
T)d;d, T -
— —(d/lT]jTﬁﬁi? = D(T}8), as Th8 — 0,
k=1 k 1

or equivalently

IT\D:(8)T, — D(T}B)|| = 0, as T, — 0.
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It follows from (S1.2) that

lim Tig(8) = f(T,8).

T,B8—0
Therefore,
1T g(BY) — £(T18Y)| — 0, as j — co.
Recall that Lemma 2 shows that 6° is the unique fixed point of f(-) from
B, to itself. Therefore, with probability tending to 1,
T8V — 6°|| = | T\g(BY) — 6°)]

< [|ITyg(BY) — £(T189)|| + [IE(T18Y) — £(6°)]]

<mnj+ %HT’lﬂA(j) — 6°||, for some constant C' > 1
where 7, — 0 as j — oo. The last inequality is due to that f(-) is a
contraction mapping from ‘B; to itself as stated in Lemma 2. Set a; =

|T, 3% —6°||. For any € > 0, there exists a N > 0, such that Inj| < € holds

for all 7 > N. When 5 > N, we have that with probability tending to 1,

a; 1 -
ajy1 <15+ EJ <nj+ 5(%’—1 +a;_1/C)

ay Ui N NIN+1 nj—1
< — _ e _ _ R T ,
=& T Ea + + CiN TGN + + & + nj

1
+ €My + 2¢€ - —= — 0, as j — o0,

< My — .
Ci—N Ci—N

for some constant M; > 0 and M, > 0. This proves that

P (llm T,/3Y = éc’) — 1, asn — oo.
j—00
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Since from Lemma 2,

Vs, 'y, (0° — T 8o) — N(0,1)

with probability tending to 1, we have
Vs, ', (Ti8 — T 8o) — N(0,1),

with probability tending to 1. This completes the proof of Theorem 1.



