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S1 Proof of Theorem 1

Let G be an open subset of ΩX. Then, by part 1 of Proposition 11 in Yin

et al. (2008), we have that SYG|XG
⊆ SY |X, which implies that span{SYG|XG

:

G ⊆ ΩX} ⊆ SY |X.

By a result of Zhu and Zeng (2006), we have

span {∂h(y | x)/∂x : (x, y) ∈ ΩX × ΩY } = SY |X. (S1.1)

Apply the same result to (XG, YG) to obtain

span{∂h(y | x)/∂x : (x, y) ∈ G× ΩY } = SYG|XG
. (S1.2)

Now let (x0, y0) be an arbitrary point in (ΩX,ΩY ), and let G be an open

subset of ΩX that contains x0. Then, by part 3 of Proposition 1, hG(y |



2 Qin Wang, Xiangrong Yin, Bing Li and Zhihui Tang

x) = h(y | x) for all (x, y) ∈ G × ΩY . Therefore, [∂hG(y | x)/∂x]x0,y0 =

[∂h(y | x)/∂x]x0,y0 . Thus, by (S1.1) and (S1.2) we have

SY |X ⊆ ∪{SY |XG
: G ⊆ ΩX} ⊆ span{SY |XG

: G ⊆ ΩX}. (S1.3)

Furthermore, by part 2 of Proposition 11 of Yin et al. (2008), there

exists a compact set K ⊆ ΩX such that SYK |XK
= SY |X, where (XK, YK) is

defined as X restricted on K. Since ∪{G : G ⊆ ΩX} forms an open cover

of the compact set K, there is a finite subcover ∪{Gi : i = 1, . . . ,m} of K.

Hence by the same argument leading to (S1.3) we have SY |X ⊆ ∪{SY |XGi
:

i = 1, . . . ,m}, as desired. �

S2 Proof of Theorem 2

We have

E(XG | YG = y) =

∫
G

x
h(y | x)pG(x)

gG(y)
dx =

1

gG(y)

∫
G

xh(y | x)pG(x)dx.

(S2.1)

Let ḣ(y | x) and ḧ(y | x) denote the first and second derivatives of h

with respect to x. By Taylor’s theorem, for any x ∈ G, there is a ξ with

‖ξ − µ
G
‖ ≤ ‖G‖ such that

h(y | x) = h(y | µ
G
) + ḣT (y | µ

G
)(x− µ

G
) +

1

2
(x− µ

G
)T ḧ(y | ξ)(x− µ

G
).

(S2.2)
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In the meantime,

h(y | µ
G

+ PβG
(x− µ

G
)) =h(y | µ

G
) + ḣT (y | µ

G
)PβG

(x− µ
G
)

+
1

2
(x− µ

G
)TPβG

ḧ(y | ξ)PβG
(x− µ

G
).

(S2.3)

However, by construction, it is easy to see that ḣ(y | µ
G
) ∈ span(HG)

almost everywhere in ΩY . Hence PβG
ḣ(y | µ

G
) = ḣ(y | µ

G
). Because

‖x−µ
G
‖ ≤ ‖G‖ and the elements of ḧ(y | ξ) are bounded, the third terms

on the right hand sides of (S2.2) and (S2.3) are of the order O(‖G‖2). Now

subtract (S2.2) from (S2.3),

h(y|x) = h(y|µ
G

+ PβG
(x− µ

G
)) + O(‖G‖2) as ‖G‖ → 0. (S2.4)

Substitute (S2.2) into the right hand side of (S2.1), using the relations

E(XG − µ
G
) = 0 and Var(XG) = ΣG, to obtain

E(XG − µ
G
| YG = y) =

1

gG(y)
ΣGḣ(y | µ

G
)

+
1

2gG(y)

∫
G

[(x− µ
G
)(x− µ

G
)T ḧ(y | ξ)(x− µ

G
)]pG(x)dx.

(S2.5)

Since ‖x − µ
G
‖ ≤ ‖G‖ and the components of ḧ(y | ξ) are bounded, the

second term on the right is of the order O(‖G‖3). In other words,

E(XG − µ
G
| YG = y) =

1

gG(y)
ΣGḣ(y | µ

G
) + O(‖G‖3).
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Multiply both sides by Σ−1
G

, keeping in mind that ΣG = O(‖G‖2), to obtain

Σ−1
G
E(XG − µ

G
| YG = y) =

1

gG(y)
ḣ(y | µ

G
) + O(‖G‖). (S2.6)

Meanwhile, if we multiply both sides of the above equality by PβG
, then,

because ḣ(y | µ
G
) ∈ span(β

G
) for almost every y ∈ ΩY , we have

PβG
Σ−1

G
E(XG − µ

G
| y) =

1

gG(y)
ḣ(y | µ

G
) + O(‖G‖). (S2.7)

Now subtract (S2.7) from (S2.6) to prove (3.1). �

S3 Proof of Theorem 3

Let µ∗
G

be the center of G. Since pG has bounded derivative, pG(x) =

pG(µ∗
G
) + O(‖G‖). Hence

µ
G

=

∫
G

(x− µ∗
G

+ µ∗
G
)pG(x)dx

=µ∗
G

+

∫
G

(x− µ∗
G
)[pG(µ∗

G
) + O(‖G‖)]dx = µ∗

G
+ O(‖G‖3).

Hence the integral in the second term on the right hand side of (S2.5) is

∫
G

[(x− µ∗
G
)(x− µ∗

G
)T ḧ(y | ξ)(x− µ∗

G
) + O(‖G‖5)][pG(µ∗

G
) + O(‖G‖)]dx

=

∫
G

[(x− µ∗
G
)(x− µ∗

G
)T ḧ(y | ξ)(x− µ∗

G
)]pG(µ∗

G
)dx + O(‖G‖5)
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However, the leading term on the right is also of the order O(‖G‖5), because∫
G

[(x− µ∗
G
)(x− µ∗

G
)T ḧ(y | ξ)(x− µ∗

G
)]pG(µ∗

G
)dx

= pG(µ∗
G
)

∫
G

(x− µ∗
G
)(x− µ∗

G
)T ḧ(y | µ

G
)(x− µ∗

G
)dx + O(‖G‖5),

where the first term is 0 since G is an open ball. The rest of the proof is to

the argument following (S2.5). �
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