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Abstract: We propose a dimension-reduction method based on the aggregation of

localized estimators. The dual process of localization and aggregation helps to

mitigate the bias due to the symmetry in the predictor distribution, and achieves

exhaustive estimation of the dimension-reduction space. This approach does not

involve numerical optimization or the inversion of large matrices, resulting in a fast

and stable algorithm suited for processing large, high-dimensional data sets. We

demonstrate the efficacy of our method via simulation and real-data applications.
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1. Introduction

Suppose that Y is a univariate response and X is a p-dimensional vector

of continuous predictors. In its full generality, the goal of a regression is to

infer the conditional distribution of Y , given X. However, because of the curse

of dimensionality (Bellman (1961)), regressions with large p can be difficult, in

practice. The basic idea of a sufficient dimension reduction (SDR; Li (1991);

Cook (1998)) is to replace the predictor vector by its projection onto a low-

dimensional subspace, without losing information on the conditional distribution

of Y |X, and without assuming any specific model for Y |X.

In mathematical terms, a sufficient dimension-reduction space is a subspace

S of Rp, such that Y and X are independent, conditioning on PSX, where PS
is a projection onto S. The intersection of all such S if itself satisfies the above

independent condition is called the central subspace, and is denoted by SY |X. As

shown in Cook (1998) and Yin, Li and Cook (2008), under very mild conditions,

the central subspace exists and is the smallest and unique dimension-reduction

space. The dimension of SY |X is called the structural dimension, and is denoted

by dY |X.

A widely used class of estimators of the central subspace is based on inverse

conditional moments, such as E(X|Y ) and Var(X|Y ). This includes methods
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such as the sliced inverse regression (SIR; Li (1991)) and sliced average vari-

ance estimation (SAVE; Cook and Weisberg (1991)), and hybrids of the two (Ye

and Weiss (2003)), as well as the parametric inverse regression (Bura and Cook

(2001a)), sliced average third moment (Yin and Cook (2003)), contour regression

(Li, Zha and Chiaromonte (2005)), minimum discrepancy approach (Cook and

Ni (2005)), and directional regression (Li and Wang (2007)), among others.

The sliced inverse regression was the first general dimension-reduction method,

and has been widely researched, with many subsequent extensions and refine-

ments. Hsing and Carroll (1992), Zhu and Ng (1995), and Zhu and Fang (1996)

studied the asymptotic properties of the SIR estimator and its variations. Schott

(1994), Velilla (1998), and Bura and Cook (2001b) introduced asymptotic infer-

ence procedures to determine the dimension of the subspace estimated by the

SIR. Following Cook and Weisberg (1991), Cook and Yin (2001) developed a

permutation testing procedure to determine this dimension. Chen and Li (1998)

studied the relation between the SIR and a maximal correlation. Hsing (1999)

used the nearest-neighbor method to develop a variation of the SIR that is appli-

cable to multivariate responses. Naik and Tsai (2000) compared the performance

of the SIR with that of the partial least squares in the context of a single-index

model. Cook and Critchley (2000) showed that dimension-reduction methods,

in general, and the SIR in particular, can be useful for identifying outliers and

regression mixtures. Bura and Cook (2001a), Fung et al. (2002), Bura (2003),

and Wang and Yin (2011) further expanded the scope of the SIR by replacing

the inverse conditional mean E(X|Y ) with a parametric regression or basis ex-

pansion. Li, Cook and Nachtsheim (2004) proposed a cluster-based estimation

to mitigate the effect of nonlinearity on the predictors, focusing on single-index

models. Zhu, Miao and Peng (2006) studied the asymptotic behavior of the SIR

when the number of covariates increases with the sample size. Recently, Wu,

Liang and Mukherjee (2010) developed an extension by replacing the global av-

erage with the local average for each data point, thus alleviating the issue of

degenerate solutions. The SIR has found wide application in diverse fields such

as computer vision (Ling, Yin and Bhandarkar (2003); Ling et al. (2005)) and the

biological sciences (Chiaromonte and Martinelli (2002); Bura and Pfeiffer (2003);

Li and Li (2004)).

In this study we develop an aggregate dimension-reduction (ADR) procedure.

The theoretical basis of this method is that the central subspace SY |X can always

be decomposed into finitely many local dimension-reduction spaces, and that we

can aggregate the local spaces to recover SY |X. The dual process of localization
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and aggregation brings two benefits. First, because all differential functions

are approximately linear locally, we no longer need to impose a strong linearity

assumption on the conditional mean of the predictors, as required by the SIR.

Second, it leads to an exhaustive estimation of the central subspace SY |X.

We outline the main ideas and benefits of localized dimension reductions in

Section 2. These ideas are rigorously formulated and developed at the popula-

tion level in Section 3. In Sections 4 and 5, we provide estimation procedures for

the localized SIR using the k-nearest neighborhood, and discuss various issues

involved in the estimation, respectively. Simulation studies and two real-data

examples are presented in Sections 6 and 7, respectively. Section 8 concludes the

paper. All proofs are relegated to the Appendix, published as online Supplemen-

tary Material.

2. Principle of Finite Aggregation

ADR consists of performing ordinary sufficient dimension reduction over a

number of local regions in the predictor sample space, and then aggregating the

results to recover the global dimension reduction subspace. We first present the

two benefits of this dual process in concrete terms. Let B = (β1, . . . ,βd) be

a p × d matrix, the columns of which form an orthonormal basis of the central

subspace. The SIR and many other dimension-reduction methods require the

following linearity condition on X:

E(X|BTX) is a linear function of BTX. (2.1)

Under this assumption, the random vector E(X|Y ) − E(X) is contained

almost surely in ΣXSY |X, where ΣX denotes the covariance matrix of X (Li

(1991)). Because B is unknown, this condition is often assumed to hold for

all p × d matrices, which is equivalent to requiring that X have an elliptically

contoured distribution (Eaton (1986)), an assumption that seems too strong for

many applications. However, if we restrict X to a relatively small region, then,

as long as the function m(u) = E(X|BTX = u) is differentiable, E(X|BTX) can

be reasonably well approximated by a linear function of BTX.

The second benefit is that it overcomes a well-known drawback of SIR. That

is, if the distribution of X given Y is symmetric about E(X) along certain di-

rections of X, then the random vector E(X|Y ) − E(X) vanishes along those

directions, and consequently cannot provide any information about those direc-

tions. For example, consider the model

Y = 3(βTX)2 + 0.2ε,
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− − −

Figure 1. A symmetric model that cannot be estimated by a global SIR.

where β = (1, 1, 0, . . . , 0)′, ε ∼ N(0, 1), ε X, and X ∼ N(0, I10). Although

the linearity condition (2.1) is satisfied, the random vector E(X|Y ) − E(X) is

degenerate at 0, which does not tell us anything about ΣXSY |X, even though it

does belong to ΣXSY |X. This situation is illustrated in Figure 1, where E(X|Y )−
E(X) in the longer rectangle vanishes. However, if we restrict X to a local region,

as indicated by the shorter rectangle, then E(X|Y )− E(X) does not vanish.

To construct local dimension-reduction spaces, assume (X, Y ) has a joint

density f(x, y). Let p(x), g(y), and h(y|x) denote the marginal density of X, the

marginal density of Y , and the conditional density of Y given X = x, respectively.

Let ΩX and ΩY be the support of X and Y , respectively; that is, ΩX = {x :

p(x) > 0}, ΩY = {y : g(y) > 0}. For convenience, assume that the support of

f is the Cartesian product ΩX × ΩY . Though this assumption is not crucial for

our subsequent analysis, it does help to simplify the discussion. In summary, we

assume

ΩX,Y = {(x, y) : f(x, y) > 0} = {(x, y) : p(x) > 0, g(y) > 0} = ΩX × ΩY . (2.2)

Let G be any open set in ΩX. Let (XG, YG) be defined as (X, Y ) restricted

on the set G; that is, for any Borel set A ⊆ ΩX × ΩY , we have
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P [(XG, YG) ∈ A] =
P [(X, Y ) ∈ A ∩ (G× ΩY )]

P [(X, Y ) ∈ G× ΩY ]

=
P [(X, Y ) ∈ A ∩ (G× ΩY )]

P (X ∈ G)
. (2.3)

This defining relation uniquely determines the densities and conditional den-

sities of the localized random pair (XG, YG), as given by the following proposition.

Proposition 1. Suppose that (XG, YG) is defined by (2.3). Then:

1. The joint density of (XG, YG) is fG(x, y) = f(x, y)/P (X ∈ G), (x, y) ∈
G× ΩY ;

2. The marginal density of XG is pG(x) = p(x)/P (X ∈ G), x ∈ G;

3. The conditional density of YG|XG is hG(y|x) = h(y|x), (x, y) ∈ G× ΩY ;

4. The marginal density of YG is

gG(y) =
1

P (X ∈ G)

∫
G

f(x, y)dx, y ∈ ΩY .

The proof is simple, and thus is omitted. An important point of this proposi-

tion is that the conditional densities of YG|XG and Y |X coincide over the cylinder

G×ΩY . The central subspace of YG versus XG, SYG|XG
is called the local central

subspace for the neighborhood G. Intuitively, any direction in a local central

subspace SYG|XG
must also belong to the global central subspace SY |X, because

any local relation between YG and XG must be part of the global relation between

Y and X. At the same time, any relation existing between Y and X globally

must be reflected in some local area G. In fact, we only need a finite number of

local central subspaces to recover the global central subspace.

Theorem 1. Suppose ΩX is an open set in Rp. Then, there exist a finite number

of open sets, say G1, . . . , Gm, in ΩX, such that SY |X = span{SYGi
|XGi

: i = 1,

. . . , m}.

This theorem, which we refer to as the finite aggregation principle, plays a

fundamental role in our method: it guarantees that we can join a finite number

of local central subspaces to recover the global central subspace. The proof of

Theorem 1 is given in the Appendix.

3. Bias-reducing Effect of Localization

Let ‖G‖ denote the “diameter” of an open set G in ΩX, in the sense that
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‖G‖ = sup{‖x− x′‖ : x ∈ G,x′ ∈ G}.

Let µ
G

= E(XG) and ḣ(y|x) = ∂h(y|x)/∂x. Consider the matrices

HG = E[ḣ(YG|µG
)ḣT (YG|µG

)] and H∗
G

= E[ḣ(YG|XG)ḣT (YG|XG)].

From a result of Zhu and Zeng (2006), it can be deduced that

span(HG) ⊆ span(H∗
G
) = SYG|XG

.

Let β
G

and BG be matrices of full column rank, such that span(β
G
) = span(HG)

and span(BG) = span(H∗
G
). We show that (i) if ‖G‖ is small, then, approxi-

mately, β
G

and BG share the same column space; (ii) the shared column space is

approximately the local central subspace; (iii) the latter can be approximated by

a localized SIR; and (iv) in an important special case, this space has dimension

no more than one. Let ΣG denote the variance matrix of XG:∫
G

(x− µ
G
)(x− µ

G
)T pG(x)dx.

Note that this matrix is of order O(‖G‖2) as ‖G‖ → 0. Let Ḡ denote the closure

of G, and let PβG
be the projection onto span(β

G
). That is,

PβG
= β

G
(βT

G
β

G
)−1βT

G
.

Theorem 2. Suppose that, for a fixed y ∈ ΩY , g(y) > 0, h(y|x) is twice differ-

entiable with respect to x on Ḡ, and the second derivatives are bounded on Ḡ.

Then, as ‖G‖ → 0, and almost everywhere on ΩY ,∣∣Σ−1
G

[E(XG|y)− E(XG)]−PβG
Σ−1

G
[E(XG|y)− E(XG)]

∣∣
F = O(‖G‖), (3.1)

where |A|F denotes the Frobenius norm of a matrix A.

The proof of Theorem 2 is provided in the Appendix.

Note that the relation given in (3.1) tells us that, except for an error of

magnitude O(‖G‖2), the local SIR vector, ‖G‖Σ−1
G

[E(XG|y) − E(XG)], belongs

to the central subspace. In other words, the bias due to the nonlinearity of

E(XG|βT
G
XG) is two orders of magnitude smaller than the bias of the global in-

verse mean Σ−1[E(X|y)−E(X)]. In fact, if we assume slightly stronger regularity

conditions, this bias can be further reduced by two orders of magnitude.

Theorem 3. Suppose that in addition to the conditions in Theorem 2, h(y|x) has

a bounded third derivative with respect to x, p(x) has a bounded first derivative

on Ḡ, and G is an open ball in ΩX. Then, as ‖G‖ → 0,∣∣Σ−1
G

[E(XG|y)− E(XG)]−PβG
Σ−1

G
[E(XG|y)− E(XG)]

∣∣
F = O(‖G‖3), (3.2)

where |A|F denotes the Frobenius norm of a matrix A.
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The proof of Theorem 3 is provided in the Appendix.

The intuition behind this further reduction in the bias is that the lead-

ing term of an integral of a centered cubic function over a spherical region is

zero. From this theorem, we see that the bias of the local SIR is four orders of

magnitude smaller than that of the corresponding global estimate. This bias is

surprisingly small, especially if we compare it with the population bias of the

kernel estimator of a density. Let K be a symmetric kernel density, and φ be a

density to be estimated, with ρ being the bandwidth. Then, it is known that∫
1

ρp
K

(
x− a

ρ

)
φ(x) dx = φ(a) +O(ρ2).

Here, ρ corresponds roughly to ‖G‖ in our problem. If we use asymmetric K,

then the error is O(ρ). A similar bias applies to the kernel regression setting.

This comparison indicates that the bias of a localized dimension reduction is

smaller than those of a kernel density estimation and kernel regression. In other

words, even in a fully nonparametric setting in which no elliptical distribution

assumption is imposed on X, it is still beneficial to perform a dimension reduction

before conducting a nonparametric regression.

Now, let us consider the special case where

h(y|x) = h1[y, φ(x)], (3.3)

with some function φ from Rp to R. For example, the location model Y = φ(X)+ε

and the scale model Y = φ(X)ε belong to this category. Then,

ḣ(y|µ
G
) =

∂h1[y, φ(µ
G
)]

∂φ
φ̇(µ

G
).

Note that

HG = E

{
∂h1[YG, φ(µ

G
)]

∂φ

}2

φ̇(µ
G
)φ̇T (µ

G
).

This is a matrix of rank one unless φ̇(µ
G
) = 0. We summarize this result in the

following proposition.

Proposition 2. Suppose h(y|x) is of the form given in (3.3) where h1 is differ-

entiable with respect to φ, and φ is differentiable with respect to x. Moreover,

suppose ∂h1(YG, φ)/∂φ is square integrable. Then, span(β
G
) has dimension at

most one. That is, ignoring an error of magnitude O(‖G‖2), the local central

subspace SYG|XG
has dimension at most one.

This proposition suggests that if we are interested in finding the central

subspace, then we need only to estimate one direction for each local region.
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That is, it is sufficient to discretize YG into binary variables for each G, which is

important, because there are fewer observations in a local region.

4. Estimation

In this section, we introduce an estimation procedure for ADR that uses a

k-nearest neighbor (kNN) localizing mechanism, and a partial inverse regression

as the local dimension-reduction estimator. The properties of nearest neighbor

estimators have been studied extensively in the nonparametric regression and

pattern recognition literature; see, for example, Hastie, Tibshirani and Friedman

(2001).

One of the main problems we need to solve when designing an estimation

procedure is how to handle the inversion of Σ̂G, the sample estimate of the local

covariance matrix of predictor X. This is especially important in the context of

a localized dimension reduction, because the relevant sample size is the number

of observations within each neighborhood, which is much smaller than the total

sample size n required for a global dimension-reduction estimator, such as the

SIR. We solve this problem using the partial inverse regression scheme proposed

by Li, Cook and Tsai (2007) and Cook, Li and Chiaromonte (2007).

We first describe the estimation procedure at the population level. By Propo-

sition 2, under condition (3.3), each local central subspace contains at most one

direction if we ignore an error of size ‖G‖2. This motivates us to employ the

following two-slice scheme for the inverse regression. Divide the support of YG

(which, under assumption (2.2), is the same as ΩY ) into two intervals, JG1 and

JG2, and let ∆G be a Bernoulli random variable that takes the value one if Y ∈ JG1

and two if Y ∈ JG2. From the discussion in Section 3, we have, approximately,

span{Var[E(XG|∆G)]} ⊆ ΣGSYG|XG
. (4.1)

Let πG = P (∆G = 1) and ζ
Gu = E(XG|∆G = u) − E(XG), for u = 1, 2. Noting

the relation πGζG1
+ (1− πG)ζ

G2
= 0, we can rewrite the conditional variance in

(4.1) as

Var[E(XG|∆G)] = πGζG1
ζT

G1
+ (1− πG)ζ

G2
ζT

G2
=

πG

1− πG

ζ
G1
ζT

G1
.

This is a matrix of rank at most one.

An obvious way to recover the local central subspace SYG|XG
is to use Σ−1

G
ζ

G
.

However, because k may be close to or even smaller than p, a direct sample

estimate of the full inverse of ΣG is either unstable or nonexistent. To avoid this

difficulty, let
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RG = (ζ
G
,ΣGζG

, . . . ,Σq−1
G

ζ
G
), η

G
= RG

(
RG

TΣGRG

)−1

RG
T ζ

G
,

where 1 ≤ q < p. Note that η
G

is simply the projection of Σ−1

G
ζ onto the column

space of RG. Cook, Li and Chiaromonte (2007) show that the subspace span(RG)

is strictly increasing when q increases, arguing that it often grows sufficiently large

to contain the central subspace (in our context, SYG|XG
), for reasonably small q.

It is easy to see that when this occurs, η
G

becomes a member of SYG|XG
. Thus,

we use η
G

in place of Σ−1

G
ζ

G
as the local dimension-reduction estimate.

To combine directions from each neighborhood, let t : [0,∞) → [0,∞) be a

nondecreasing function, and

ωG =
πG

1− πG

ζT
G1
ζ

G1
.

Define the matrix

V =
∑

t(ωG)η
G
ηT

G
,

where the summation is a collection of neighborhoods, and t is a weighting func-

tion, the meaning and choice of which are described in the next section.

We now summarize the sample-level algorithm for ADR. Let {(Xi, Yi), for i =

1, . . . , n}, be a sample from (X, Y ). The algorithm assumes that the structural

dimension d is known; the estimation of d is discussed in the next section.

1. For each s = 1, . . . , n, let Gs be the set that includes the k nearest Xj to

Xs in terms of the Euclidean distance ‖Xj −Xs‖. Note that Gs contains

k + 1 elements because we do not count Xs among these k points.

2. Divide the set {Yj : Xj ∈ Gs} into two intervals, Js1 and Js2, each containing

roughly the same number of Yj . Let nsu, for u = 1, 2, be the cardinality of

the set {j : Xj ∈ Gs, Yj ∈ Jsu} and ns = ns1 + ns2. Let

X̄Gs1 =
1

ns1

∑
XjI(Xj ∈ Gs, Yj ∈ Js1), X̄Gs

=
1

ns

∑
XjI(Xj ∈ Gs),

and

ζ̂
Gs

= (X̄Gs1 − X̄Gs
), ω̂Gs

=

(
ns1
ns2

)
‖X̄Gs1 − X̄Gs

‖2.

3. Compute

R̂Gs
=
(
ζ̂s, Σ̂Gs

ζ̂
Gs
, . . . , Σ̂

q−1
Gs

ζ̂
Gs

)
and η̂

Gs
= R̂Gs

(R̂T
Gs

Σ̂Gs
R̂Gs

)−1R̂T
Gs
ζ̂

Gs
.

4. Use the first d eigenvectors of the matrix V̂ =
∑m

s=1 t(ω̂Gs
)η̂

Gs
η̂T

Gs
as the

estimate of a basis for the global central subspace SY |X.

It is well known that a severely biased estimate can be introduced as a re-
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sult of the above choice of k-nearest neighborhood in a high-dimensional input

space with finite samples. Because the Euclidean distance measure implies that

the input features are homogeneous or isotropic, an immediate remedy would

be to use a locally adaptive metric. Inspired by the work of Hastie and Tib-

shirani (1996), we propose a refined estimation in which the neighborhoods are

elongated along less relevant directions, and constricted along more influential

directions. After obtaining a basis for the global central subspace SY |X (say,

B̂0) from the above-mentioned algorithm, instead of a p-dimensional ball as the

k-nearest neighborhood, we use a p-dimensional ellipsoid to shrink the neighbor-

hoods in directions orthogonal to B̂0 and to elongate those parallel to this initial

estimate. More specifically, the distance between Xj and Xs in step 1 of the

above algorithm is replaced by

d2js = ‖B̂T
(0)(Xj −Xs)‖2 + κ(0)‖(Xj −Xs)‖2

= (Xj −Xs)
T [B̂(0)B̂

T
(0) + κ(0)Ip](Xj −Xs), (4.2)

where κ(0) is a small “softening” parameter used to control the shrinkage and

elongation along different directions. An iterative estimation can be implemented

until a certain convergence criterion is met.

Our method differs from that of Hsing (1999), who applies a k-nearest neigh-

borhood to multivariate Y to avoid slicing. It is also different from the IMAVE

procedure of Xia et al. (2002), in that the latter requires a linearity condition.

5. Tuning Parameters

In this section, we discuss how to choose the various tuning parameters

for the estimation algorithm described in Section 4. As such, we estimate the

structural dimension d, and choose the weighting function t, the order q for the

partial inverse regression, and the softening parameter κ for the adaptive nearest

neighborhood selection. An appropriate justification of these choices relies on the

asymptotic properties of ADR; this is beyond the scope of this study, and thus is

left to future research. Inevitably, the following recommendations are heuristic

in nature. In extensive numerical experiments, we performed sensitivity analyses

on the recommended choices of these tuning parameters, with our results showing

reasonably stable estimations.

We recommend two choices for t. A natural choice is t(ωG) ≡ 1. From

the discussion in Section 4, ζ̂
G

are approximately aligned with the local central

subspace. Thus, if a neighborhood is in a region in which there is no significant
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change in Y , then ‖ζ̂
G
‖ tends to be small. By setting t equal to one, we let the

sliced means themselves determine the relative importance of each neighborhood.

A second choice of t is

t(ω̂G) =

{
‖ζ̂

G
‖−2 ω̂G > c,

0 ω̂G ≤ c.
(5.1)

This weighting function introduces a hard thresholding according to the magni-

tude of ‖ζ̂‖, discarding those neighborhoods with small sliced means. Moreover,

when a sliced mean is sufficiently large, its magnitude is no longer included in

the estimation. Based on our experience, the second choice seems to work better.

We choose the threshold c according to a percentage δ of the sample size. That

is, we choose δ×100% of neighborhoods with the highest ω̂G. The choice δ = 0.5

works well in our simulation experiments.

To choose qGs
, we use the threshold recommended by Li, Cook and Tsai

(2007),

qGs
=

p−1∑
j=1

I

(
rj(Gs)

rj+1(Gs)
> α0

)
,

where r1(Gs) ≥ · · · ≥ rp(Gs) are the eigenvalues of the matrix R̂Gs
R̂T

Gs
, and α0

is taken to be 1.5. Following Hastie and Tibshirani (1996), we choose κ(0) = 1/3

in our numerical studies.

To estimate the structural dimension d, we adopt the bootstrap procedure

proposed in Ye and Weiss (2003) and Zhu and Zeng (2006). Let Ŝd∗ be an

estimate of SY |X for a fixed d∗. We can get a set of bootstrap-estimated {Ŝ(j)d∗ , j =

1, . . . , nb} by bootstrapping, where nb is the number of bootstrap samples. The

distances between Ŝd∗ and its bootstrap version {Ŝ(j)d∗ , j = 1, . . . , nb} can be

used to assess the variability of the estimated subspace at d = d∗, which, in

turn, can be used to infer the structural dimension d. Intuitively, Ŝd∗ ⊆ SY |X
when d∗ ≤ d. However, when d∗ > d, Ŝd∗ = SY |X ⊕ S̃, where S̃ is a (d∗ − d)-

dimensional subspace orthogonal to SY |X. Because S̃ can be arbitrary, we expect

to see greater variability in Ŝd∗ , with its bootstrap versions, than when d∗ ≤ d.

Therefore, the structural dimension d can be estimated as the largest d∗ that

produces a stable estimator.

Finally, we set the number of observations in each neighborhood as 2p ≤ k ≤
4p. This choice is reasonable only when p is considerably smaller than n.
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6. Simulation Studies

In this section, we evaluate the performance of ADR using simulations. For

comparison purposes, several existing methods were also evaluated in the simula-

tion studies, including the SIR, sliced average variance estimation (SAVE), prin-

cipal Hessian directions (PHD), minimum average variance estimation (MAVE),

and sliced regression (SR). The vector correlation coefficient q (Hotelling (1936);

Ye and Weiss (2003)) was used to measure the estimation accuracy. Let B be

an orthonormal basis of the central subspace, and B̂ be an estimate of the or-

thonormal basis. Then, the vector correlation coefficient

q =

√
||B̂T (BBT )B̂|| =

√√√√ d∏
i=1

ρ2i ,

where 0 ≤ ρd ≤ · · · ≤ ρ1 ≤ 1 are the eigenvalues of the matrix B̂T (BBT )B̂. As

q increases, S(B̂) becomes closer to S(B). We chose the Gaussian kernel and

its corresponding optimal bandwidth for the MAVE and SR. A rule-of-thumb

choice of k = 4p was used for our proposed aggregate approach, including the

kNN sliced inverse regression (kNNSIR) and the adaptive kNN sliced inverse

regression (a-kNNSIR, where the adaptive distance given in (4.2) is used). Note

that more refined ways of choosing k, such as cross-validation, can be used, but

at greater computational expense. For each parameter setting, 200 simulation

replications were conducted.

The following four models were used in the numerical study:

Model 1: Y = exp{(βTX)2 + ε},
Model 2: Y = cos(2βT1 X)− cos(βT2 X) + 0.2ε,

Model 3: Y = sign(βT1 X + ε1)log(|βT2 X + 3 + ε2|),
Model 4: Y = (βT1 X)(βT2 X + 2) + (βT3 X + 2)3 + 0.5ε.

All of these models have been studied extensively in the literature on suf-

ficient dimension reduction. In all four models, X ∼ Np(0, Σ), independent

of standard Gaussian noises ε, ε1, and ε2. The covariance matrix Σ = (σij) =

(ρ|i−j|), where ρ = 0.5 in Models 1-3 and ρ = 0 in Model 4. In Model 1, β =

(1, 0.5, 1, 0, . . . , 0)T . In Model 2, β1 = (1, 0, . . . , 0)T and β2 = (0, 1, 0, . . . , 0)T . In

Model 3, β1 = (1, 1, 1, 1, 0, . . . , 0)
T

, β2 = (0, . . . , 0, 1, 1, 1, 1)
T

, and the function

sign(·) takes the value 1 or −1, depending on the sign of the argument. In Model

4, β1 = (1, 0, . . . , 0)T , β2 = (0, 1, 1, 0, . . . , 0)T , and β3 = (0, 0, 0, 1, 1, 0, . . . , 0)T .

In Figures 2 – 5, we compare the performance of the aforementioned meth-

ods. The results are as follows. First, the proposed aggregate SDR, adaptive
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− −

Figure 2. Comparison of estimation accuracy with Model 1.

− −

Figure 3. Comparison of estimation accuracy with Model 2.

kNN-SIR, significantly improves the performance of the original inverse regres-

sion methods, and is broadly comparable with the forward regression approaches

(MAVE and SR). Second, through localization, the adaptive kNN-SIR overcomes
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− −

Figure 4. Comparison of estimation accuracy with Model 3.

the drawback of missing symmetric patterns in the original SIR, as shown in Mod-

els 1 and 2. Third, when SY |X is completely contained in the mean regression

function E(Y |X), the MAVE stands out as the best method, which is expected,

with the proposed a-kNNSIR a close second, shown in Models 2 and 4. However,

when SY |X spans beyond the mean function, as in Models 1 and 3, the a-kNNSIR

clearly outperforms the MAVE. Finally, larger sample sizes are needed to pro-

vide a good estimation with an increase of the dimension d. Zhu, Miao and

Peng (2006) studied Model 4 (d = 3), showing that n needs to be increased

to 3,200 in order for the estimation accuracy of the SIR to be acceptable when

p ≤ 20. In our numerical study, the proposed a-kNNSIR and the MAVE are the

only two methods that show good performance for moderate sample sizes. It is

well known that the computational burden increases significantly with n and p

for the forward regression methods (MAVE and SR). In contrast, the proposed

aggregate inverse regression approach is more computationally efficient, because

no numerical optimization is required. This is confirmed by the results of our

simulation studies.

Next, we estimated the structural dimension d using the adopted bootstrap

procedure. In all numerical studies, we used 1 − q as the distance measure

to assess the variability between Ŝd∗ and its bootstrap versions. For each d∗ =

1, 2, . . . , p−1, 500 bootstrap samples were drawn, and the median of the distances
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− −

Figure 5. Comparison of estimation accuracy with Model 4.

between Ŝd∗ and its bootstrap versions {Ŝ(j)d∗ , j = 1, . . . , 500} was calculated.

Figure 6 shows the dimension variability plots (Zhu and Zeng (2006)) for Models

1-4. As expected, large variability is evident when d∗ > d. Of of 100 samples

with n = 400 and p = 10, the accuracy of correctly estimating d is 99%, 94%,

99%, and 84% for Models 1-4, respectively.

7. Real-data Analyses

7.1. Ozone data

In this section, we investigate the performance of the proposed aggregate

SIR when it is applied to real data on the relations between ozone levels and

various environmental variables Breiman and Friedman (1985). The data con-

tain 330 observations, with each observation consisting of nine variables: ozone

concentration, height, inversion height, temperature, inversion temperature, hu-

midity, pressure, visibility, and wind speed. Here, ozone concentration is treated

as the response, and the other eight variables are treated as predictors. For ease

of interpretation, all predictors are standardized separately. This data set has

been analyzed by several authors. See, for example, Li (1992) and Cook and Li

(2004).

The SIR identifies one significant direction. After a closer investigation of
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Figure 6. Bootstrap estimation of dimension (n = 400 and p = 10).

the residual from the quadratic fit, Li (1992) argued that a second significant

component is necessary, and that the PHD can recover this direction. Cook and

Li (2004) also identified the first direction using an inverse Hessian transformation

(IHT). However, their estimate of the dimension d differs from that of others,

leaving some uncertainty.

In our application, the dimension variability plot, shown in Figure 7 (a),

suggests d̂ = 2. Figure 7 (b)(c) shows the pattern identified by our method.

Interestingly, our proposed a-kNNSIR successfully recovers the two significant

components identified by the SIR and PHD, without fitting a detailed model, as

in Li (1992), and without the uncertainty associated with estimating d evident

in Cook and Li (2004).

7.2. College admission data

This data set was used in the 1995 Data Analysis Exposition, sponsored

by the American Statistical Association. It is also included in the textbook,

“An introduction to statistical learning with applications in R” (James et al.

(2013)), and the associated R package ISLR. We are interested in predicting the

number of applications received (y) by 557 private institutions that have a full-

time undergraduate student body of less than 10,000. The predictors used in
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− −

Figure 7. Analysis of ozone data: (a) dimension variability plot, (b–c) scatterplots of
response vs. the two estimated directions.

Table 1. The predictors and the estimated directions for the college admission data.

Predictor β̂1 β̂2
x1 number of full time undergraduates 0.91 0.06
x2 number of part time undergraduates 0.00 −0.38
x3 out-of-state tuition 0.34 −0.25
x4 room and board costs 0.06 −0.21
x5 estimated book costs −0.04 −0.03
x6 estimated personal spending −0.12 −0.30
x7 percent of faculty with terminal degree 0.03 −0.03
x8 student/faculty ratio 0.13 0.46
x9 percent of alumni who donate 0.04 0.07
x10 instructional expenditure per student 0.12 −0.26
x11 graduation rate 0.04 −0.60

our analysis are listed in Table 1. Again, for ease of interpretation, all predictors

were standardized separately.

The dimension variability plot in Figure 8 (a) suggests at most three di-

mensions. It also indicates that the prediction ability for the second and third

directions may not be very strong, because their variability is much larger than

that of the first direction. Situations such as this can often happen in practice,

because real data may include significant noise and weak signals, which makes

determining the structural dimension less obvious. Nevertheless, we further con-
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− − −

Figure 8. Analysis on College admission data: (a) dimension variability plot, (b-c)
scatterplots of response vs. the two estimated directions.

sider the coefficients and marginal plots for the first three directions. Finally,

we retained the first two directions, because no meaningful interpretation was

available for the third direction. We also applied the SIR to this data set, with

the asymptotic test also suggesting d = 3. The first direction is dominated by x1,

the number of full-time undergraduates, but the second and the third directions

are not that clear. From the estimated directions β̂1 and β̂2 in Table 1 using

our method, we can interpret the first direction as a “size” factor, because it is

dominated by x1. The second direction can be seen as an “academic quality”

factor, which includes x8 (student/faculty ratio), x10 (instructional expenditure

per student), and x11 (the graduation rate). In Figure 8 (b), in general, the

number of applications increases with the size of the institution’s student body,

with this increasing trend tapering off toward the end. Figure 8 (c) shows that

more students apply to institutions with higher academic quality, meaning high

graduation rate, high instructional expenditure, and a small student/faculty ra-

tio.

8. Discussion

We have proposed an aggregate approach for estimating the central subspace,

which we illustrated using an adaptive kNN sliced inverse regression. We believe

that a class of new local-dimension reduction methods can be developed under
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this localization framework. Our new method does not seek to replace the original

SIR. Instead, we have developed an alternative approach so that the simplicity

of the SIR can be extended further.

There are still several open questions that need further study, including those

related to the asymptotic properties of the proposed estimators and an extension

to a big data setting. To study these asymptotic properties, the most related

work, in the global sense, is the study of Hsing and Carroll (1992), who show that

the estimator from the two-slice approach is root-n consistent. However, owing to

the use of a local approximation, our local inverse conditional covariance matrix

does not have the closed form of equation (1.2) in Hsing and Carroll (1992).

Because the k-nearest-neighbor estimation can be treated as a special kernel

method, our proposed localization-aggregation approach is similar, in spirit, to

the kernel-based outer product of gradients (OPG) estimation (Xia et al. (2002)).

Overcoming these challenges and difficulties is left to future research. A referee

brought our attention to extending the method to a big data setting, with large

n and/or large p. When the volume n is huge, the dimension p is moderate, and

n > p, we propose implementing the localization-aggregation approach together

with “leveraging based subsampling” (Ma, Mahoney and Yu (2015)). The case,

where n < p, or even n� p, is clearly more challenging. We adopt the sequential

dimension-reduction paradigm proposed by Yin and Hilafu (2015) to sidestep

the curse of dimensionality. Such an investigation is currently under way by our

team, and our preliminary results are very promising.

Supplementary Material

The online Supplementary Material provides the proofs of Theorems 1–3 in

the paper.
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