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Supplementary Material

In this supplementary material, we provide the detailed proof of Lemma 1 and Theorem 1,

show the analysis results of an illustrating example using data of a diagnostic review of imaging

technologies for surveillance of melanoma from Xing et al. (2011), and provide the empirical

type I error rates and power of testing positive associations in stratified case-control studies

with sparse data as described in Section 5.1, using composite likelihood ratio statistic and its

limiting distribution calculated from the m-out-n bootstrap method.

S1 Proof of Lemma 1

We first prove the consistency of θ̂c by applying Theorem 5.7 in Van der

Vaart (2000). Since Ω is compact and E{`c(θ)} is continuous, the maximum
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of E{`c(θ)} over the space {θ ∈ Ω : ‖θ − θ0‖ ≥ ε} is achieved at some

θ̃. By the uniqueness of θ0, we have E{`c(θ̃)} < E{`c(θ0)}. Thus, the

second condition in equation (5.8) of Van der Vaart (2000) holds. The

first condition in equation (5.8) of Van der Vaart (2000) is the uniform

convergence of `c(θ) to E{`c(θ)} over θ ∈ Ω. This is equivalent to showing

the class of function
∑K

k=1 ωk logLi(θ; Ak) indexed by θ ∈ Ω is Glivenko-

Cantelli. This holds by applying Example 19.8 in Van der Vaart (2000),

since Ω is compact, and the function is continuous with integrable envelop

function by Condition R2. Thus, the first condition in equation (5.8) of

Van der Vaart (2000) holds. This yields the consistency of θ̂c.

Then we consider the expansion of CLRT,

2
{
`c(θ̂c)− `c(θ0)

}
= 2(
√
NA)T

{√
N(θ̂c − θ0)

}
−
{√

N(θ̂c − θ0)T
}
B(θ̃)

{√
N(θ̂c − θ0)

}

where θ̃ is some intermediate value between θ̂c and θ0, and

A =
1

N

N∑
i=1

K∑
k=1

ωi
∂ logLi(θ0; Ak)

∂θ
, B(θ) = − 1

N

N∑
i=1

K∑
k=1

ωi
∂2 logLi(θ; Ak)

∂θT∂θ
.

Similar to the argument in the proof of consistency, we can show that B(θ)

also converges uniformly to H(θ). By the consistency of θ̂c and Condition

R3, the dominated convergence theorem implies B(θ̃) = H(θ0) + op(1).
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Thus, we obtain

2
{
`c(θ̂c)− `c(θ0)

}
= 2(
√
NA)T

{√
N(θ̂c − θ0)

}
−
{√

N(θ̂c − θ0)T
}

H(θ0)
{√

N(θ̂c − θ0)
}

+ op(N‖θ̂c − θ0‖2).

Denote ĥ =
√
N(θ̂c − θ0). Since `c(θ̂c)− `c(θ0) ≥ 0, we have

0 ≤ 2
{
`c(θ̂c)− `c(θ0)

}
= 2(
√
NA)T ĥ− ĥTH(θ0)ĥ+ op(‖ĥ‖2)

≤ C‖ĥ‖ − C ′‖ĥ‖2 + op(‖ĥ‖2),

for some positive constants C and C ′. Note that the last step follows

from the fact that
√
NA = Op(1) and H(θ0) is positive definite. Thus,

‖ĥ‖ ≤ C(C ′)−1 + op(‖ĥ‖), which implies ĥ = Op(1). This completes the

proof.

S2 Proof of Theorem 1

In the following, we first show that

2
{
`c(θ̂c)− `c(θ0)

}
=− inf

θ∈CΩ

{
(U − (θ − θ0))TH(θ0)(U − (θ − θ0))

}
+ inf

θ∈CΩ0

{
(U − (θ − θ0))TH(θ0)(U − (θ − θ0))

}
+ op(1),

(S2.1)
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where U = H−1(θ0)
√
NA. Since θ ∈ CΩ0 implies θ = θ0, it suffices to prove

that

2
{
`c(θ̂c)− `c(θ0)

}
= sup

h∈CΩ(0)

{
−W T

h H(θ0)Wh

}
+ UTH(θ0)U + op(1),

(S2.2)

where Wh = H−1(θ0)
√
NA−h, h =

√
N(θ−θ0) and CΩ(0) is the translation

of the cone CΩ to the vertex 0.

Since θ̂c is root-N consistent by Lemma 1, the proof of Lemma 1 implies

2
{
`c(θ̂c)− `c(θ0)

}
= sup

h∈Ωn

{−W T
h H(θ0)Wh}+ UTH(θ0)U + op(1),

where Ωn = {n1/2(θ − θ0) : θ ∈ Ω}. Let H = H(θ0). Comparing to

(S2.2), we need to show infh∈Ωn W
T
h HWh = infh∈CΩ(0)W

T
h HWh + op(1).

Similar to the proof of root-n convergence of θ̂c, it can be shown that

arg minh∈Ωn W
T
h I11Wh = Op(1). By the definition of Ωn, for any h ∈ Ωn

with |h| = O(1), there exists θ ∈ Ω such that h = n1/2(θ − θ0). By the

definition of the approximating cone, there exists a sequence θ̄ ∈ CΩ such

that |θ̄ − θ| = o(|θ − θ0|) = o(n−1/2). Let h̄ = n1/2(θ̄ − θ0). We have that h̄

belongs to the cone CΩ(0) and |h̄− h| = o(1). Then,

(U − h)TH(U − h) = (U − h̄+ h̄− h)TH(U − h̄+ h̄− h)

≥ (U − h̄)T (U − h̄)−Op(‖h̄− h‖)−Op(‖h̄− h‖2)

= (U − h̄)TH(U − h̄) + op(1).
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Thus,

inf
h∈Ωn

(U − h)TH(U − h) ≥ inf
h∈Ωn

(U − h̄)TH(U − h̄) + op(1)

= (U − h̄)TH(U − h̄) + op(1) ≥ inf
h̄∈CΩ(0)

(U − h̄)TH(U − h̄) + op(1).

Following similar arguments, we can also show that

inf
h̄∈CΩ(0)

(U − h̄)TH(U − h̄) ≥ inf
h∈Ωn

(U − h)TH(U − h) + op(1).

These together imply that infh∈Ωn W
T
h HWh = infh∈CΩ(0)W

T
h HWh + op(1),

and therefore equation (S2.2) and (S2.1) hold. The Central limit theorem

implies that U = H−1(θ0)
√
NA converges weakly to MVN(0, G−1(θ0)),

where G(θ0) = H(θ0)J(θ0)−1H(θ0). Let Z ∼ MVN(0, G−1(θ0)). The con-

tinuous mapping theorem implies that

inf
θ∈ϕ

{
(U − (θ − θ0))TH(θ0)(U − (θ − θ0))

}
→d Qϕ(Z),

where Qϕ(Z) = inf
θ∈ϕ
{Z − (θ − θ0)}T H(θ0) {Z − (θ − θ0)}. This completes

the proof.
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S3 Supplementary results of application to a system-

atic review of modern imaging technologies for

surveillance of melanoma

In this section, we show the results of applying the proposed composite

likelihood model described in Section 2.3 and using the proposed composite

likelihood ratio test described in Section 3.3 to test the heterogeneity of both

sensitivity and specificity of the imaging technologies for different cancer

types across multiple studies. Number of studies for 7 technology-cancer

combinations are shown in Table S1. Figure S1 demonstrates the range of

the sensitivities and specificities of the imaging technologies in diagnosis of

different cancer types across studies.

Table S1: Numbers of studies studied by Xing et al. (2011) stratified by the type of

metastasis (regional versus distant metastasis) and the type of imaging modalities

Type of imaging modalities Number of studies

Regional metastasis
Ultrasonography (US) 21
Computed Tomography (CT) 3
Positron Emission Tomography (PET) 22
Combination of both (PET-CT) 5

Distant metastasis
Computed Tomography (CT) 9
Positron Emission Tomography (PET) 30
Combination of both (PET-CT) 8



S4. M-OUT-OF-N BOOTSTRAP

●

0 20 40 60 80 100

Distant: PET−CT

Distant: PET

Distant: CT

Regional:PET−CT

Regional: PET

Regional: CT

Regional: US

sensitivity
specificity

Figure S1: Summary of diagnosis accuracy of the imaging technologies for different

cancer types across multiple studies. Star points represent median.

S4 M-out-of-n bootstrap

In this section, we show the empirical rejection rates, based on the limiting

distribution of composite likelihood ratio statistic estimated using the m-

out-of-n bootstrap method, in testing the positive associations in stratified

case-control studies with sparse data using simulated data sets described in

Section 5.1. We adopted the method proposed by Bickel & Sakov (2008)

to make data-adaptive choice of resample size m, with tuning parameters
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q = 0.85. The selected optimal resample size m and the empirical rejection

rates of the over 5,000 simulations are shown in Table S2.

Table S2: Empirical rejection rates (%) in 5000 simulations of CLRT, based on limiting

distribution estimated from m-out-of-n bootstrap, to test for two regression coefficients

in stratified case-control study, in scenarios with different numbers of stratum K, stratum

size N , and effect sizes.

α = 0.10 α = 0.05 α = 0.01

(β1, β2, β3) (K,N) m Rejection (%) Rejection (%) Rejection (%)

(0,0,0.1) (25,10) 4 3.9 1.9 0.5
(50,10) 6 3.2 1.5 0.3
(100,10) 12 3.2 1.6 0.3
(200,10) 46 3.5 2.0 0.3

(0.1,0,0.1) (25,10) 4 10.8 6.5 2.0
(50,10) 6 17.0 11.0 4.1
(100,10) 12 30.1 20.0 7.7
(200,10) 46 53.8 41.1 21.7

(0.1,0.1,0.1) (25,10) 4 19.6 12.3 4.8
(50,10) 6 33.5 23.3 9.7
(100,10) 12 56.9 44.3 23.9
(200,10) 46 83.1 74.2 53.2

(0.2,0.2,0.2) (25,10) 4 56.7 45.2 24.6
(50,10) 6 83.9 76.0 56.0
(100,10) 12 99.0 97.6 91.1
(200,10) 46 100.0 100.0 99.8
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