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S1 Auxiliary Lemmas

The proofs of the theorems rely on some auxiliary lemmas. Therefore, we state and prove
these lemmas first.

Denote the value at time t of the time series with length 7" as Xz, and let X(s) for
s € [0,1] be a stochastic process. We say that the time series X7, converges weakly to
the stochastic process X(+), denoted by Xr; = X(+), if for any s € [0,1] the time series

Xpirs) = X(s) as T — oo where [z] denotes the largest integer smaller or equal to x.

Lemma A1l. If the array X3 = X (s) as T — oo and X (s) is continuous almost surely,

then
1« !
2 Xnku(2) = RO) [ X()ds
t=1 0
where R(7) := E[R;(7)] is the stationary probability of Z; staying in regime 1.

Proof of Lemma A1l

We generally follow the techniques in Caner and Hansen| (2001). Let di(v) = Ri(y) — R()
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so that E[d:(v)] = 0.

and

Hence it is sufficient to show that

sup
yel’

T

1

f E XTtdt<7) =0
t=1

For a fixed € > 0, since X(s) is continuous almost surely, there exists 6 > 0 such that

P(2 sup |X(s)— X(s)] §8> >1—¢

|s—s'|<o

Set N =[1/4], for k=0,...,N —1, set ty = [kT6] + 1, then

N-1 1 tep1—1 tpyr1—1
EZSE? T Z di(7) :ESLEqF) Ts Z di(y)| =0
k=0 " t=ty, v t=ty,
by the uniform weak law of large numbers. Hence,
1 T N—-1tgp1—1
sup TZXTtdt('y =sup |= Z Z Xredy(y
= t=1 ver k 0 t=ty
tpe1—1 N—1tg41—1
S—Z|XTtk|SUP Z di(y Z Z | X7e — XTtk|Sup|dt( )|
k 0 t=ty

thrl 1

LY e

t=ty

< sup | X7yl E sup | —
1<t<T g V€T

+2 sup | X7 — Xrv|
t—t/<T$

=2 sup |X(s)— X(s)]

ls—s/|<d

<e
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Lemma A2. Define the partial sum process Y;(y) = 3°i_, €;Ri(7), and the scaled array
with s € [0,1], Yr(s,7) = IY[TS]( v) = \F ZTS] e:Ri(y). Under Assumptions 1 and 2, as
T — oo, we have

@)

Yr(s,v) = oW(s, R(7))

/0 Xr(s)dYr(s,y) = o /O X(s)dW (s, R(7))

Proof of Lemma A2
Note that {e;R;(7)} is a strictly stationary and ergodic Martingale Difference Sequence
(MDS) with variance E(e?R;()) = 0*R(v). Thus, by the MDS Central Limit Theorem

(Hansen, 2017), we have

etRi(y) = oW (R(Y))

*ﬂH
[M] =

t:l
Thus, for the partial sum, we have

[T's]

Yr(s,7) \/_Zeth = oW (s, R(v))

Then, if we apply the weak convergence of stochastic integrals with respect to two-

parameter process in (Caner and Hansen| (2001), we can directly obtain Lemma A2.2.

S2 Proof of Theorems

Proof of Lemmas 1 and 2
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Note that we assume that 377" |¢;] < 1 and S~ [¢);] < 1,|Li et al. (2015) showed that
Ay, is strictly stationary and ergodic. Then for Lemma 1.1 and Lemma 2.1, namely the
stationary part, we can directly follow the convergence results for the stationary BAR
(the proofs of Lemma 1 and Lemma 2 in |Zhu, Yu and Li (2014))).

For Lemma 1.2, note that

1 Yi—1
— _ —R
T E Ug—1 T t(“Y)

1 _ 1 _ _
e 2 Re0) 4 1 S TR - Y2 R

where
—Zut 1MR1§ 1( )&O

as u;_1 and 1y;_o are independent with mean zero and
1 Yt Ye—1
7 S| JeR0) - St )
1 U? 1 UtYt—1 P
=— E —R + = E R — Ry = 0.
T \/T t(f)/) T \/T [ t(7) t 1(7)]

where the first term goes to zero obviously, and the second term goes to zero because of

the independence of u; and y,_;/v/T and the boundedness of R,(y) — Ry_1(7). And the
asymptotic orthogonality of u;_; and y;_; can be applied similarly, for i =2,... p.

Lemmas 1.3 and 2.3 can be implied directly by Lemma Al.

Proof of Theorem 1

Denote M () = X'(7)X/T and note that

My (y) Mx(y) 1 < Vi Yw,_y
M(y) = =72 Ry()

Mar(7y)  Maa(y) =Pl weyp ) W Wiy
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where wi_1 = (W—1, ..., Up—pt1)’
Note that X’'X is a special case of X'(7)X and denote M = X' X/T.
From Lemma 1.2, it can be obtained that M () is asymptotically block diagonal, then

LRp(7) is

LRr(y) = S1(7)[Mi1(v) = My (y) M3 Miy ()] S1()

+ S5(7) [Maa () — Maa () Mgy Moo (7)) S2(7) + 0p(1)

_ S1(0) {Mll(’Y) _ My () M111M11(7>1_1 S
VT LT T T T VT

+ S5(7) [Maa () — Maa () Mgy Moo (7)) S2(7) + 0p(1)

where

and

Mos () — Mas(7) My Moo () — X, — B, 5715,

according to Lemmas 1 and 2.

Proof of Proposition 1
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Since the bootstrap sample and statistics fully depend on the realization of the original
sample, we denote = as weak convergence in probability (Giné and Zinn|,(1990)). First, the
bootstrap residuals é, = é;v; is a martingale difference sequence associated with F(t) =
{é1,...,é}, then by the MDS central limit theorem (Hansen, 2017) and Assumption 1,
we have the invariance principle for the bootstrap residual 7-1/2 gsl] e L oW(s).
Following the proof of Lemma 1, by Lemma A.1, we can easily prove the following state-
ments for ¢, and @, = (Gg—1, ..., U—pt1)

T T
n~! Z W, 3% and nt Z Wb, Ry () =3 %,

t=s t=s

T T 1
n=3/? Z@tﬂﬁtqét(’y) 5 0 and n? th{létm) = R(’Y)/ W<3>2d8
0

t=s t=s

where 3 = E(w,0)), 3, = E(d, @, Ry(7)) and R(y) = E(R,(v)) depend on each realization
and the corresponding estimator No. Similarly, we can also prove the bootstrap version
of Lemma 2, and it is noteworthy that the corresponding limiting distributions depend
on the estimator 5\0.

With the unit root constraint in the bootstrap data generating process, the bootstrap LR

estimator with a given v is

() [ )X ()~ (X)X ) (XX ) (XX () /)] 8(3)
527/

Z/—J\Rn (7) =

where

S(y) = % [(X'() - XX R %)) 2

~

Conditioning on each realization and estimator, the limiting distribution is Q1 ()4 Q2 (%)
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where

Finally, since under the null hypothesis X is a consistent estimator and the limiting
distribution Q;(v) and Q,(v) are continuous with respect to the estimator \g. By the
continuous mapping theorem, we can derive that the weak convergence of the bootstrap

estimator in probability

I//\Rn‘yla s YT :p> sup LR(PY)
yel’

Next, we prove that the bootstrap size is correct.

P(LR, > cfia)

:E{P(LRn Z Crlia’y(b e JyN)]

~

=E[P(Fop(LRn) <1 —alyo, -, yn)]

By the Glivenko-Cantelli Theorem and Proposition 1, it follows that under Hy,

lim lim P(LR, >c%,)

n—o00 B—oo

= lim E[P(F,(LR,) >1—alyo,...,yn)]

n—0o0

= lim E[P(Fo(LR,) > 1 —alyo, .-, yn)]

n—00

= lim P(Fy(LR,) >1—a) =«

n—o0

where [y is the c.d.f. of sup, . LR(7).

Proof of Theorem 2
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The OLS ¢ in the BAR(p) is

- - -1 - -

93_1 Yp—1Ut—1 - o Yp—1Ut—pt1 Yi—16¢
T 2 T
- Ut—1Yt—1 Up_q s UpqUt—pia Ut—1€¢
¢ = Z Ri(7) Z
t=s t=s
(Utpi1le-1 Uppiile-1 - Uiy | | Utprier)
Thus, by the convergence property in Lemmas 1 and 2, we have
n 0 ... 0
—1
0 v ... 0| |R(Q) [ W(s)ds 0 o [ W (s)dW (s, R(7))

¢ =
0 2y G(V)

Therefore, we can obtain that
fo s)dW (s R( ))

\/R fo s)2ds

Similarly, we can obtain that

Jy W(s)d[W(s, b - w<s R

\/ fo s)2ds

ta(y) =

Proof of Theorem 3

Under Assumptions 1, 2 and the null hypothesis: ¢q = 19 = 0, we have
Ay, = 2idRi(70) + 20 (1 — Re(70)) + e
= 1,0 R (7) + 20 (1 — Re(7)) + 24(¥ — 0)[Re(v0) — Re(7)] + e

= 21 Ry () + 2;0(1 = Ry(7)) + wy (-0 — ¢—0)[Re(0) — Re(7)] + e
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where ¢_o = (¢1,..., 1) and Yo = (¢1,...,¥p-1)".

Therefore, we have

T T -1 7
1 1
NT(’V) = ? E Z/t—leth(’Y) T E Yp—1We— 1Rt (E wt 1Rt > E Wy— 1€th

t=1 t=1

Zyt 1Ry (v)wi(d—o — ¥—o)[Ri(70) — Re(7)]

T
1
Dr(vy) = T2 E yf,lRt = E Ye1we 1 Ry <§ wt Ry ) E wy_1e Ry (ry
t=1

We first show that Az(3) % 0. Note that

Ar(0) < i RO 300 = o)l Ri) — o)

In Li et al| (2015), the convergence of the estimated thresholds was shown to be T'(7, —
rro) = O,(1) and T(7y — 1yo) = Op(1). Also, in Zhu, Yu and Li (2014), under the a-
mixing assumption, for » > v > 1 there exists a B > 1 such that for any v;,7, € I', we

have

[[Re(71) — Re(y2)ll2ro/r—v) < Clyn — y r—v)/2Brv_

Therefore, we can prove Ar(¥) %0, and further
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Denote the long-term variance »_°  E(Ay Ay ) as o;. Then, we have

it 2t i) Wi(s)

\/W ZETL? er(1—Re(y) | = [ Wals) | = W(s)

f Z[TS] Ay, Wis(s)
where
sy — W BO0)
R(70)
) — WD) = Ws. R)
1= R(v)

Then, the vector Brownian motion W (s) has the covariance matrix
1 0 6
EWOQW@)' =10 1 4
o 0o 1
where 47 is the long run correlation between e; R;(70) and Ay, and s of e;[1 — Ry(7o)]
and Ay .

From the covariance matrix, we can obtain

W1 (S) \/ 1-— 5%W1_3(S) 51
Wy(s) V1= 83W,e 5(s) )

where (W;_3, W5_3) is independent of Wj.

Proof of Proposition 2
Similar to proposition 1, we denote = as weak convergence in probability. As the invari-
ance principle for the bootstrap residuals has been introduced in the proof of Proposition

1, we can easily prove it by following the proof of Theorem 3.
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Denote the estimated threshold values as 4 and the fitted estimates as ¢ = (QASI, el gzgp_l)'

and ) = (@El, e ,;/A)p_l)’. Under the unit root hypothesis, for any v we have

T T T Loy
~ 1 & - 1S - .
Dr(v) = 7 G Re(y) — T D G Ri(y) <Z wt21Rt(7)) Y da& ()
= t=1

Following the proof of Theorem 3, we can show that Ap(y) = 0. Moreover, by the

bootstrap version of Lemma 1 and 2, we can obtain that
t1 = /1 —62(%)Z, + 6*(§)DF.

The limiting distribution of #, can be obtained similarly. Finally, since 62(%) and the

~

distribution of Z; and Z, are all continuous with respect to the consistent estimator 4, ¢

and @E, by the continuous mapping theorem, we can proof the Proposition 2.
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