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S1 Auxiliary Lemmas

The proofs of the theorems rely on some auxiliary lemmas. Therefore, we state and prove

these lemmas first.

Denote the value at time t of the time series with length T as XTt, and let X(s) for

s ∈ [0, 1] be a stochastic process. We say that the time series XTt converges weakly to

the stochastic process X(·), denoted by XTt ⇒ X(·), if for any s ∈ [0, 1] the time series

XT [Ts] ⇒ X(s) as T →∞ where [x] denotes the largest integer smaller or equal to x.

Lemma A1. If the array XTs ⇒ X(s) as T →∞ and X(s) is continuous almost surely,

then

1

T

T∑
t=1

XTtRt(γ)⇒ R(γ)

∫ 1

0

X(s)ds

where R(γ) := E[Rt(γ)] is the stationary probability of Zt staying in regime 1.

Proof of Lemma A1

We generally follow the techniques in Caner and Hansen (2001). Let dt(γ) = Rt(γ)−R(γ)
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so that E[dt(γ)] = 0.

1

T

T∑
t=1

XTtRt(γ) =
1

T

T∑
t=1

XTtdt(γ) +R(γ)
1

T

T∑
t=1

XTt

and

1

T

T∑
t=1

XTt ⇒
∫ 1

0

X(s)ds

Hence it is sufficient to show that

sup
γ∈Γ

∣∣∣∣∣ 1

T

T∑
t=1

XTtdt(γ)

∣∣∣∣∣ p→ 0

For a fixed ε > 0, since X(s) is continuous almost surely, there exists δ > 0 such that

P

(
2 sup
|s−s′|≤δ

|X(s)−X(s′)| ≤ ε

)
≥ 1− ε

Set N = [1/δ], for k = 0, . . . , N − 1, set tk = [kTδ] + 1, then

E
N−1∑
k=0

sup
γ∈Γ

∣∣∣∣∣ 1

T

tk+1−1∑
t=tk

dt(γ)

∣∣∣∣∣ = E sup
γ∈Γ

∣∣∣∣∣ 1

Tδ

tk+1−1∑
t=tk

dt(γ)

∣∣∣∣∣→ 0

by the uniform weak law of large numbers. Hence,

sup
γ∈Γ

∣∣∣∣∣ 1

T

T∑
t=1

XTtdt(γ)

∣∣∣∣∣ = sup
γ∈Γ

∣∣∣∣∣ 1

T

N−1∑
k=0

tk+1−1∑
t=tk

XTtdt(γ)

∣∣∣∣∣
≤ 1

T

N−1∑
k=0

|XTtk | sup
γ∈Γ

∣∣∣∣∣
tk+1−1∑
t=tk

dt(γ)

∣∣∣∣∣+
1

T

N−1∑
k=0

tk+1−1∑
t=tk

|XTt −XTtk | sup
γ∈Γ
|dt(γ)|

≤ sup
1≤t≤T

|XTt|
N−1∑
k=0

sup
γ∈Γ

∣∣∣∣∣ 1

T

tk+1−1∑
t=tk

dt(γ)

∣∣∣∣∣+ 2 sup
t−t′≤Tδ

|XTt −XTt′ |

⇒ 2 sup
|s−s′|≤δ

|X(s)−X(s′)|

≤ ε
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Lemma A2. Define the partial sum process Yt(γ) =
∑t

i=1 eiRi(γ), and the scaled array

with s ∈ [0, 1], YT (s, γ) = 1√
T
Y[Ts](γ) = 1√

T

∑[Ts]
t=1 etRt(γ). Under Assumptions 1 and 2, as

T →∞, we have

(A2.1.)

YT (s, γ)⇒ σW (s, R(γ))

(A2.2.) ∫ 1

0

XT (s)dYT (s, γ)⇒ σ

∫ 1

0

X(s)dW (s, R(γ))

Proof of Lemma A2

Note that {etRt(γ)} is a strictly stationary and ergodic Martingale Difference Sequence

(MDS) with variance E(e2
tRt(γ)) = σ2R(γ). Thus, by the MDS Central Limit Theorem

(Hansen, 2017), we have

1√
T

T∑
t=1

etRt(γ)⇒ σW (R(γ))

Thus, for the partial sum, we have

YT (s, γ) :=
1√
T

[Ts]∑
t=1

etRt ⇒ σW (s, R(γ))

Then, if we apply the weak convergence of stochastic integrals with respect to two-

parameter process in Caner and Hansen (2001), we can directly obtain Lemma A2.2.

S2 Proof of Theorems

Proof of Lemmas 1 and 2
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Note that we assume that
∑p−1

i=1 |φi| < 1 and
∑p−1

i=1 |ψi| < 1, Li et al. (2015) showed that

∆yt is strictly stationary and ergodic. Then for Lemma 1.1 and Lemma 2.1, namely the

stationary part, we can directly follow the convergence results for the stationary BAR

(the proofs of Lemma 1 and Lemma 2 in Zhu, Yu and Li (2014)).

For Lemma 1.2, note that

1

T

∑
ut−1

yt−1√
T
Rt(γ)

=
1

T

∑
ut−1

yt−2√
T
Rt−1(γ) +

1

T

∑
ut−1

[
yt−1√
T
Rt(γ)− yt−2√

T
Rt−1(γ)

]
where

1

T

∑
ut−1

yt−2√
T
Rt−1(γ)

p→ 0

as ut−1 and yt−2 are independent with mean zero and

1

T

∑
ut

[
yt√
T
Rt(γ)− yt−1√

T
Rt−1(γ)

]
=

1

T

∑ u2
t√
T
Rt(γ) +

1

T

∑ utyt−1√
T

[Rt(γ)−Rt−1(γ)]
p→ 0.

where the first term goes to zero obviously, and the second term goes to zero because of

the independence of ut and yt−1/
√
T and the boundedness of Rt(γ) − Rt−1(γ). And the

asymptotic orthogonality of ut−i and yt−1 can be applied similarly, for i = 2, . . . , p.

Lemmas 1.3 and 2.3 can be implied directly by Lemma A1.

Proof of Theorem 1

Denote M(γ) = X ′(γ)X/T and note that

M(γ) =

M11(γ) M21(γ)′

M21(γ) M22(γ)

 =
1

T

T∑
t=p

 y2
t−1 yt−1w

′
t−1

wt−1y
′
t−1 wt−1w

′
t−1

Rt(γ)
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where wt−1 = (ut−1, . . . , ut−p+1)′.

Note that X ′X is a special case of X ′(γ)X and denote M = X ′X/T .

From Lemma 1.2, it can be obtained that M(γ) is asymptotically block diagonal, then

LRT (γ) is

LRT (γ) = S ′1(γ)[M11(γ)−M11(γ)M−1
11 M11(γ)]−1S1(γ)

+ S ′2(γ)[M22(γ)−M22(γ)M−1
22 M22(γ)]−1S2(γ) + op(1)

=
S ′1(γ)√
T

[
M11(γ)

T
− M11(γ)

T

M11

T

−1M11(γ)

T

]−1
S ′√
T

+ S ′2(γ)[M22(γ)−M22(γ)M−1
22 M22(γ)]−1S2(γ) + op(1)

where

1√
T
S1(γ) =

1√
T

T∑
t=1

yt−1√
T
etRt(γ)− 1√

T
M11(γ)M−1

11

T∑
t=1

yt−1√
T
et

⇒
∫ 1

0

W (s)dW (s, R(γ))−R(γ)

∫ 1

0

W (s)dW (s),

S2(γ) =
1√
T

T∑
t=1

wtetRt(γ)− 1√
T
M22(γ)M−1

22

T∑
t=1

wtet

⇒ G(γ)− ΣγΣ
−1G,

M11(γ)

T
− M11(γ)

T

M−1
11

T

M11(γ)

T
⇒ R(γ)(1−R(γ))

∫ 1

0

W 2(s)ds,

and

M22(γ)−M22(γ)M−1
22 M22(γ)→ Σγ − ΣγΣ

−1Σγ

according to Lemmas 1 and 2.

Proof of Proposition 1
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Since the bootstrap sample and statistics fully depend on the realization of the original

sample, we denote
p⇒ as weak convergence in probability (Giné and Zinn, 1990). First, the

bootstrap residuals ẽt = êtvt is a martingale difference sequence associated with F(t) =

{ê1, . . . , êt}, then by the MDS central limit theorem (Hansen, 2017) and Assumption 1,

we have the invariance principle for the bootstrap residual T−1/2
∑[Ts]

t=1 ẽ
p⇒ σW (s).

Following the proof of Lemma 1, by Lemma A.1, we can easily prove the following state-

ments for ỹt and w̃t = (ũt−1, . . . , ũt−p+1)′

n−1

T∑
t=s

w̃tw̃
′
t
a.s.→ Σ̂ and n−1

T∑
t=s

w̃tw̃
′
tR̃t(γ)

a.s.→ Σ̂γ

n−3/2

T∑
t=s

ỹt−1ũt−1R̃t(γ)
p→ 0 and n−2

T∑
t=s

ỹ2
t−1R̃t(γ)⇒ R̂(γ)

∫ 1

0

W (s)2ds

where Σ̂ = E(w̃tw̃
′
t), Σ̂γ = E(w̃tw̃

′
tR̃t(γ)) and R̂(γ) = E(R̃t(γ)) depend on each realization

and the corresponding estimator λ̂0. Similarly, we can also prove the bootstrap version

of Lemma 2, and it is noteworthy that the corresponding limiting distributions depend

on the estimator λ̂0.

With the unit root constraint in the bootstrap data generating process, the bootstrap LR

estimator with a given γ is

L̃Rn(γ) =
S̃ ′(γ)

[
X̃ ′(γ)X̃(γ)/n− (X̃ ′(γ)X̃/n)(X̃ ′X̃/n)−1(X̃ ′X̃(γ)/n)

]−1

S̃(γ)

σ̃2(γ)/σ2

where

S̃(γ) =
1√
n

[
X̃ ′(γ)− X̃ ′(γ)X̃(X̃ ′X̃)−1X ′

]
ε̃.

Conditioning on each realization and estimator, the limiting distribution is Q̂1(γ)+ Q̂2(γ)
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where

Q̂1(γ) = J1(R̂(γ))′
[
R̂(γ)(1− R̂(γ))

∫ 1

0

W 2(s)ds

]−1

J1(R̂(γ)) and

Q̂2(γ) = [Ĝ(γ)− Σ̂γΣ̂
−1Ĝ]′[Σ̂γ − Σ̂γΣ̂

−1Σ̂γ]
−1[Ĝ(γ)− Σ̂γΣ̂

−1Ĝ].

Finally, since under the null hypothesis λ̂0 is a consistent estimator and the limiting

distribution Q̂1(γ) and Q̂2(γ) are continuous with respect to the estimator λ̂0. By the

continuous mapping theorem, we can derive that the weak convergence of the bootstrap

estimator in probability

L̃Rn|y1, . . . , yT
p⇒ sup

γ∈Γ
LR(γ).

Next, we prove that the bootstrap size is correct.

P (LRn ≥ cBn,α)

=E[P (LRn ≥ cBn,α|y0, . . . , yN)]

=E[P (F̂n,B(LRn) ≤ 1− α|y0, . . . , yN)]

By the Glivenko-Cantelli Theorem and Proposition 1, it follows that under H0,

lim
n→∞

lim
B→∞

P (LRn ≥ cBn,α)

= lim
n→∞

E[P (F̂n(LRn) ≥ 1− α|y0, . . . , yN)]

= lim
n→∞

E[P (F0(LRn) ≥ 1− α|y0, . . . , yN)]

= lim
n→∞

P (F0(LRn) ≥ 1− α) = α

where F0 is the c.d.f. of supγ∈Γ LR(γ).

Proof of Theorem 2
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The OLS φ̂ in the BAR(p) is

φ̂ =


T∑
t=s



y2
t−1 yt−1ut−1 . . . yt−1ut−p+1

ut−1yt−1 u2
t−1 . . . ut−1ut−p+1

. . . . . . . . . . . .

ut−p+1yt−1 ut−p+1ut−1 . . . u2
t−p+1


Rt(γ)



−1
T∑
t=s



yt−1et

ut−1et

. . .

ut−p+1et




Thus, by the convergence property in Lemmas 1 and 2, we have

n 0 . . . 0

0
√
n . . . 0

. . . . . . . . . . . .

0 0 . . .
√
n


φ̂⇒

R(γ)
∫ 1

0
W (s)2ds 0′

0 Σγ


−1 σ

∫ 1

0
W (s)dW (s, R(γ))

G(γ)



Therefore, we can obtain that

t1(γ)⇒
∫ 1

0
W (s)dW (s, R(γ))√
R(γ)

∫ 1

0
W (s)2ds

.

Similarly, we can obtain that

t2(γ)⇒
∫ 1

0
W (s)d[W (s, 1)−W (s, R(γ))]√

(1−R(γ))
∫ 1

0
W (s)2ds

.

Proof of Theorem 3

Under Assumptions 1, 2 and the null hypothesis: φ0 = ψ0 = 0, we have

∆yt = x′tφRt(γ0) + x′tψ(1−Rt(γ0)) + et

= x′tφRt(γ) + x′tψ(1−Rt(γ)) + x′t(ψ − φ)[Rt(γ0)−Rt(γ)] + et

= x′tφRt(γ) + x′tψ(1−Rt(γ)) + w′t(ψ−0 − φ−0)[Rt(γ0)−Rt(γ)] + et
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where φ−0 = (φ1, . . . , φp−1)′ and ψ−0 = (ψ1, . . . , ψp−1)′.

Therefore, we have

t1(γ) =
NT (γ) + AT (γ)√
DT (γ)σ̂2(γ)

where

NT (γ) =
1

T

T∑
t=1

yt−1etRt(γ)− 1

T

T∑
t=1

yt−1wt−1Rt(γ)

(
T∑
t=1

w2
t−1Rt(γ)

)−1 T∑
t=1

wt−1etRt(γ)

AT (γ) =
1

T

T∑
t=1

yt−1Rt(γ)w′t(φ−0 − ψ−0)[Rt(γ0)−Rt(γ)]

DT (γ) =
1

T 2

T∑
t=1

y2
t−1Rt(γ)− 1

T

T∑
t=1

yt−1wt−1Rt(γ)

(
T∑
t=1

w2
t−1Rt(γ)

)−1 T∑
t=1

wt−1etRt(γ)

We first show that AT (γ̂)
p→ 0. Note that

AT (γ) ≤ 1√
T

max
t≤T
|yt−1Rt(γ)| 1√

T

T∑
t=1

w′t(φ−0 − ψ−0)[Rt(γ0)−Rt(γ)]

In Li et al. (2015), the convergence of the estimated thresholds was shown to be T (r̂L −

rL0) = Op(1) and T (r̂U − rU0) = Op(1). Also, in Zhu, Yu and Li (2014), under the α-

mixing assumption, for r > v > 1 there exists a B > 1 such that for any γ1, γ2 ∈ Γ, we

have

||Rt(γ1)−Rt(γ2)||2rv/(r−v) ≤ C|γ1 − γ2|(r−v)/2Brv.

Therefore, we can prove AT (γ̂)
p→ 0, and further

t1(γ̂) =
NT (γ̂)√

DT (γ̂)σ̂2(γ̂)
+ op(1).
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Denote the long-term variance
∑∞

k=∞ E(∆yt∆yt+k) as σ2
y. Then, we have

1√
R(γ0)T

∑[Ts]
t=1 etRt(γ)

1√
(1−R(γ0))T

∑[Ts]
t=1 et(1−Rt(γ))

1
σy
√
T

∑[Ts]
t=1 ∆yt

⇒

W1(s)

W2(s)

W3(s)

 ≡ W (s)

where

W1(s) =
W (s, R(γ0))√

R(γ0)

W2(s) =
W (s, 1)−W (s, R(γ0))√

1−R(γ0)

Then, the vector Brownian motion W (s) has the covariance matrix

EW (1)W (1)′ =


1 0 δ1

0 1 δ2

δ1 δ2 1


where δ1 is the long run correlation between etRt(γ0) and ∆yt+k and δ2 of et[1− Rt(γ0)]

and ∆yt+k.

From the covariance matrix, we can obtainW1(s)

W2(s)

 =


√

1− δ2
1W1−3(s)√

1− δ2
1W2−3(s)

+

δ1

δ2

W3(s)

where (W1−3,W2−3) is independent of W3.

Proof of Proposition 2

Similar to proposition 1, we denote
p⇒ as weak convergence in probability. As the invari-

ance principle for the bootstrap residuals has been introduced in the proof of Proposition

1, we can easily prove it by following the proof of Theorem 3.
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Denote the estimated threshold values as γ̂ and the fitted estimates as φ̂ = (φ̂1, . . . , φ̂p−1)′

and ψ̂ = (ψ̂1, . . . , ψ̂p−1)′. Under the unit root hypothesis, for any γ we have

t̃1(γ) =
ÑT (γ) + ÃT (γ)√

D̃T (γ)σ̂2

where

ÑT (γ) =
1

T

T∑
t=1

ỹt−1ẽtR̃t(γ)− 1

T

T∑
t=1

ỹt−1w̃t−1R̃t(γ)

(
T∑
t=1

w̃2
t−1R̃t(γ)

)−1 T∑
t=1

w̃t−1ẽtR̃t(γ),

ÃT (γ) =
1

T

T∑
t=1

ỹt−1R̃t(γ)w̃′t(φ̂− ψ̂)[R̃t(γ̂)− R̃t(γ)],

D̃T (γ) =
1

T 2

T∑
t=1

ỹ2
t−1R̃t(γ)− 1

T

T∑
t=1

ỹt−1w̃t−1R̃t(γ)

(
T∑
t=1

w̃2
t−1R̃t(γ)

)−1 T∑
t=1

w̃t−1ẽtR̃t(γ)

Following the proof of Theorem 3, we can show that ÃT (γ)
p→ 0. Moreover, by the

bootstrap version of Lemma 1 and 2, we can obtain that

t̃1 ⇒
√

1− δ2(γ̂)Z1 + δ2(γ̂)DF.

The limiting distribution of t̃2 can be obtained similarly. Finally, since δ2(γ̂) and the

distribution of Z1 and Z2 are all continuous with respect to the consistent estimator γ̂, φ̂

and ψ̂, by the continuous mapping theorem, we can proof the Proposition 2.
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Giné, E. & J. Zinn (1990). Bootstrapping general empirical measures. Annals of Probability 18, 85169.

Li, G., Guan, B., Li, W. K., and Yu. P. L. H. (2015). Hysteretic autoregressive time series models. Biometrika

102, 717-723.



12 DI WANG AND WAI KEUNG LI

Hansen, B. (2017). Econometrics. Retrieved from http://www.ssc.wisc.edu/~bhansen/econometrics/

Econometrics.pdf.

Zhu, K., Yu, P. L. H. and Li, W. K. (2014). Testing for the buffered autoregressive processes. Statistica Sinica

24, 971-984.

http://www.ssc.wisc.edu/~bhansen/econometrics/Econometrics.pdf
http://www.ssc.wisc.edu/~bhansen/econometrics/Econometrics.pdf

	Auxiliary Lemmas
	Proof of Theorems

