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This supplementary material contains the further simulation where the assumptions are violated

and the proofs of the theorems in detail.

S1 Further simulation

Theoretically, the proposed approaches require the assumption of E(e —
1/e|Z) = 0. We also carried out some simulation studies to assess the
performances of the proposed estimators when the assumption is violated.

In the uniform measurement error scenario with n = 200, we considered
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two distributions of e: loge ~ Beta(2,4) and loge ~ 0.5 x #(5). For the
first distribution, E(e — 1/¢|Z) # 0. For the second distribution, F(g|Z)

does not exist. The simulation results was displayed in Table S1.
Insert Table S1 here

When E(e — 1/¢|Z) # 0, both the naive estimators for ¢q, oy and 7
are biased seriously. However, two proposed methods and the classical CLS
method are of small bias for the parameters oy and 7. This implies that
the three methods can still correct the bias for the estimators of oy and g
even if the the assumption for € is violated. It is also noted that all the
estimators for the intercept term ¢y are biased seriously. The reason may
be that both E[loge|Z] and E(e — 1/¢]|Z) are not equal to zero. According
to the least square theory, Eloge|Z] # 0 yields biased intercept. Similarly,
for the multiplicative regression model, when F(e —1/¢|Z) # 0, there exists
a positive value a such that F(as—1/(ae)|Z) = 0, then as can be treated as
the new model error term. This implies that the proposed estimators cause
bias for the intercept term c¢q. When FE(¢|Z) does not exist, our proposed
CMS and CEE methods can also correct the bias but with larger standard
error than the classical CLS method.

Also, our proposed CMS and CEE methods require the symmetry and

the low tail of the measurement error U(Condition C4 and C5 in the Ap-



S1. FURTHER SIMULATION

pendix) for the asymptotic properties. Simulation studies were carried out
to examine our proposed estimators when the assumptions are violated. In
the scenario of n = 200 and loge ~ N(0,0.25), we generated U in three
cases. In case 1, U was generated from the standardized Beta(2,4) distri-
bution and scaled to have standard deviation of 0.5, and hence the skewness
of U is 0.467 and the symmetry condition is moderately violated. In case
2, U was generated from the standardized x? truncated at 5 and divided by
2, and hence the measurement error U is extremely skewed with skewness
1.68. In case 3, U was generated from ¢(5) and scaled to have standard
deviation 0.5 and hence the Condition C5 in the Appendix is violated. The

simulation results was displayed in Table S2.

Insert Table S2 here

In all the cases considered, both the proposed estimators and the CLS
estimator of oy and v are of far smaller bias than both the naive estimators,
and hence the three method can still correct the bias for the estimators of
ap and vy. Except for CMS, the bias of the estimators of ¢y for all the
other methods are also small. In conclusion, the proposed CMS method is
sensitive to the assumption of U whereas the proposed CEE method and

the CLS method are robust.
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S2 The proof of Theorem

Proof of theorem 1

Proof: For simplification, denote Ugpns(8) = Sor_, ny 2 320, T*(Oir, B).

i=1 "
Step 1: Proof of asymptotic normality of n=/2U,,,..(53o)-

Note that

n

Uems (o) = Z[Yflel)(ﬁo) — Y;R{" (—Bo)]

=1
= VRO (Bo) — RV (Bo)] = D ViR (—Bo) — RV (—5o)]
i=1 =1

+ 3 1Y RO (Bo) — YiRY (o))
=1
2:A1 — A2 + Ag,
and

ff,(l)(ﬁo) - RE”(@O)

={¢0" (1) — 0 " (W0)In " Y exp(Z]50) Zis
r=1

— H{ga2(0)8100) — g2t S exp(ZE ).

r=1

Thus, the term A; can be decomposed as A; = Ay ;1 — A; 2, where
Ay ={@5' () — 90" ()} d_ni DY exp(Z],80) Zir,
=1 r=1

Arz =J{¢5(70)#1 (%) — 25 (0)e1(10)} D _ni Y Y exp(Z],Bo)-
=1 r=1
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For A;; and A, 5, we have
Ay == {5 (W) E(E2Z) + Jo5 ()1 (0) E(e ™) fn{o(70) — wo(70)}
+ 0,(n'/?),
Az = —2J9% (0)e1(70) E(e™ )n{@o(70) — 0(70)}

+Jo5 " (10) E(e )n{@1(h0) — e1(70)} + 0p(n'/?).
Thus, we can obtain
A ={=¢y (W) E(E"2) + Ty ()1 (10) E(e™ ) In{do(70) — po(h0)}
— Joy () E(e )n{@1(0) — e1(70)} + 0p(n'?).
Similar to A;, the term Ay can be represented as
Ay = —{@y ' (0) E(eZ) + Ty * (90) 1 (10) E(€) }n{0(70) — wo(r0)}
+ Jop () E(€)n{@1(70) — ©1(70)} + 0p(n'/?).

Therefore, according to Condition C3, we have

Ay — Ay =JE(e + M)y (0)e1(r0)n{@0(0) — o(70)}
(S2.1)

— JE(e+ e ey (vo)n{@1(%0) — e1(20)} + 0p(n'’?).

Given any 7, by definition

{Bo(n) + 2o Ho(n) = wo(n} =271 3_&{h” () =¥ (1)} (52.2)

Owning to (52.2)), the consistency of ¢o(y) and lim7n/n = 1 — p;, we obtain
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n{$o(v) — ¢o(7)}

=201 = p)eo(N} " D60 (1) = ()} + 0pl(n”).

Clearly,

2o(7)$1(7) — @o(7)en Z& (Y (7) = 200(m)e1(7)}. (S2.4)
According to (S2.3]) and the consistency of ¢1(7), we obtain

n{@o(1)@1(7) — wo(V)e1(7)}
=n{Po(MP1(7) = Lo(MP1(N} + n{@o(v)E1(7) — wo(v) 1 (1)}
=n{P0(7) = vo(MN}P1(7) + {1 (7) = 1 (7) 1o (7)
=n{20(7) — wo(N}e1(7) + 1{21(7) — L1 (M) }eo(7) + 0p(n'?).
Combining (SZ3), and (SZ3), we have

n{1(7) — e1(7)}

(52.5)

={2(1 — p)po(M)}~ Zfz {hV(y (52.6)

— 25 (MMM () = po(Mer (1)} +0,(n'?).
Plugging both and into yields Aj — Ay = = > " &Jri+
0p(n'/2). Owing to the fact that E(h{”(7)) = ©2(7) and E(h{" (7)) =
200(7)p1(y) for any given ~, we have that F(r;) = 0. Furthermore, A3 =

>, v, and E(v;) = 0, under Condition C3. Summarizing the preceding
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results, we have

Ucms(ﬁO) - Z{UZ - fzjrz} + Op(n1/2)'
=1

From the above discussion, it follows that v; — &Jr;, ¢ € A; is i.i.d with
mean zero and the terms between A, and A; are independent for k # [. It

then follows from the multivariate central limit theorem that
12U s (Bo) 25 N (0, Sems)-

Step 2: Proof of asymptotic normality of n'/2(Bums — 30)-
Denote V,,(8) = n 20U ns(8) /0BT and recall that RZ@) (B) = 0R§1)(B)/8BT,

then
V) = SO R (9) + YRD ()
P
Take R (8) = ORW(8)/087. A simple calculation yields
R2(8) =(nigd()} S0 expl(Z5.8) [oo() 257 — Jn(1) 21,
=
— Ziwol (NI" = Joa() " + 205 (M{T 02 (7)}¥],

where y(7) = 0pi(7)/0y". Denote @a(y) = 9p1(7)/07". Owning to
£1(7) = 00(7)/0v and @a(y) = 941(7)/0", RP(B) can be obtained
by replacing ¢x(y) in RZ@)(B) with @g(y), where £ = 0,1,2. It follows

from some simple calculation that ¢o(y) = E[U®? exp(UT+)] and @o(7) =
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@0 (m{(2n)! iy fz‘hl@) (7) — ¢9%(7)}, where

hP() = {milng = D} 3 (War = W) exp{(Wi, = W) ).
r#s

Recall the expressions of E[exp(ZgrﬂﬂZi] and E[exp(ZAgTﬁ)Z7r|Zi]. We also

note that

Elexp(Z{,8) 25| 2] = exp(Z] B){oo(N ZF + Jor (1) Z

+ Zip1 (7)JIT + Jpa(7) I}

Therefore, we can obtain that E[REQ) (B)|Z:) = exp(ZF3)Z%%. Under Con-
dition C1, C4 and C5, it follows from the uniform law of large numbers
that, in a neighborhood © C B of By, n=' S0 {¥; 'R (8) + Y;R® (—5)}
converges to a non-random function V(f) in probability, where V(5) =
E[{Y'exp(Z7B) + Y exp(—Z" )} Z%?].

Recall that ]A%Z@(ﬁ) can be obtained from REQ) (B) by replacing ¢r(7)
with @x()(k = 0,1,2). And E[h{(7)] = 200(7)¢2(7) + 2¢5%(7). There-
after, under Condition C5, it follows from the uniform law of large numbers
that sup. s [|Px(v) — ¢r(7)|| — 0 in probability, where k = 0,1,2. Thus,
we can obtain that supscg ||Va(8) — V(B)|| — 0 in probability. Condition
C2 guarantees that the limit of V,,(5) is nonnegative definite everywhere
and positive definite at 5y. It follows from the proof of Theorem 2 of Foutz

(1977) that ,@cms exists and is unique in © with probability converging to 1
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as n — 00 and Sens EiN Bo. By the Taylor series expansion,

0= n_l/QUcms(chs> = n_l/QUcmS(BO) + Vn(ﬁ*)\/ﬁ(BCWS - /60)7

where * lies on the line segment between [, and Bems. Therefore,

V1 (Bems — Bo) = =V (B0 Uema (B0) 2 N(0, Tems).

Proof of Theorem 2.
For simplification, denote U () = >, {1@*1}?9(&)—}1}?2(”(—5)}. Thus,
Ucee(B) can also be written as Ueee(3) = Y 1o Uer(B3), where

Ue(8) = Y- {¥ BV B) — ViR (=8) }

€A

Step 1: Proof of asymptotic normality of n™"2U..(5)

Note that

Uer(Bo) = > VRO (Bo) — RV (Bo)] — Y ViIRP (=) — RV (= )]

€Ay €Ay
+ Y RO (By) — ViR (o))
€A

=Ap1 — Ago + Ag .
Similar to the proof of Theorem 1 and according to Condition C3, we have

Apg — Ap2

=peJ E(e + e Mg * (k, v0)m (k, vo)n{7o (k. v0) — m0(k,70)
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— ped Be + e gt (k,v0)ndin (k,70) = m(k, 7))+ op(n'/?). (S2.7)
Recalling that no(k,7) = @k(~/k) and 7ig(k,7) = @k(~/k), we have
n{7o(k,7) = mo(k,7)}
=n{@6(v/k) — b (7/k)} (52.8)

=n{@o(7/k) — eo(v/k)} - kot (v/k) + 0p(n'/?).
Since mi(k,7) = @5 ' (v/k)er(v/k) and i (k,y) = @65 (v/k)pi(v/k), we

have

n{ﬁl(kv 7) - 771<k7 7>}
=n{@t " (v/k)pr(v/k) — ob (v / k) (v/k)}
= (y/k)n{@1(v/k) — o1 (v/k)}

+n{@s (v/k) — o8 (v /) ber(v/ k)

(52.9)

=o' (v/k)n{e1(v/k) — er(v/k)}

+ (k= D 2(v/k)er (v/k)n{@o(v/k) = po(v/k)} + 0, (n'7?).
Plugging both (52.8) and (S52.9) into (S2.7)) yields

Agy — Aps
=orJ E(e + )y (90/ k)1 (ro/B)n{2o(r0/k) = o(r0/k)} (S2.10)

— T B+ e 5 o/ BIndr (o/E) — 1(v0/R)} + 0p(n2).
Combining (S2.10]) with (52.3)) and (S2.6]), we have

Apg — Ao
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n

=3 [64201 — )0 R e e )

i=1
x {0 (0/k) = 265 (0/R)1 (30/ WA (/) ] + 0p(n?)
=— Jigipmk + 0,(n'/?). (S2.11)
i=1
Owing to the fact that E[hgo) (7)] = ¥3(7) and E[hz(-l)(fy)] = 2p0(7)¢1(7y) for

any given v, we have that E(r;;) = 0. Summarizing the preceding results,

we have
cee 60 - Z Ak’,l - Ak,Z) + Z Ak,S
k=1 k=1
== JZ&me,k + Zf’i +0,(n'7?)
_Z{Uz fszkazk} +0 1/2

From the above discussion, we have that 0; — &J > 0", prFig, ¢ € Ay is
i.i.d with mean zero and the terms between A, and A; are independent for

k = 1. It then follows from the multivariate central limit theorem that

n_l/QUcee(ﬁO) 2> N(O7 Ecee)-

Step 2: Proof of asymptotic normality of n*/2(B.e. — o) -
Denote V,,(8) = n~10U,..(8)/08" and recall that R\*(8) = 0R™M(8)/087

then

Va(B) =7t D VR (B) + ViR (=)
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Denote Rl@) (B) = 81%”(5) /OBT. A simple calculation yields

R (8) =g *(ni,7) exp(Z]'8) [mo(ni, 1) 27 = Tu(ni, 7) 2]

A

- Zzﬁ{(”la ’Y)JT - Jn?(nh V)JT + 2770_1(711, 7){‘]771(”7,’ 7)}@)2] )
where 1,(n;,v) = dn1(ni,v)/0yT. Owning to the fact that

Elexp(Z! B) 22| Z;) = exp(Z] B){no(ni, v) ZE% + T (ni,7) Z]

+ Zmy (ni,v)J" + Jna(ng, )"},

we can obtain that E[Rl@) (8)|Z:] = exp(ZI'3)Z¥*. Under Condition C1, C4
and C5, it follows from the uniform law of large numbers that, in a neighbor-
hood © C B of 5, n™* Z?Zl{Yflﬁf) (B) —l—Yiﬁ’Z@)(—B)} converges to a non-
random function V() in probability, where V(3) = E[{Y exp(ZTf) +
Y exp(—276)} 2%,

Take 7j2(ni,7) = O (n:,7)/0y". Owning to i (n;, ) = Oio(ns, ) /07"
and 7z (ng, v) = 0Ny (ng, v)/ 07, RZ@) (B) can be obtained by replacing ng(n;, )

in RZ@) (8) with 7 (n;, ), where k = 0,1, 2. By a simple calculation, we have
ma(ni,7) = (s = g g 2 (v/na) P2 (7 /ma) + 1y o (v/ma) a3y /ma).

Recall that 1(n;,7) = ¢4’ (v/n:) and my(ni, ) = @5~ (v/ni) 1 (y/ni). And
Nk(n;, ) can be obtained by replacing the @4(-) in n(n;, v) with @,(+) where

k=0,1,2 and s = 0,1,2. In the proof of Theorem 1, we have known that
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under Condition C5, sup. ¢z [|@x(v) — ¢r(y)|| — 0 in probability, where
k =0,1,2. Thus, we have that sup, s ||7j(n:,7) — n&(ns,7)|| — 0 in prob-
ability, where &k = 0,1,2 and n; = 1,...,m. Therefore, we can obtain that
SUPgeo IV,.(8) — V(B)|| = 0 in probability. Condition C2 guarantees that
the limit of Vn(ﬁ) is nonnegative definite everywhere and positive definite
at Gy. It follows from the proof of Theorem 2 of Foutz (1977) that Bcee
exists and is unique in © with probability converging to 1 as n — oo and

Bcee 2 By. By the Taylor series expansion,

0= n_l/QUcee(Bcee) = n_l/QUcee(ﬁo) + Vn(ﬁ*)\/ﬁ(gcee - 60)’

where [5* lies on the line segment between [, and Bcee. Therefore,

\/ﬁ(écee - 50) = _‘77;1(5*)”71/2Ucee(ﬁ0) 2> N(O; Fcee)-

Proof of Theorem 3.
The proof of Theorem 3 can be obtained by taking Rﬁ”(ﬁo) = Rgl)(ﬂo) in

Theorem 1 and Rz(l)(ﬁo) = ]5%(1)(/80) in Theorem 2.

Proof of Lemma 1.
Firstly, we compute F [{Y;’lRST)(ﬂO) - YiRSr)( —B)}#?]. Some simple alge-

braic manipulation yields that

(V'R (B0) — ViR (—50)} 2
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={Y; R (Bo) — YiR{) (= Bo) HY; T Ry (Bo) — YiRE (—60)}
=Y, R (50)* = R{) (Bo) Ry, (—60)"
— Ry (=Po) R (Bo)" + Y2 R{) (—B0)®
=Y, %05 (0) exp(22], B0){ Zir — 05" (0) 01 (70) }*2
— 05 (W Zir — Jog " (10)01(0) HZir + T 25" (0)1(70) }
— 05" (W Zir + T3 (10)1(00) H Zir — T3 (10) 01 (0) }
+ Y2052 (0) exp(—22] Bo){ Ziw + T 25 (0)1 (70}
=B, — B, — Bl + Bs.
Owing to the fact that
Elexp(Z],8)|Zi] = exp(Z] B)p0(7),
Elexp(Z1,8) 2i,12:) = exp(ZT B){po(1) Zi + Jor (1)},
Elexp(Z},8) 232 Z:) = exp(Z] B){ 0o Z7* + Tor (1) Z
+ Zi(Tor ()" + Tea(y) "},
we can obtain that
E[B]Y;, Z] 28052(70)552{900(2%)2592
+ J{e1(270) — @5 " () 0(270)1 (20) } 21
+ Zi{er1(290) — %5 ' (0)20(270) 1 (10) Y T

+ Jp2(270)J" — 5 (0) Je1(270) 1 (70) T I T
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— 90 (0)Te1(h0)¢1(2%) " TT
+ soo(2%)9052(%)Js01(%)®2ﬂ},
E[B,|Y;, Z] 29062(%){2?2 + IS+ Zi{ T ()1 (0)}
— I (0)e1(0)ZF = {25 (ro)er (30)} 2
E[By|Y;, Z] =9052(%)€?{s00(2%)2?2
= J{e1(270) = #5" (90)20(270)1(70) } Z
= Zi{p1(270) — 90 (10)20(270)p1(70)} "
+J2(270) 7" = 5" (0) J01(270) 01 (0) " T
—¢0 " ()T e1(r0)¢1(2%) " T"
+ 900(2%)9062(70)J901(70)®2JT}-

Under the assumptions that ¢; and Z; are independent and E(Z;) = 0, we

have
E[{Y RE) (Bo) — ViR (~60)}™]
=E{E[B\ — B, — B; + Bs|Y;, Zi] }
=E(e;? + 5?)S052(70){900(270)EZ§2 + Jpa(270) "
— Jo1(270)¢1 (0)%0 ' (10) I = Je1(v0)@n " (o)1 (270) " TT
+ 90(290) {1 (o) (10) 1727 }

— 29052(70>{EZ?2 +J8, I - {Jsol(%)wal(%)}m}-
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When r # s, it follows from the independence of U, and U;, given the

condition Y; and Z; that

E[{Y; 'R (B0) = iR (=Bo) HY; T R (Bo) — YiRL) (—B0)}]
:E{E Y, 'RY(B0) — ViR (— Bo)IK,Z]®2}
:E{ ~1/e) Z®2}

:E(El - 1/81)2EZZ®2

Summarizing the above results, we have that

—B{r? Z{Y LR (B0) — ViR{) (— o)}

+ DR (B0) - iR (=B MY R (80) — iR (—50)) ] }

T#S

Zk‘l{E(c‘Z2 +e7)00(270)05 % (0) [EZ + Jep2(270) 05 (270) T
— J1(29)¢0 " (27021 ()90 (10) T
— Jp1(0)95 (10)¢] (270)5 " (270) " + {J 1 (0) 0" (70)} ]
= 205%(%) [BZE + T2 — {Te1 (095" ()} }
+ (k= 1)k 'E(s; — 1/2,)*E(Z3?).

Similarly, we can obtain that

E@07?) =E(e;7* + )5 (20/ k) ™ (0 / k) [EZ*



S2. THE PROOF OF THEOREM

+ k7 T pa(270/ k)5 (270/K) TT

+ (k= Dk~ I 1 (20/k)ey " (27/k) 1

— Jo1(20/k) g (270/ k)¢t (o/R)ea " (0 /k) T
— Jo1(v/k)ey (vo/k)ei (2v0/k) g (270/k) "
+{Je1(/k)eg " (10/k)} 7]

— 200 (o k) [EZZ* + k1 TEIT — {To1(10/k) eyt (0/K) 122

Proof of Theorem 4.

For later convenience, we decompose X% —7 . as the sum of the following

three terms:

D, z{kfl[E(é?2 +e7%) exp(yg £v0) — 2 exp(—74 L))
+ (k= DE B +e7%) = 2] = [B(? + ) exp(k~ "7 T

— 2exp(—k~"yg X)) }E(Z@),
which involves the term E(Z%?%),

Ds :{/flmg? +e72) exp(1L S0) + 2 exp(—1E Sy0))]

— k2[B(e? + e ?) exp(k ™ Srg) + 2 exp(—kz_lfngfyo)]}(JZ%)@Q,
which involves the term (J¥vy)®?, and

Dy ={ k™ [E (=2 + £2) exp(7 To) — 2 exp(—1 )]
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— kTHE(E? + %) exp(k™ g X)) — 2 eXp(—k‘lvoTE%)]}JEJT,

which involves the term JXJ7T.

We divide our proof into three steps. First, we need to verify D; > 0.
Set go(z) = k~1a*+(k—1)k~' —z. Tt is easy to see that gj(z) = 2¥"1—-1 >0
for any « > 1. Thanks to the fact that go(1) = 0, we obtain that go(z) > 0
for any z > 1. Thus, k™' exp(7d Xv0) + (k — 1)k~ — exp(k™ ' Ev) =
go(exp(k~ & S7p)) > 0. Therefore, we have
D, :{E(82 +e )k exp(vg 290) + (K — DA™ — exp(k~ 75 Z)]

— 2[k exp(—r Xy0) + (k= 1)k - eXp(—k‘lvoTE%)]}E(Z@Q)

Z{Q[ki‘l exp(7 270) + (B — 1E™" — exp(k ™y X)]

—2[k™ exp(—5 X0) + (k= 1)k~ - eXp(—k”%TZ'yo)]}E(Z@Q)

=2{k‘_1[exp(7§ ¥0) — exp(—7g £70)] — [exp(k~ "5 Bv0) — exp(—k g E%)]}

x BE(Z%?).

Take g(x) = k™' [exp(z) —exp(—x)] —[exp(k™'2) —exp(—k~'2)], g1 (z) =
exp(z) —exp(—z) and ga(x) = exp(x) +exp(—=z). Then, ¢'(z) = k™' [g2(z) -
g2(z/k)]. We have ¢gj(z) = g2(xz) > 0 and gj(x) = gi(x) > 0 for any
x > 0. Thus, ¢;(x) and gs(x) are increasing when x > 0. Thus, ¢'(x) > 0.

In addition, g(0) = 0. Thus, g(x) > 0 for any z > 0. Recalling that

Dy > 2g(vIYry0)E(Z%%) and E(Z%?%) > 0, we see that Dy > 0.
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Next, we show that Dy > 0. Since go(z) is an increasing function for

x > 0, we have

Dy Zk‘l{E(€2 +e7?)[exp(yg B70) — k7" exp(k~ 75 )]
+ 2exp(—d o) — 27! exp(—k_lvgiwo)}(JEVO)®2
>k {2exp(3 ) — 247" exp(k~19 o)
+ 2exp(—7] o) — 2K~ exp(—k 1 ) }(JT0)
:2k_1{ exp(vOTE%) + eXP(_%FSFE%)
— kexp(k™ g Sy0) + exp(—k_l%TE%)]}(Jz%)®2

>0

?

where the first inequality is due to exp(v{ Xvo) — kL exp(k~19E Ev) > 0,
and the second inequality is a consequence of ga (v Xyo)—k g2 (k71 Bv0) >

92(7% 270) — g2(k~ 75 Xy0) = 0.
Finally, we need to prove that D3 > 0. Note that g;(x) is increasing

when z > 0, we deduce

D; :k‘_l{E(eQ + e ) exp(va o) — exp(k™ g Sv0)]
— 2[exp(—7d o) — exp(—k’lfyoTEfyo)]}JEJT
>k! {2 exp(7g Xvo) — 2exp(k™ 1 Sv)

— 2exp(—a Lv0) + 2 exp(—k:_lyoTZ%)}JZJT
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=2k~ lexp (1§ o) — exp(—14 $10)]
— [exp(k‘lygﬁho) — exp(—k‘lng%)]}JZJT

>0.

Summarizing the above results, we have »7 = — 3% > 0.
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Table S1. Simulation results when the assumption of model error ¢ is violated. LPRE(,
LSf, LPREnv, LSnv, CLS, CMS and CEE stand for the full LPRE, full least
square(LS), naive LPRE, naive LS, classical corrected LS, proposed conditional mean
score and proposed corrected estimating equation estimators. The measurement error
U ~ Uniform(—+/3/2,4/3/2) and the sample size n = 200. All entries are multiplied
by 100.

& 4 é
method Bias SE SEE Bias SE SEE Bias SE SEE
loge ~ Beta(2,4)
LPREf -0.02 1.50 1.45 -0.03 1.47 1.44 33.41 1.25 1.25
LSt -0.02 1.50 1.46 -0.03 1.48 1.46 33.37 1.25 1.26
LPREnv  9.97 4.60  4.52 -19.84  4.34  4.30 33.37 4.10 4.00
LSnv 10.11  4.65 4.64 -20.13  4.36  4.46 33.33 413 4.05
CLS -0.08 5.15 5.13 0.32 5.70 5.62 33.27  4.32 4.30
CMS 0.04 436 4.32 0.03 459  4.53 33.34 372  3.69
CEE -0.08  5.05  4.96 0.33 5.55  5.39 33.31  4.26  4.19

loge ~ 0.5 x t(5)

LPREf 0.22 11.19 6.48 0.14 10.52  6.47 0.21 11.76 6.12
LSt 0.14 5.19  5.24 0.12 59.22  5.25 -0.04 457  4.53
LPREnv 10.02 11.52 7.78 -19.67  10.27 743 0.25 13.00 7.35
LSnv 10.10  6.59  6.82 -20.00 642  6.55 0.03 6.13  5.96
CLS -0.15 7.06 7.26 0.51 780  7.75 0.04 6.24  6.16
CMS -0.06 11.78 7.78 0.52 11.47  8.05 0.30 1239 7.17

CEE -0.28 1196 8.17 0.96 11.87  8.67 0.25 1287 7.43
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Table S2. Simulation result when the assumption of U is violated. LPREf, LSf,

LPREnv, LSnv, CLS, CMS and CEE stand for the full LPRE, full least square(LS),
naive LPRE, naive LS, classical corrected LS, proposed conditional mean score and

proposed corrected estimating equation estimators. loge ~ N(0,0.25) and the sample

size n = 200. All entries are multiplied by 100.

& o ¢
method Bias SE SEE Bias SE SEE Bias SE SEE
U ~ 0.5 x Beta(2,4)
LPREf 0.02 419 4.05 0.04 412 4.05 0.06  3.60 3.53
LSt 0.03 418 4.09 0.03 410 4.09 0.06  3.58  3.53
LPREnv 10.10 6.12  5.93 -19.86 594  5.69 -0.62 544  5.26
LSnv 10.14  6.05  5.99 -19.96 5.81 5.75 -0.05 535 5.23
CLS -0.09 6.53 6.45 0.50 7.04  6.98 -0.06 555  5.44
CMS -0.09  6.57 6.38 0.44 7.13  6.93 -6.63 5.63 5.44
CEE -0.15  6.63  6.37 0.61 720  6.85 -0.85 5.64 543
U ~ 0.5x standardized x? truncated at 5
LPREf -0.18 424  4.06 0.01 4.07  4.06 -0.01  3.68  3.53
LSt -0.17 422 4.09 0.03 4.04 4.08 -0.01  3.68  3.52
LPREnv 10.14 6.50  6.08 -20.63 6.00 5.93 -2.09 515 535
LSnv 9.89 6.26 598 -20.08 571 574 0.02 495 5.22
CLS -0.37  6.63 6.48 0.36 6.83 7.13 -0.01 501 543
CMS -0.89 8.60 7.86 1.13 9.32  8.60 -25.30  6.86  7.19
CEE -0.56  7.05  6.59 0.66 7.54 722 -293 533  5.59
U ~ 0.5x standardized ¢(5)
LPREf 0.01 422 4.06 020 423 4.04 -0.20  3.63  3.52
LSt 0.01 420 4.09 020 421 4.08 -0.19  3.62  3.52
LPREnv 10.79 7.13 6.23 -21.10  7.76  6.17 0.00 587 5.46
LSnv 10.15  6.30  6.00 -19.88  6.19  5.75 -0.06 532 5.24
CLS -0.10  6.63  6.56 0.60 713 7.27 -0.02 547 545
CMS 0.54 2996 11.84 0.27  40.41 13.45 0.32 3144 11.29
CEE -0.25  7.52  6.84 099 867 7.60 0.03 6.16 5.75
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