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Abstract: In this paper, we propose two estimating equation-based methods for esti-

mating the regression parameter vector in a multiplicative regression model when a

subset of covariates is subject to a measurement error, but replicate measurements

of their surrogates are available. Both methods allow the number of replicate mea-

surements to vary between subjects. No parametric assumption is imposed on the

measurement error term or the true covariates, which are not observed in the data

set. Under some regularity conditions, the asymptotic normality is proved for both

proposed estimators. Furthermore, the estimators are compared theoretically when

the distribution of the measurement error follows a normal distribution. Simula-

tion studies are conducted to assess the performance of the proposed methods. A

real-data analysis is used to illustrate our methods.
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1. Introduction

Positive responses are common in many practical problems, such those re-

lated to economics or survival analysis. To handle positive responses, it is natural

to consider the following multiplicative regression model:

Yi = exp(ZTi β0)εi, i = 1, . . . , n, (1.1)

where Yi is a scalar response variable, Zi is a random covariate vector with its

first component equal to one (intercept), β0 is the true regression parameter

vector, and the error term ε is strictly positive. When the response variable Yi
is a failure time, model (1.1) is called the accelerated failure time (AFT) model

in survival analysis, see Wei (1992) and Jin et al. (2003), for example. The

multiplicative regression model also has an important application in economic

theory; see Teekens and Koerts (1972).

For the positive response variable, there are many situations in which the
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relative errors, rather than the absolute errors, are of major concern. For exam-

ple, consider the problem of predicting a person’s income. Assume that the two

true values are {100,000, 10,000}. Further, assume there are two results from

the prediction: (1) {150,000, 11,000}, (2) {101,000, 60,000}. Predictors (1) and

(2) have absolute errors {50,000, 1,000} and {1,000, 50,000}, respectively. Thus,

criteria based on the absolute error cannot determine which of the two predic-

tors is more exact. However, if we consider the relative error, predictor (1) has

relative error {0.5, 0.1}, whereas predictor (2) has relative error {0.01, 5}. The

relative error criterion suggests choosing predictor (1), which seems to reflect the

two persons’ incomes more realistically.

In the literature, the relative error criterion has been applied to the stan-

dard linear model and nonlinear regression model. See, for example, Narula

and Wellington (1977), Makridakis (1986), Khoshgoftaar, Bhattacharyya and

Richardson (1992) and Park and Stefanski (1998). However, the theoretical jus-

tifications of the relative least squares (RLS) and absolute relative error (ARE)

criteria are quite challenge for the linear and non-linear models. As pointed out

by Chen et al. (2010), the consistency and asymptotic normality of the RLS and

ARE estimators are not established under general regularity conditions, even for

the standard linear regression models. Chen et al. (2010) took into account the

following two types of relative errors: |Yi − exp(ZTi β)|/Yi, which is relative to

the response, and |Yi − exp(ZTi β)|/ exp(ZTi β), which is relative to the predictor

of the response. Then, they developed the least absolute relative error criterion

(LARE) for multiplicative models (1.1). This criterion minimizes the following

objective function:
n∑
i=1

{
|Yi − exp(ZTi β)|

Yi
+
|Yi − exp(ZTi β)|

exp(ZTi β)

}
.

Some variable selection methods were proposed based on the loss function of

LARE (Xia, Liu and Yang (2016); Liu, Lin and Wang (2016)). In order to capture

more complex models, Zhang and Wang (2013) extended the LARE criterion

to the partially linear multiplicative regression model, using local smoothing

techniques for estimation and variable selection.

In spite of its robustness and being scale-free, the LARE criterion function

is nonsmooth and the asymptotic variance of the LARE estimator involves the

unknown density of the error term. To avoid the density estimation, Li et al.

(2014) proposed a novel empirical likelihood approach for constructing confidence

intervals/regions for the regression parameters of the multiplicative regression
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models. To obtain a differentiable criterion function, Chen et al. (2016) studied

the least product relative error (LPRE) criterion, which minimizes the following

objective function:

LPREn(β) =

n∑
i=1

{
|Yi − exp(ZTi β)|

Yi

}
×
{
|Yi − exp(ZTi β)|

exp(ZTi β)

}
. (1.2)

The most attractive property of the LPRE objective function is that it is infinitely

differentiable and strictly convex. Using this funciton, Wang, Liu and Lin (2015)

developed a procedure to detect the existence of the unknown change point, and

discussed a relative-based estimation of the change point.

To the best of our knowledge, the aforementioned LARE and LPRE meth-

ods commonly assume that covariates are observed precisely. However, we often

encounter corrupt data in practice, where the covariate measurements include

errors. Sometimes the covariates of interest may be difficult to obtain accurately

owing to physical location or cost. More commonly, it is not possible to measure

them precisely owing to the nature of the covariates or the imprecision of the

instrument. As a result, only replicate measurements of their surrogate variables

are available. A good example of the latter situation is the AIDS Clinical Trials

Group (ACTG) 175 study (Hammer et al. (1996)), which investigated the effects

of four types of HIV treatments: zidovudine only, zidovudine and didanosine,

zidovudine and zalcitabine, and didanosine only. In the ACTG 175 study, the

baseline measurements on CD4 counts were collected before treatment. CD4

counts can never be measured precisely owing to the imprecision of the instru-

ment. Hence, most subjects have two replicate baseline measurements of CD4

counts.

It is well known that misleading results may be obtained by naively applying

the aforementioned methods to the corrupt data. Hence, it is important that we

develop methods to handle such errors. There is a large body of literature for this

topic for other models. Hu and Lin (2004) introduced a modified score equation

for multivariate failure time data. Recently, Sinha and Ma (2016) proposed a

semiparametric method to treat errors in covariates in the censored proportional

odds model when replicated measurements of their surrogates are available and

the number of replicate measurements is fixed. For a censored quantile regres-

sion with a measurement error, Wu, Ma and Yin (2015) developed a corrected

estimating equation method based on a kernel smoothing approximation. They

considered two types of measurement errors: those following a Laplace distri-

bution and those following a normal distribution. For additive hazard models
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in survival analysis, Yan and Yi (2016) developed a class of correction methods

for error-contaminated survival data with replicate measurements. Comprehen-

sive discussions on measurement errors can be found in Carroll et al. (2006) and

Buonaccorsi (2010), and the references therein.

In this paper, we propose two estimating equation approaches, based on the

LPRE criterion, to estimate the regression parameter vector in a multiplicative

regression model when a subset of covariates is subject to a measurement error,

but replicate measurements of their surrogates are available. The first method

constructs an unbiased estimating equation based on the conditional mean score.

The second method corrects the naive method to obtain an unbiased estimating

equation. A similar idea to that used in the first method is used in Hu and Lin

(2004). Both the methods allow the study subjects to have unequal numbers of

surrogate measurements. Furthermore, no parameter model is imposed on the

measurement error term and the true covariates, which are not observed in the

data.

The remainder of this article is organized as follows. In Section 2, we describe

the framework of the multiplicative model with covariates measured with errors.

In Section 3, we propose a conditional mean score-based estimating equation

method. In Section 4, a corrected estimating equation method is suggested.

For further discussion on the effect of the measurement error, we compare our

proposed estimators theoretically in Section 5. Simulation studies are conducted

in Section 6 to assess the performances of the proposed methods. An example

from ACTG315 data is presented in Section 7 to illustrate the proposed methods.

2. Model Framework

Assume that the aforementioned covariates Zi = (V T
i , X

T
i )T form a (p+q)-

vector of explanatory variables, where Vi is a q-vector of explanatory variables

that are precisely measured with the first component being one (intercept), and

Xi is a p-vector of error-prone explanatory variables. Then, model (1.1) turns

into

Yi = exp(V T
i α0 +XT

i γ0)εi, i = 1, . . . , n, (2.1)

where (αT0 , γ
T
0 )T = β0 is the corresponding regression parameter vector.

Suppose that Xi is measured repeatedly ni times (ni ≥ 1) by the surrogates

Wi,r, r = 1, . . . , ni. We consider the classical additive measurement error model:

Wi,j = Xi + Ui,j , j = 1, . . . , ni, i = 1, . . . , n, (2.2)
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where Ui,j is an independent and identically distributed (i.i.d.) copy of the ran-

dom variable vector U whose distribution is symmetric; that is, U and −U are

from the same distribution. In addition, Ui,j is independent of Zi and εi.

3. Conditional Mean Score-Based Estimating Equation Approach

3.1. Review: Estimation without measurement error

If Xi is accurately observed, the estimation of β can be obtained by mini-

mizing the LPRE objective function (1.2). A simple algebraic manipulation of

the LPRE objective function (1.2) yields

LPREn(β) =

n∑
i=1

{
Yi exp(−ZTi β) + Y −1i exp(ZTi β)− 2

}
.

Owing to the fact that the LPRE objective function is strictly convex, min-

imizing LPREn(β) is equivalent to solving the estimating equation Un(β) =

0, where Un(β) = ∂LPREn(β)/∂β. Define ψ(Zi, Yi, β) = {Y −1i exp(ZTi β) −
Yi exp(−ZTi β)}Zi. Then,

Un(β) =

n∑
i=1

ψ(Zi, Yi, β). (3.1)

With the condition E(1/ε − ε|Z) = 0 (Chen et al. (2016)), it is easy to

obtain that E[Un(β0)] = 0; that is, Un(β) is an unbiased estimating function of

β. By the theory of the estimating equation, under regularity conditions, solving

Un(β) = 0 yields a consistent estimator of β (Chen et al. (2016)).

3.2. Estimation with measurement error and asymptotic properties

For simplification, denote the observed data Oi,r = (Yi, Vi,Wi,r) and let

Ui = (Yi, Vi, Xi) for i = 1, . . . , n and r = 1, . . . , ni. Recall that ψ(Zi, Yi, β) is

the summand of the unbiased estimating function Un(β) in (3.1). We can find a

function T ∗(Oi,r, β) such that

E[T ∗(Oi,r, β)|Ui] = ψ(Zi, Yi, β),

which leads to the following unbiased estimating equation,
n∑
i=1

n−1i

ni∑
r=1

T ∗(Oi,r, β) = 0. (3.2)

Next, let us construct T ∗(Oi,r, β). Take Ẑi,r = (V T
i ,W

T
i,r)

T and J = (0p×q, Ip×p)
T .

Then, Ẑi,r = Zi + JUi,r. For simplicity, define ϕ0(γ) = E[exp(UTγ)] and

ϕ1(γ) = E[U exp(UTγ)]. The independence between the error Ui,r and the true
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covariate Zi implies

E[exp(ẐTi,rβ)Ẑi,r|Zi] = ϕ0(γ) exp(ZTi β)Zi + exp(ZTi β)Jϕ1(γ), (3.3)

E[exp(ẐTi,rβ)|Zi] = ϕ0(γ) exp(ZTi β). (3.4)

For simplification, take

R
(0)
i,r (β) =ϕ−10 (γ) exp(ẐTi,rβ),

R
(1)
i,r (β) =ϕ−10 (γ) exp(ẐTi,rβ){Ẑi,r − Jϕ−10 (γ)ϕ1(γ)}.

A simple algebraic manipulation of (3.3) and (3.4) yields

exp(ZTi β)Zi = E
[
R

(1)
i,r (β)

∣∣Ui], (3.5)

exp(ZTi β) = E
[
R

(0)
i,r (β)

∣∣Ui]. (3.6)

Recalling the definition of ψ(Zi, Yi, β) in (3.1), the desired function T ∗(Oi,r, β)

can be defined as

T ∗(Oi,r, β) = Y −1i R
(1)
i,r (β)− YiR(1)

i,r (−β).

By (3.5), E[T ∗(Oi,r, β)|Ui] = ψ(Zi, Yi, β). However, ϕ0(γ) and ϕ1(γ) in T ∗(Oi,r, β)

are unknown. We must define their estimation. Observing that Wi,r −Wi,s =

Ui,r − Ui,s(r 6= s) and that the errors Ui,r are i.i.d and symmetric, we have

E[exp{γT (Wi,r −Wi,s)}] = ϕ2
0(γ)

and

E[(Wi,r −Wi,s) exp{γT (Wi,r −Wi,s)}] = 2ϕ0(γ)ϕ1(γ).

Denote ξi = I(ni > 1) and ñ =
∑n

i=1 ξi. Then, ϕk(γ), (k = 0, 1) can be estimated

by

ϕ̂0(γ) =

 1

ñ

n∑
i=1

ξi
{ni(ni − 1)}

∑
r 6=s

exp(γT (Wi,r −Wi,s))

1/2

and

ϕ̂1(γ) = {2ñϕ̂0(γ)}−1
n∑
i=1

ξi
{ni(ni − 1)}

∑
r 6=s

(Wi,r −Wi,s) exp(γT (Wi,r −Wi,s)),

where, for every i with ni > 1, (r, s) runs through all possible combinations of

numbers in {1, . . . , ni}. When ni = 1, both ξi and ni − 1 equal zero, and we

define the fraction ξi/(ni − 1) to be zero for convenience.

Let R̂
(0)
i,r (β) and R̂

(1)
i,r (β) be R

(0)
i,r (β) and R

(1)
i,r (β), respectively, with ϕ0(γ)

and ϕ1(γ) replaced by ϕ̂0(γ) and ϕ̂1(γ), respectively. Thereafter, the resulting

estimating equation is given by
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n∑
i=1

n−1i

ni∑
r=1

T̂ ∗(Oi,r, β) = 0,

where T̂ ∗(Oi,r, β) = Y −1i R̂
(1)
i,r (β)−YiR̂(1)

i,r (−β). The solution of the above equation

can be defined as an estimator of β, denoted as β̂cms.

For notational simplicity, we assume that (ZT , Y, ε)T , (ZTi , Yi, εi)
T , for i =

1, . . . , n are i.i.d.. To describe the asymptotic properties of the proposed esti-

mator, we first present some notations. For any vector or matrix a, we denote

a⊗2 = aaT . Define Ak = {i : ni = k, i = 1, . . . , n}, for k = 1, . . .m, and let |Ak|
be the number of members of Ak. Define R

(0)
i (β) = n−1i

∑ni

r=1R
(0)
i,r (β), R̂

(0)
i (β) =

n−1i
∑ni

r=1 R̂
(0)
i,r (β), R

(1)
i (β) = n−1i

∑ni

r=1R
(1)
i,r (β), and R̂

(1)
i (β) = n−1i

∑ni

r=1 R̂
(1)
i,r (β).

Then,
∑n

i=1 n
−1
i

∑ni

r=1 T̂
∗(Oi,r, β) =

∑n
i=1[Y

−1
i R̂

(1)
i (β)− YiR̂(1)

i (−β)]. Take

vi =Y −1i R
(1)
i (β0)− YiR(1)

i (−β0),

ri =E
(1

ε
+ ε
)
{2(1− ρ1)ϕ2

0(γ0)}−1{h
(1)
i (γ0)− 2ϕ−10 (γ0)ϕ1(γ0)h

(0)
i (γ0)},

where ρ1 = lim |A1|/n, h
(0)
i (γ) = {ni(ni − 1)}−1

∑
r 6=s exp{γT (Wi,r − Wi,s)}

and h
(1)
i (γ) = {ni(ni − 1)}−1

∑
r 6=s(Wi,r −Wi,s) exp{γT (Wi,r −Wi,s)}. Here, if

ni = 1, define h
(0)
i (γ) = 0 and h

(1)
i (γ) = 0, for convenience. Further, define

V0 = E[(1/ε + ε)ZZT ]. The asymptotic normality of β̂cms is established in the

following theorem.

Theorem 1. Under Conditions C1–C6 in the Appendix, β̂cms exists and is

unique in a neighbourhood of β0 with probability converging to 1 as n → ∞,

and √
n(β̂cms − β0)

D−→ N(0,Γcms),

where Γcms = V −10 ΣcmsV
−1
0 and Σcms = limn→∞ n

−1∑n
i=1E(vi − ξiJri)⊗2.

To estimate Γcms, we define

v̂i =Y −1i R̂
(1)
i (β̂cms)− YiR̂(1)

i (−β̂cms),

r̂i = {2n(1− ρ̂1)ϕ̂2
0(γ̂cms)}−1

n∑
j=1

{Y −1j R̂
(0)
j (β̂cms) + YjR̂

(0)
j (−β̂cms)}

× {h(1)i (γ̂cms)− 2ϕ̂−10 (γ̂cms)ϕ̂1(γ̂cms)h
(0)
i (γ̂cms)},

where ρ̂1 = |A1|/n and γ̂cms denotes the last p components of β̂cms. Then,

take Σ̂cms = n−1
∑n

i=1{v̂i − ξiJr̂i}⊗2 and V̂0 = n−1
∑n

i=1{Y
−1
i R̂

(2)
i (β̂cms) +

YiR̂
(2)
i (−β̂cms)}, where R̂

(2)
i (β) = ∂R̂

(1)
i (β)/∂βT . Denote Γ̂cms = V̂ −10 Σ̂cmsV̂

−1
0 .
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Γcms can then be estimated by Γ̂cms.

4. Corrected Estimating Equation Method

4.1. Naive method and bias

Define W̄i,· = n−1i
∑ni

r=1Wi,r, and Ẑi = (V T
i , W̄

T
i,·)

T = Zi + JŪi,·, where

Ūi· = n−1i
∑ni

r=1 Ui,r. A naive computable estimating function Unv(β) can be

obtained as

Unv(β) =

n∑
i=1

{
Y −1i exp(ẐTi β)− Yi exp(−ẐTi β)

}
Ẑi =

n∑
i=1

ψ(Ẑi, Yi, β) (4.1)

by replacing Zi in (3.1) with Ẑi. Let β̂nv be the solution of Unv(β) = 0. Here

β̂nv is known as the naive-LPRE estimator of β0.

Recall the definition of Ẑi and J , then, ψ(Ẑi, Yi, β) can be written as{
Y −1i exp(ZTi β) exp(ŪTi,·γ)− Yi exp(−ZTi β) exp(−ŪTi,·γ)

}
(Zi + JŪi,·). (4.2)

Owing to the symmetry of U and the independence between Ui,r and (Zi, Yi),

we have

E[ψ(Ẑi, Yi, β)|Yi, Zi] =ϕni

0

( γ
ni

)
ψ(Zi, Yi, β) + J{Y −1i exp(ZTi β)+

Yi exp(−ZTi β)} × ϕni−1
0

( γ
ni

)
ϕ1

( γ
ni

)
. (4.3)

Comparing (4.3) and ψ(Zi, Yi, β) in (3.1), we find two main differences. Take

I1n(β) = ϕni

0 (γ/ni)ψ(Zi, Yi, β) and I2n(β) = J{Y −1i exp(ZTi β)+Yi exp(−ZTi β)}
× ϕni−1

0 (γ/ni)ϕ1(γ/ni). On the one hand, the term I1n(β) is equal to the prod-

uct of the factor ϕni

0 (γ/ni) and ψ(Zi, Yi, β) in (3.1). On the other hand, the

term I2n(β) is an extra term. With the assumption that E[ε − 1/ε|Z] = 0, we

obtain that E[I1n(β0)] = 0. Therefore, E[ψ(Ẑi, Yi, β0)] = E[I1n(β0) + I2n(β0)] =

E[I2n(β0)]. However, E[I2n(β0)] = E(1/ε + ε)Jϕni−1
0 (γ0/ni)ϕ1(γ0/ni). Thus,

I2n(β0) may be the term causing bias of the naive estimator β̂nv. It’s obvious

that ϕ0(γ) > 0 from the definition of ϕ0(γ). In general, ϕ1(γ) is also a nonzero

vector. In the remark, we discuss some common scenarios.

Remark 1.

• When U is a scalar variable, ∂ϕ1(γ)/∂γ = E[U2 exp(UTγ)] > 0 unless U

is zero almost surely. Consequently, ϕ1(γ) increases strictly as γ increases

with ϕ1(0) = 0. As a result, ϕ1(γ) departs from zero when γ 6= 0.

• Denote a(i) as the ith component of the vector a. Assume that the measure-
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ment error U = (U (1), . . . , U (p))T and U (1), . . . , U (p) are independent of each

other. Some simple algebraic manipulation yields that ϕ
(i)
1 (γ) = E[U (i)

exp(U (i)γ(i))]
∏
j 6=iE[exp(U (j)γ(j))]. As discussed above, ϕ1(γ) does not

equal zero when γ 6= 0.

• Assume that U ∼ N(0,Σp×p). Some basic calculation yields that ϕ0(γ) =

exp(γTΣγ/2) and ϕ1(γ) = Σγ exp(γTΣγ/2). Because Σ is positive definite,

ϕ1(γ) = 0 if and only if γ = 0.

In the above discussion, for the three commonly used cases, we conclude

that ϕ1(γ) = 0 if and only if γ = 0. However, γ0, the true value of γ, is not

zero for the measurement error model considered here. Otherwise, the estimating

problem reduces to that without a measurement error. Combined with the fact

that ϕ0(γ) > 0 and E[1/ε+ ε] > 0, we have that E[I2n(β0)] 6= 0. Consequently,

E[ψ(Ẑi, Yi, β0)] 6= 0 and Unv(β) is a biased estimating function. The resultant

estimator β̂nv does not converge to the true parameter β0.

In addition, note that I1n(β) is the unbiased estimating function ψ(Zi, Yi, β)

multiplied by ϕni

0 (γ/ni). This factor ϕni

0 (γ/ni) may lead to a loss of efficiency

for the naive estimator β̂nv. Based on the above two considerations, we develop

a corrected estimating equation approach in the following subsection.

4.2. Corrected estimation and asymptotic properties

To eliminate the bias of the naive estimator and to obtain a more reasonable

estimator, we can construct an unbiased estimating function as follows

U∗(β) =

n∑
i=1

ψ̃i,

where

ψ̃i =
{
ϕni

0

( γ
ni

)}−1[
ψ(Ẑi, Yi, β)− J{Y −1i exp(ZTi β)

+ Yi exp(−ZTi β)}ϕni−1
0

( γ
ni

)
ϕ1

( γ
ni

)]
.

Recalling (4.3), we can see that E[ψ̃i|Ui] = ψ(Zi, Yi, β). However, Zi in ψ̃i
cannot be observed. Note that

E[Y −1i exp(ẐTi β) + Yi exp(−ẐTi β)|Ui]

= {Y −1i exp(ZTi β) + Yi exp(−ZTi β)}ϕni

0

( γ
ni

)
. (4.4)

From (4.4), we have

Y −1i exp(ZTi β) + Yi exp(−ZTi β)
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= E

[
ϕ−ni

0

( γ
ni

)
{Y −1i exp(ẐTi β) + Yi exp(−ẐTi β)}|Ui

]
. (4.5)

Therefore, we can define ψ∗i as follow,

ψ∗i =
{
ϕni

0

( γ
ni

)}−1[
ψ(Ẑi, Yi, β)

− J{Y −1i exp(ẐTi β) + Yi exp(−ẐTi β)}ϕ1

( γ
ni

)
ϕ−10

( γ
ni

)]
,

by replacing the term Y −1i exp(ZTi β) + Yi exp(−ZTi β) in ψ̃i with the expression

ϕ−ni

0 (γ/ni){Y −1i exp(ẐTi β) + Yi exp(−ẐTi β)}. However, ϕ0(γ) and ϕ1(γ) in ψ∗i
are unknown. Define

ψ̂∗i =
{
ϕ̂ni

0

( γ
ni

)}−1[
ψ(Ẑi, Yi, β)

− J{Y −1i exp(ẐTi β) + Yi exp(−ẐTi β)}ϕ̂1

( γ
ni

)
ϕ̂−10

( γ
ni

)]
,

by replacing ϕ0(γ/ni) and ϕ1(γ/ni) in ψ∗ with ϕ̂0(γ/ni) and ϕ̂1(γ/ni), respec-

tively, given in the previous section, and we obtain a resultant estimating equa-

tion for β0 as follows
n∑
i=1

ψ̂∗i = 0.

Let β̂cee be the solution to the above estimating equation. For simplicity,

denote η0(k, γ) = E[exp{k−1γT (U1 + · · · + Uk)}] and η1(k, γ) = ∂η0(k, γ)/∂γ,

for any positive integer k. Clearly, η0(1, γ) = ϕ0(γ), η0(k, γ) = ϕk0(γ/k) and

η1(k, γ) = ϕk−10 (γ/k)ϕ1(γ/k). Then, denote

R̃
(0)
i (β) = η−10 (ni, γ) exp(ẐTi β),

Ř
(0)
i (β) = η̂−10 (ni, γ) exp(ẐTi β),

R̃
(1)
i (β) = η−10 (ni, γ) exp(ẐTi β){Ẑi − Jη1(ni, γ)η−10 (ni, γ)},

Ř
(1)
i (β) = η̂−10 (ni, γ) exp(ẐTi β){Ẑi − Jη̂1(ni, γ)η̂−10 (ni, γ)},

where η̂0(k, γ) = ϕ̂k0(γ/k) and η̂1(k, γ) = ϕ̂k−10 (γ/k)ϕ̂1(γ/k), and ϕ̂k(·)(k = 0, 1)

is defined as in the previous section. By a simple calculation, we have

ψ∗i =Y −1i R̃
(1)
i (β)− YiR̃(1)

i (−β),

ψ̂∗i =Y −1i Ř
(1)
i (β)− YiŘ(1)

i (−β).

Let

ṽi =Y −1i R̃
(1)
i (β0)− YiR̃(1)

i (−β0),
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r̃i,k =E
(1

ε
+ ε
){

2(1− ρ1)ϕ2
0

(γ0
k

)}−1
×
{
h
(1)
i

(γ0
k

)
− 2ϕ−10

(γ0
k

)
ϕ1

(γ0
k

)
h
(0)
i

(γ0
k

)}
,

where h
(k)
i (γ)(k = 0, 1) are defined in Section 3.2. Let ρk = limn→∞ |Ak|/n.

Further, recall that V0 = E[(1/ε+ ε)ZZT ], which is defined in Theorem 1. The

asymptotic normality of β̂cee is established in the following theorem.

Theorem 2. Under Conditions C1-C6 in Appendix, β̂cee exists and is unique in

a neighbourhood of β0 with probability converging to 1 as n→∞, and
√
n(β̂cee − β0)

D−→ N(0,Γcee),

where Γcee = V −10 ΣceeV
−1
0 and Σcee = limn−1

∑n
i=1E{ṽi − ξiJ

∑m
k=1 ρkr̃i,k}⊗2.

To estimate Γcee, we define

v̌i =Y −1i Ř
(1)
i (β̂cee)− YiŘ(1)

i (−β̂cee),

ři,k =
{

2n(1− ρ̂1)ϕ̂2
0

( γ̂cee
k

)}−1 n∑
j=1

{
Y −1j Ř

(0)
j (β̂cee) + YjŘ

(0)
j (−β̂cee)

}
×
{
h
(1)
i

( γ̂cee
k

)
− 2ϕ̂−10

( γ̂cee
k

)
ϕ̂1

( γ̂cee
k

)
h
(0)
i

( γ̂cee
k

)}
,

where γ̂cee is the last p components of β̂cee. Let ρ̂k = |Ak|/n. Then take

Σ̂cee = n−1
∑n

i=1{v̌i − ξiJ
∑m

k=1 ρ̂kři,k}⊗2 and Ṽ0 = n−1
∑n

i=1{Y
−1
i Ř

(2)
i (β̂cee) +

YiŘ
(2)
i (−β̂cee)}, where Ř

(2)
i (β) = ∂Ř

(1)
i (β)/∂βT . Denote Γ̂cee = Ṽ −10 Σ̂ceeṼ

−1
0 .

Γcee can then be estimated by Γ̂cee.

5. Comparison of the Two Methods

When the distribution of the measurement error U is unknown, ϕs(γ)(s =

0, 1) must be estimated with the sample. This makes the asymptotic covariance

structures complex, and hence it is hard to compare the asymptotic efficiency of

the two proposed methods. However, we may compare the two methods for a

special case where the distribution of the measurement error U is known to be

normal. For simplicity, take ni = k. Hence, the first estimator β̂cms reduces to

the solution of the following estimating equation:

n∑
i=1

k−1
k∑
r=1

T ∗(Oi,r, β) = 0,

denoted as β̂∗cms. Similarly, the second estimator β̂cee reduces to the solution of

the following estimating equation:



966 WANG AND HU

n∑
i=1

ψ∗i = 0,

denoted as β̂∗cee. Thus, we have the following results.

Theorem 3. Under Condition C1-C3 and C5 in the Appendix, both β̂∗cms and

β̂∗cee exist and are unique in a neighbourhood of β0 with probability converging to

1 as n→∞. In addition,
√
n(β̂∗cms − β0)

D−→ N(0,Γ∗cms) and
√
n(β̂∗cee − β0)

D−→ N(0,Γ∗cee),

where Γ∗cms = V −10 Σ∗cmsV
−1
0 and Γ∗cee = V −10 Σ∗ceeV

−1
0 , with Σ∗cms = E[v⊗2i ], and

Σ∗cee = E[ṽ⊗2i ], with V0, vi, and ṽi defined in Section 3.2 and 4.2.

In order to compare the asymptotic covariances of the two proposed esti-

mators, we only need to compare Σ∗cms and Σ∗cee. In the following lemma, we

establish the expressions of Σ∗cms and Σ∗cee.

Lemma 1. Assume the conditions of Theorem 3. If EZ = 0, ε is independent

of Z, E(U) = 0 and cov(U) = Σu, we then have

Σ∗cms = k−1
{
E

(
1

ε2
+ ε2

)
ϕ0(2γ0)ϕ

−2
0 (γ0)

[
E(Z⊗2)

+ Jϕ2(2γ0)ϕ
−1
0 (2γ0)J

T − Jϕ1(2γ0)ϕ
−1
0 (2γ0)ϕ

T
1 (γ0)ϕ

−1
0 (γ0)J

T

− Jϕ1(γ0)ϕ
−1
0 (γ0)ϕ

T
1 (2γ0)ϕ

−1
0 (2γ0)J

T + {Jϕ1(γ0)ϕ
−1
0 (γ0)}⊗2

]
− 2ϕ−20 (γ0)

[
E(Z⊗2) + JΣuJ

T − {Jϕ1(γ0)ϕ
−1
0 (γ0)}⊗2

]}
+

(k − 1)

kE(ε− 1/ε)2E(Z⊗2)
,

Σ∗cee =E
( 1

ε2
+ ε2

)
ϕk0

(2γ0
k

)
ϕ−2k0

(γ0
k

)
×
[
E(Z⊗2) + k−1Jϕ2

(2γ0
k

)
ϕ−10

(2γ0
k

)
JT

+
(k − 1)

k
{
Jϕ1

(
2γ0/k

)
ϕ−10

(
2γ0/k

)}⊗2
− Jϕ1

(2γ0
k

)
ϕ−10

(2γ0
k

)
ϕT1

(γ0
k

)
ϕ−10

(γ0
k

)
JT

− Jϕ1

(γ0
k

)
ϕ−10

(γ0
k

)
ϕT1

(2γ0
k

)
ϕ−10

(2γ0
k

)
JT

+
{
Jϕ1

(γ0
k

)
ϕ−10

(γ0
k

)}⊗2]
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− 2ϕ−2k0

(γ0
k

)[
E(Z⊗2) + k−1JΣuJ

T −
{
Jϕ1

(γ0
k

)
ϕ−10

(γ0
k

)}⊗2]
.

It is also difficult to compare Σ∗cms and Σ∗cee directly. Therefore, we compare

them in some special cases. We assume that U is from N(0,Σ), where Σ is

known. Then, ϕ0(γ) = exp(γTΣγ/2), and ϕ1(γ) = exp(γTΣγ/2)Σγ, ϕ2(γ) =

exp(γTΣγ/2){Σ + (Σγ)⊗2}. Using some simple algebraic manipulation, we have

Σ∗cms = k−1
[
E(ε2 + ε−2) exp(γT0 Σγ0)

{
E[Z⊗2] + (JΣγ0)

⊗2 + JΣJT
}

− 2 exp(−γT0 Σγ0)
{
E[Z⊗2]− (JΣγ0)

⊗2 + JΣJT
}]

+
(k − 1)

k
{
E(ε2 + ε−2)− 2

}
E[Z⊗2]

.

Similarly, it follows that

Σ∗cee =E(ε2 + ε−2) exp(k−1γT0 Σγ0)
{
E[Z⊗2] + k−2(JΣγ0)

⊗2 + k−1JΣJT
}

− 2 exp(−k−1γT0 Σγ0)
{
E[Z⊗2]− k−2(JΣγ0)

⊗2 + k−1JΣJT
}
.

Theorem 4. Assume the conditions of Lemma 1. If U ∼ N(0,Σ), we then have

Σ∗cms ≥ Σ∗cee.

Theorem 4 shows that β̂∗cee outperforms β̂∗cms under the normal assumption

of the measurement error. This result implies that β̂cee may outperform β̂cms
under the normal assumption of the measurement error U , which is also verified

by our simulation studies. For other familiar distributions of U , the covariance

matrices do not have a simple form, which makes comparisons difficult. Instead,

various simulations have been conducted to compare the two methods.

6. Simulation Studies

In this section, various simulation studies were conducted to assess the finite-

sample performance of the proposed estimators. Response variable Y was gen-

erated from the multiplicative regression model,

Y = exp(c0 + α0V1 + γ0X)ε, (6.1)

where V1 and X are two covariates generated from the bivariate normal distri-

bution with V ar(X) = V ar(V1) = 1 and Cov(X,V1) = 0.5, and (c0, α0, γ0) =

(1, 1, 2). We considered two model error distributions: log ε ∼ Uniform(−2, 2)

and log ε ∼ N(0, 0.25). Both cases are usually considered in some literatures

on the relative error; see, for example, Chen et al. (2010), Zhang and Wang

(2013), and Chen et al. (2016), among others. The covariate V1 was measured

precisely, whereas X was measured with an error. The surrogate W of X was
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generated from the classical error model W = X + U , where U is the measure-

ment error term. In order to show that the proposed error-corrected methods

can handle many symmetric measurement error distributions, we considered two

different distributions for U , namely, N(0, 0.25) and Uniform(−
√

3/2,
√

3/2),

and in both cases where the error variance is 0.25. For each parameter config-

uration, every subject has three replicates of the surrogate (ni = 3). To assess

the finite-sample performance, we calculated the bias (Bias), empirical standard

errors (SE) and standard error estimators (SEE). The sample size n is taken

to be 200 and 500, respectively, and the simulation results are based on 2,000

replications.

We analyzed the simulated data sets using seven methods: the LPRE-based

full data (LPREf) method, the least square-based full data (LSf) method,

the LPRE-based naive method (LPREnv) (given in Section 4.1), the least

square-based naive (LSnv) method, the corrected least square (CLS) method

(Carroll et al. (2006); Buonaccorsi (2010)), the conditional mean score (CMS)

method proposed in Section 3.2, and the corrected estimating equation (CEE)

method proposed in Section 4.2. The LPREf and LSf methods are treated as

gold standards. For the LPREf method, the LPREf estimator is obtained by

minimizing the LPRE criterion suing the true values of X for all subjects. In

order to implement the least square based methods, we converted model (6.1)

into the following linear model by taking a logarithmic transformation,

Y ∗ = c0 + α0V1 + γ0X + ε∗, (6.2)

where Y ∗ = log Y and ε∗ = log ε. The LSf estimator is just the least square esti-

mator of (6.2) using the true covariates. The LSnv estimator is the LSf estimator,

but with X replaced by the average of its surrogates. For the CLS method, we

implemented the corrected least square method for the linear model (6.2). For

the LPRE based methods, we used the Newton-Raphson procedure to solve the

estimating equations by taking (0, 0, 0) as the initial value of (c, α, γ). The

results was reported in Tables 1 and 2.

Table 1 was conducted with log ε ∼ Uniform(−2, 2) whereas Table 2 was

carried out with log ε ∼ N(0, 0.25). From Tables 1 and 2, we have the following

observations. Both naive estimators (LPREnv and LSnv) for α0 and γ0 suffer

bias, and the bias does not decrease as the sample size increases. This implies that

naive methods may define inconsistent estimators for α0 and γ0. All estimators

except for the naive estimators exhibit very small bias, and the bias decreases as

the sample size increases, as expected. Hence, both the proposed methods and
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Table 1. Simulation results for log ε ∼ Uniform(−2, 2). LPREf, LSf, LPREnv, LSnv,
CLS, CMS, and CEE stand for the full LPRE, full least square(LS), naive LPRE, naive
LS, classical corrected LS, proposed conditional mean score, and proposed corrected
estimating equation estimators. All entries are multiplied by 100.

α̂ γ̂ ĉ
method Bias SE SEE Bias SE SEE Bias SE SEE

n = 200, U ∼ Uniform(−
√

3/2,
√

3/2)
LPREf -0.17 7.76 7.69 0.14 7.70 7.68 0.14 6.68 6.65
LSf -0.18 9.37 9.44 0.13 9.32 9.42 0.18 8.09 8.13
LPREnv 9.63 9.42 8.88 -19.38 8.57 8.51 0.16 7.95 7.84
LSnv 9.72 10.53 10.31 -19.65 9.72 9.90 0.22 8.97 9.00
CLS -0.60 11.02 10.76 0.85 11.14 11.34 0.19 9.09 9.17
CMS -0.48 9.41 8.96 0.73 9.31 9.19 0.15 7.77 7.71
CEE -0.71 9.92 9.32 1.14 10.00 9.81 0.15 8.13 7.97

n = 200, U ∼ N(0, 0.25)
LPREf -0.08 7.86 7.68 0.17 7.98 7.69 0.11 6.74 6.66
LSf -0.15 9.38 9.43 0.22 9.70 9.43 0.12 8.14 8.14
LPREnv 9.90 8.97 8.90 -19.84 9.09 8.55 0.06 8.13 7.89
LSnv 9.80 9.96 10.30 -19.80 10.12 9.90 0.13 9.06 9.01
CLS -0.40 10.41 10.76 0.66 11.58 11.39 0.11 9.16 9.18
CMS -0.88 10.75 10.13 1.45 12.81 11.48 0.08 8.73 8.42
CEE -0.51 9.50 9.37 1.01 10.58 9.93 0.06 8.31 8.03

n = 500, U ∼ Uniform(−
√

3/2,
√

3/2)
LPREf 0.09 4.98 4.86 -0.14 4.99 4.87 -0.01 4.27 4.21
LSf 0.10 6.08 5.96 -0.15 6.10 5.97 -0.01 5.22 5.15
LPREnv 10.14 5.88 5.68 20.00 5.71 5.45 -0.12 5.10 5.01
LSnv 10.27 6.68 6.52 -20.28 6.45 6.26 -0.10 5.82 5.70
CLS 0.17 7.01 6.79 -0.10 7.38 7.15 -0.07 5.90 5.78
CMS 0.17 5.88 5.70 -0.16 6.09 5.85 -0.08 4.96 4.90
CEE 0.12 6.21 5.96 -0.01 6.54 6.27 -0.08 5.18 5.08

n = 500, U ∼ N(0, 0.25)
LPREf -0.10 4.87 4.87 -0.10 4.94 4.86 0.20 4.25 4.21
LSf -0.08 5.94 5.97 -0.17 6.01 5.96 0.23 5.19 5.16
LPREnv 9.75 5.79 5.73 -20.06 5.65 5.50 0.23 5.12 5.05
LSnv 9.84 6.55 6.53 -20.18 6.31 6.26 0.24 5.75 5.71
CLS -0.26 6.84 6.82 -0.03 7.24 7.19 0.24 5.81 5.79
CMS -0.56 6.74 6.56 0.44 7.96 7.51 0.24 5.49 5.42
CEE -0.43 6.17 6.03 0.24 6.65 6.39 0.22 5.22 5.14

CLS can effectively correct the biases caused by measurement errors and define

consistent estimators. It is noted that the bias for all of the estimators, including

both the naive estimators of c0, are very small, and that the SEE and SE of all the
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Table 2. Simulation results for log ε ∼ N(0, 0.25). LPREf, LSf, LPREnv, LSnv, CLS,
CMS, and CEE stand for the full LPRE, full least square(LS), naive LPRE, naive LS,
classical corrected LS, proposed conditional mean score, and proposed corrected esti-
mating equation estimators. All entries are multiplied by 100.

α̂ γ̂ ĉ
method Bias SE SEE Bias SE SEE Bias SE SEE

n = 200, U ∼ Uniform(−
√

3/2,
√

3/2)
LPREf -0.08 4.16 4.05 -0.10 4.09 4.04 0.10 3.51 3.53
LSf -0.08 4.13 4.09 -0.10 4.07 4.09 0.09 3.50 3.53
LPREnv 9.75 6.17 5.90 -19.82 5.59 5.62 0.20 5.18 5.21
LSnv 9.91 6.12 5.97 -20.11 5.55 5.74 0.17 5.14 5.22
CLS -0.31 6.65 6.44 0.35 6.94 6.93 0.14 5.24 5.43
CMS -0.15 6.08 5.81 -0.04 6.01 6.01 0.13 4.88 4.99
CEE -0.34 6.69 6.30 0.38 6.91 6.73 0.15 5.25 5.36

n = 200, U ∼ N(0, 0.25)
LPREf 0.16 4.29 4.04 -0.07 4.25 4.04 0.08 3.61 3.53
LSf 0.15 4.27 4.08 -0.07 4.24 4.09 0.08 3.59 3.53
LPREnv 10.06 6.29 5.93 -20.07 5.97 5.72 -0.05 5.39 5.27
LSnv 10.03 6.22 5.97 -20.04 5.83 5.75 -0.03 5.31 5.23
CLS -0.19 6.72 6.44 0.48 7.13 7.02 -0.01 5.44 5.44
CMS -0.30 7.99 7.05 0.80 11.06 8.27 0.04 6.00 5.78
CEE -0.21 6.83 6.38 0.56 7.34 6.89 -0.05 5.55 5.45

n = 500, U ∼ Uniform(−
√

3/2,
√

3/2)
LPREf 0.00 2.66 2.59 0.03 2.62 2.59 -0.05 2.18 2.24
LSf 0.00 2.66 2.59 0.03 2.63 2.59 -0.05 2.17 2.24
LPREnv 9.96 3.76 3.79 -19.77 3.62 3.61 -0.07 3.24 3.34
LSnv 10.09 3.75 3.79 -20.07 3.58 3.63 -0.06 3.18 3.31
CLS -0.04 4.07 4.07 0.12 4.43 4.36 -0.04 3.29 3.42
CMS 0.02 3.75 3.72 0.02 3.95 3.84 -0.04 3.10 3.18
CEE -0.03 4.09 4.05 0.11 4.41 4.30 -0.07 3.33 3.43

n = 500, U ∼ N(0, 0.25)
LPREf -0.07 2.52 2.58 0.04 2.58 2.58 0.10 2.25 2.24
LSf -0.07 2.50 2.58 0.04 2.58 2.58 0.10 2.24 2.23
LPREnv 9.92 3.77 3.81 -19.99 3.69 3.68 0.03 3.40 3.37
LSnv 9.90 3.72 3.78 -19.97 3.59 3.63 0.07 3.31 3.31
CLS -0.19 4.03 4.07 0.17 4.38 4.41 0.06 3.40 3.43
CMS -0.25 4.69 4.60 0.24 5.69 5.46 0.02 3.71 3.70
CEE -0.18 4.11 4.10 0.17 4.52 4.42 0.02 3.48 3.48

estimators are quite close to each other. When both the model error log ε and the

measurement error U follow the normal distribution, the classical CLS method is

of slightly smaller SE than the proposed CEE and CMS methods. However, when
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both log ε and U follow the uniform distribution, both the proposed CEE and

CMS methods perform better than the CLS method in terms of SE. When log ε

follows a normal distribution, but the measurement error U follows a uniform

distribution, the proposed CMS method outperforms CEE and CLS in terms of

SE. When log ε is from the uniform distribution, but the measurement error U is

from the normal distribution, the proposed CEE estimator is of smaller SE than

CMS and CLS.

7. Data Analysis

As an illustration, we apply the proposed methods to an AIDS clinic study

conducted by the AIDS Clinical Trial Group (ACTG) 315 (Lederman et al.

(1998); Wu and Ding (1999); Liang, Wu and Carroll (2003)). In this study,

patients with evaluable HIV-1 infection were treated with potent antiviral drugs

consisting of ritonavir, 3TC, and AZT. Both plasma HIV RNA copies (viral load)

and CD4+ cell counts were repeatedly quantified at treatment days 0, 2, 7, 10, 14,

28, 56, 84, 168, and 336 after initiation of treatment. Because plasma HIV RNA

copies (viral load) and CD4+ cell counts are two crucial medical index in AIDS

clinical research, it is necessary to study the relationship during HIV/AIDS treat-

ment. The data of 46 evaluable patients in the study are available at https://

www.urmc.rochester.edu/biostat/people/faculty/wusite/datasets/ACTG

315LongitudinalDataViralLoad.cfm. In this example, we focus on the data for

the first 2 days of treatment. Among the 45 evaluable patients, 33 patients have

two measurements of day 0 and day 2, 10 patients with just one measurement on

day 0, and two patients with just one measurement on day 2. We are interested

in the relationship between the average viral load and the average CD4+ cell

counts of the first two days of treatment. However, both viral load and CD4+

cell counts are subject to measurement errors. Adjusting the measurement error

usually requires replication, validation data, or other information to estimate the

error structure.

Inspired by a referee’s suggestion, paired sample t-tests were used to test

whether the measured values (viral load and CD4+ cell counts) of day 0 and day

2 can be treated as replicate measurements of the average values for the first two

days of treatment. The p-values are 0.347 and 0.128 for viral load and CD4+ cell

counts, respectively. This implies that the viral loads and the CD4+ cell counts

in day 0 and day 2 can be treated as the replicate surrogates of the average viral

load and CD4+ cell counts for the first two days of treatment respectively.

https://www.urmc.rochester.edu/biostat/people/faculty/wusite/datasets/ACTG315LongitudinalDataViralLoad.cfm
https://www.urmc.rochester.edu/biostat/people/faculty/wusite/datasets/ACTG315LongitudinalDataViralLoad.cfm
https://www.urmc.rochester.edu/biostat/people/faculty/wusite/datasets/ACTG315LongitudinalDataViralLoad.cfm
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Table 3. Analysis of the ACTG315 data.

method
c0 γ0

Est SEE Est SEE
LSnv 12.217 0.436 -0.377 0.216
CLS 12.282 0.463 -0.412 0.237
LPREnv 12.309 0.374 -0.453 0.198
CMS 12.383 0.401 -0.491 0.212
CEE 12.424 0.416 -0.514 0.220

Thereafter, we considered the following additive measurement error model

to link the underlying CD4+ cell counts to its surrogate measurements:

Wi,r = Xi + Ui,r, r = 1, . . . , ni, i = 1, . . . , 45,

where ni = 2 for subjects with two measurements in day 0 and day 2; otherwise,

ni = 1. We take the average of the viral loads for day 0 and day 2 as the response

variable Yi for each patient. Clearly, the response is positive. Hence, it is natural

to use the following multiplicative regression model

Yi = exp(c0 + γ0Xi)εi,

to fit the data set, where c0 is the intercept and γ0 is the regression parameter.

Here, we could treat Xi and Yi as the average CD4+ cell counts and viral loads of

the first two days, respectively. The absolute error criterion cannot be applied to

the multiplicative model directly, otherwise an inconsistent estimator is defined.

In order to make a comparison with the least square based approach (an absolute

error criterion), we also consider the linear model by taking the logarithmic

transformation. We analyzed the data set using the five methods, LSnv, CLS,

LPREnv, CMS and CEE methods, respectively. Table 3 calculated estimate

values of all the five methods and standard error values.

First, the proposed CMS and CEE estimators for γ0 and c0 have larger

absolute values than LPREnv does, and they are close to each other; the classical

corrected least square (CLS) estimator also is of larger absolute value than the

naive least square (LSnv) estimator. This implies that ignoring the measurement

error can attenuate the estimate considerably.

Secondly, it also can be observed that the relative error based LPREnv, CMS

and CEE estimators of γ0 are of bigger absolute values than the least square based

LSnv and CLS estimators. Hence, the proposed methods show that the average

CD4+ cell counts are more closely related to the HIV viral loads. From Table

3, it is seen that the estimated value of γ0 based on the CLS is -0.412, and
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the estimated values of γ0 based on the two proposed methods are -0.491 and

-0.514, respectively. The relative differences between the CLS estimator and the

proposed CMS and CEE estimators are 0.1912 and 0.2475, respectively. Thus

we conclude that the proposed methods perform similarly to the CLS estimator

in some cases, and perform better in some other cases. This suggests that the

proposed methods are useful for practical settings, and the criterion based on the

relative error is more reasonable. One of the reasons may be that the distribution

of log ε or the distribution of the measurement error U are not normal. Another

reason may be that the proposed criterion is scale free, which can use information

of the subjects with small values effectively. If we use the log-linear model with

least square loss, the large values of some subjects can overwhelm the effect of

the small values of some subjects.

Supplementary Material

The online Supplementary Material contains an additional simulation with

the assumptions violated, as well as the detailed proofs of the theorems.
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Appendix

Regularity Conditions:

Condition C1. E[(1/ε+ ε)2 exp(δ‖Z‖)] <∞ for some δ > 0.

Condition C2. E[(1/ε+ ε)ZZT ] is positive definite.

Condition C3. The model error ε satisfies E(ε− 1/ε|Z) = 0.

Condition C4. The measurement errors Ui,r, r = 1, . . . , ni are independent

and identically distributed (i.i.d.), symmetrically distributed and independent

of (Zi, Yi) for i = 1, . . . , n.

Condition C5. E(|U |2) < ∞. In addition, there exists a compact neighborhood

B of γ0 such that

E[sup
γ∈B
|U |2 exp(UTγ)] <∞ and E[sup

γ∈B
|U |2 exp(2UTγ)] <∞.
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Condition C6. The repeated times ni has an upper bound m, namely, 1 ≤ ni ≤
m. In addition, the limit of |Ak|/n exist, denoted by ρk, where k = 1, . . . ,m.

Conditions C1-C3 are almost minimal for the asymptotic normality to hold in

LPRE with the covariates measured precisely. Condition C4-C6 are the regular

conditions to deal with the measurement error in the covariates.
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