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Abstract: Advancements in technology have generated abundant high-dimensional

data, enabling us to integrate multiple relevant studies. In terms of variable selec-

tion, the significant computational advantage of variable screening methods based

on marginal correlations has resulted in these becoming promising alternatives to

the popular regularization methods. However, these screening methods have thus

far been limited to single studies. In this study, we consider a general frame-

work for variable screening across multiple related studies. As such, we propose

a novel two-step screening procedure, based on a self-normalized estimator, for

high-dimensional regression analyses within this framework. Compared with the

one-step procedure and rank-based sure independence screening (SIS) procedures,

the proposed procedure greatly reduces the false negative rate, while keeping a low

false positive rate. From a theoretical perspective, we show that our procedure pos-

sesses the sure screening property, with weaker assumptions on the signal strengths,

and allows the number of features to grow at an exponential rate with the sample

size. In addition, we relax the commonly used normality assumption and allow sub-

Gaussian distributions. Simulations and a real transcriptomic application illustrate

the advantage of our method over the rank-based SIS method.

Key words and phrases: Multiple studies, partial faithfulness, self-normalized esti-

mator, sure screening property, variable selection.

1. Introduction

In many scientific disciplines, such as omics studies (including genomics,

transcriptomics, etc.), biomedical imaging, and signal processing, high-dimensio-

nal data with number of features that far larger than the respective sample

sizes (i.e., p � n) have become the rule rather than the exception. For exam-

ple, biologists may wish to predict certain clinical outcome (e.g., survival) using

gene-expression data, where they have far more genes than they do samples.

Advancements in technology and a reduction in the price of biomedical research

have yielded increasing numbers of experiments being performed on related hy-

potheses or that explore the same scientific question. Individual studies may have

small sample sizes with limited statistical power. Thus integrating the data from

multiple studies can improve statistical power, estimation accuracy, and repro-
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ducibility. However, the direct merging of data (i.e., a “mega-analysis”) is usually

less favored, owing to the inherent discrepancies between studies (Tseng, Ghosh

and Feingold (2012)). New statistical methodologies and theories are required to

solve high-dimensional problems that integrate multiple related studies.

Various regularization methods are used for feature selection in high-dimen-

sional regression problems. Popular methods include, but are not limited to, the

Lasso (Tibshirani (1996)), SCAD (Fan and Li (2001)), elastic net (Zou and Hastie

(2005)), and adaptive Lasso (Zou (2006)) methods. When a group structure ex-

ists among the variables (e.g., a set of gene features belong to a prespecified

pathway), a group version of the regularization methods can be applied (Yuan

and Lin (2006); Meier, Van De Geer and Bühlmann (2008); Nardi and Rinaldo

(2008)). Refer to Fan and Lv (2010) and Huang, Breheny and Ma (2012) for a

detailed overview of variable selection and group selection in high-dimensional

models. When the number of features grows significantly larger than the sample

size, most regularization methods perform poorly, owing to the simultaneous chal-

lenges of computational efficiency, statistical accuracy, and algorithmic stability

(Fan, Samworth and Wu (2009)). As an alternative, variable screening methods

first reduce the dimension of the problem, and then perform variable regulariza-

tion. Fan and Lv (2008) proposed a sure independent screening (SIS) method

to select features based on their marginal correlations with the response, in the

context of linear regression models, showing that their fast selection procedure

enjoys the “sure screening property”. Since the development of the SIS method,

many screening methods have been proposed for generalized linear models (Fan,

Samworth and Wu (2009); Fan and Song (2010); Chang, Tang and Wu (2013)),

nonparametric additive models or semiparametric models (Fan, Feng and Song

(2011); Chang, Tang and Wu (2016)), quantile linear regressions (Ma, Li and Tsai

(2017)), and Gaussian graphical models (Luo, Song and Witten (2014); Liang,

Song and Qiu (2015)) that exploit more robust measures for sure screening (Zhu

et al. (2011); Li, Zhong and Zhu (2012); Li, Liu and Lou (2017)). However, these

screening methods have thus far been limited to single studies.

In this paper, we first propose a general framework for simultaneous variable

screening across multiple related studies. Including multiple studies provides

additional evidence with which to reduce the dimension and, thus, increase the

accuracy and efficiency of removing unimportant features during screening. To

the best of our knowledge, ours is the first work to employ multiple studies for

variable screening in a high-dimensional linear regression model. Such a frame-

work provides a novel perspective of the screening problem and opens a door to
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the development of methods using multiple studies to perform screening under

different types of models or with different marginal utilities. In this framework,

it is natural to apply a screening procedure to each individual study. However,

important features with weak signals in some studies may be incorrectly screened

out in this case. To avoid such false negative errors and to fully take advantage

of multiple studies, we propose a two-step screening procedure. Here, in addition

to the traditional one-step procedure, we include a step that combines studies

with potential zero correlation as a second check. This procedure can potentially

to save those features with weak signals in individual studies, but that have a

strong aggregate effect across studies during the screening stage. Compared with

the naive multiple study extension of the SIS method, our procedure greatly re-

duces the false negative error rate, while keeping a low false positive rate. These

merits are confirmed by our theoretical analysis. Specifically, we show that our

procedure possesses the sure screening property, with weaker assumptions on the

signals, and allows the number of features to grow at an exponential rate with

the sample size. Furthermore, we require only that the data have a sub-Gaussian

distribution using novel self-normalized statistics. Thus, our procedure can be ap-

plied to a more general distribution family than the Gaussian distribution, which

is considered in Fan and Lv (2008) and Bühlmann, Kalisch and Maathuis (2010)

for a related screening procedure under single study scenarios. After screening,

we apply two general variable selection algorithms: a multiple study extension of

the PC-simple algorithm proposed by Bühlmann, Kalisch and Maathuis (2010),

and a two-stage feature selection method, which we use to choose the final model

in a lower dimension.

The rest of the paper is organized as follows. In Section 2, we present a

framework for variable screening with multiple related studies, as well as the

notations used in this paper. Then, we propose our two-step screening procedure

in Section 3. Section 4 provides the theoretical properties of our procedure,

and demonstrates the benefits of including multiple related studies, as well as

the advantages of our procedure. General algorithms for variable selection that

follow from our screening procedure are discussed in Section 5. Sections 6 and 7

present the simulation studies and a real-data application based on three breast

cancer transcriptomic studies, respectively, which illustrate the advantage of our

method over the rank-based SIS method in terms of reducing false negative errors,

while retaining important features. We conclude and discuss possible extensions

of our procedure in Section 8. Section 9 provides technical proofs of the major

theorems.
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2. Model and Notation

Suppose we have data from K related studies, each with n observations.

Consider a random design linear model in each study k ∈ [K] ([K] = 1, . . . ,K):

Y (k) =

p∑
j=1

β
(k)
j X

(k)
j + ε(k), (2.1)

where each Y (k) ∈ R; each X(k) = (X
(k)
1 , . . . , X

(k)
p )T ∈ Rp, with E(X(k)) = µ

(k)
X

and cov(X(k)) = Σ
(k)
X ; each ε(k) ∈ R, with E(ε(k)) = 0 and var(ε(k)) = σ2, such

that ε(k) is uncorrelated with X
(k)
1 , . . . , X

(k)
p ; and β(k) = (β

(k)
1 , . . . , β

(k)
p )T ∈ Rp.

We assume implicitly that E(Y (k)2) < ∞ and E{(X(k)
j )2} < ∞, for j ∈ [p]

([p] = 1, . . . , p).

When p is very large, we usually assume that only a small set of covariates

are true predictors that contribute to the response. In other words, we assume

most of βj = (β
(1)
j , . . . , β

(K)
j )T , where j ∈ [p], are equal to a zero vector. Here we

further assume that β
(k)
j is either zero or nonzero in allK studies. This framework

is partially motivated by an existing high-dimensional linear random effect model

considered in the literature (e.g.,Jiang et al. (2016)). More specifically, we have

β = (βT(1), 0
T )T , where β(1) is the vector of the first s0 nonzero components of β

(1 ≤ s0 ≤ p). Consider a random effect model, where only the true predictors of

each study are treated as the random effect; that is, β(k) = (β
(k)
(1) , 0)T and β

(k)
(1) is

distributed as N(β(1), τ
2Is0), where τ2 is independent of ε and X. Consequently,

β
(k)
j is are either zero or nonzero in all K studies, with probability one. In

practice, for example, genome-wide association studies (GWAS) usually contain

millions of SNPs, but only a few SNPs are important and predictive. The vast

majority of SNPs are not associated with the outcome in any study, thus giving

consistent sparse patterns across studies. For the few important SNPs, it is

possible that signals in other studies have varying strengths, owing to population

heterogeneity. Ma, Huang and Song (2011) considered a two-norm group bridge

penalty for variable selection with multiple high-dimensional -omics data sets

(e.g., gene expression data), where the regression coefficients of the same feature

from multiple studies are treated as a group. A group is either selected or not

(i.e., “all-in-or-all-out”). The selection of a group leads to nonzero estimated

coefficients in all studies, but allows for different strengths of associations in the

studies. A different and less constrained model, allowing sparsity across studies,

has also been investigated in the literature (Li and Tseng (2011); Li et al. (2014));

however, this is beyond the scope of this study.
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With n independent and identically distributed (i.i.d.) observations from

model (2.1), our purpose is to identify the nonzero β(1). Thus we define the

following index sets for active and inactive predictors:

A = {j ∈ [p];βj 6= 0} = {j ∈ [p];β
(k)
j 6= 0 for all k};

AC = {j ∈ [p];βj = 0} = {j ∈ [p];β
(k)
j = 0 for all k},

(2.2)

where A is our target. Clearly, under our setting, A and AC are complementary

to each other, such that the identification of AC is equivalent to the identification

of A. Let |A| = s0, where | · | denotes the cardinality.

3. Screening Procedure for Multiple Studies

3.1. Sure independence screening

For a single study (K = 1), Fan and Lv (2008) proposed a variable screening

method called sure independence screening (SIS) that ranks the importance of

variables according to their marginal correlation with the response. As such, they

were able to show its power in preliminary screening and dimension reduction for

high-dimensional regression problems. Bühlmann, Kalisch and Maathuis (2010)

later introduced a partial faithfulness condition, which states that a zero partial

correlation for some separating set S implies a zero regression coefficient, showing

that it holds almost surely for a joint normal distribution. In the extreme case,

when S = ∅, it is equivalent to the SIS method.

The purpose of sure screening is to identify a set of moderate size d (with

d � p) that still contains the true set A. Equivalently, we can try to identify

AC , or subsets of AC , that contain unimportant features that need to be screened

out. There are two potential errors that may occur in any sure screening methods

(Fan and Lv (2010)):

1. False Negative (FN): Important predictors that are marginally uncorre-

lated, but that are jointly correlated with the response, fail to be selected.

2. False Positive (FP): Unimportant predictors that are highly correlated

with the important predictors can have a higher priority of being selected

than other relatively weaker important predictors.

The current framework for variable screening with multiple studies resolves

FP errors significantly. Indeed, we have multiple studies in our model setting.

Thus, we have greater evidence with which to exclude noise and reduce FP errors

than if we were using a single study only. In addition, sure screening is used to
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reduce the dimension at the first stage. Therefore, we can include second-stage

variable selection methods, such as the Lasso or Dantzig selection, to further

refine the set and, thus, reduce FP errors.

The FN errors occur when signals are falsely excluded after screening. Sup-

pose ρj is the marginal correlation of the jth feature with the response, which we

use to identify the set {j : ρj = 0} for the screening out process. Under the as-

sumption of partial faithfulness (defined in Section 4.3), these variables have zero

coefficients for sure, which means the FN errors are guaranteed to be excluded.

However, this might not be true for the empirical version of a marginal correla-

tion. For a single study (K = 1), to eliminate the FN errors in the empirical case,

it is well known that the signal-to-noise ratio has to be large (at least of order

(log p/n)1/2, after a Bonferroni adjustment). In the current setting with multiple

studies, the requirement on strong signals remains the same if we naively perform

one-step screening in each individual study. However, we propose a novel two-

step screening procedure that allows weak signals in individual studies, as long

as the aggregate effect is sufficiently strong. Therefore our procedure reduces FN

errors in the framework with multiple studies.

Before closing this section, note that to perform a screening test, one usually

applies Fisher’s Z-transformation to the sample correlation (Bühlmann, Kalisch

and Maathuis (2010)). However, this requires a bivariate normality assumption.

As an alternative, we propose using the self-normalized estimator of the corre-

lation, which works well, in general, even for non-Gaussian data (Shao (1999)).

Similar ideas have been applied to estimations of large covariance matrices (Cai

and Liu (2016)).

3.2. Two-step screening procedure for multiple studies

Given multiple studies, we have greater evidence with which to reduce the

dimension, where ρ
(k)
j = 0, for any k, implies a zero coefficient for that feature.

On the one hand, it is possible for features with zero βj to have multiple nonzero

ρ
(k)
j . On the other hand, a nonzero βj has nonzero ρ

(k)
j in all studies. Thus, we

aim to identify the following two complementary sets while performing screening

using multiple studies:

A[0] = {j ∈ [p]; min
k
|ρ(k)j | = 0},

A[1] = {j ∈ [p]; min
k
|ρ(k)j | 6= 0}.

(3.1)

We know for sure that A[0] ⊆ AC and A ⊆ A[1], with the partial faithfulness
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assumption. For j ∈ A[0], the chance of detecting a zero marginal correlation in at

least one study greatly increases with increasing K. Thus, unimportant features

are more likely be screened out than they are in the single study scenario.

One way to estimate A[1] is to test H0 : ρ
(k)
j = 0, for each k and each feature

j. If any of the K tests are not rejected for a feature, we exclude this feature

from Â[1] (we call this the “one-step sure independence screening” procedure,

or “OneStep-SIS”). This can be viewed as an extension of the screening test

to a multiple study scenario. However, in reality, it is possible for important

features to have weak signals, and thus small |ρ(k)j |, in at least one study. These

features might be incorrectly classified as part of Â[0] because weak signals can

be indistinguishable from null signals in individual testing. This will lead to the

serious problem of false excluding important features (FN) from the final set

during screening.

This can be significantly improved by adding a second step that combines

those studies with potential zero correlation (i.e., failed to reject the null H0 :

ρ
(k)
j = 0) identified in the first step, and then performs another aggregate test.

For features with weak signals in multiple studies, as long as their aggregate

test statistics is sufficiently large, they will be retained. This procedure is more

conservative when screening features than is the first step alone, but it guarantees

a reduction in the false negative rate.

For simplicity, we assume n i.i.d. observations (X
(k)
i , Y

(k)
i ), for i ∈ [n], are

obtained from all K studies. It is straightforward to extend the current proce-

dure and analysis to scenarios with different sample sizes across multiple studies;

therefore, this is omitted here. Our proposed “two-step aggregation sure in-

dependence screening” procedure (“TSA-SIS” for short) is formally described

below.

Step 1. Screening in each study

In the first step, we perform a screening test in each study k ∈ [K]; thus, we

obtain an estimate of the study set with potential zero correlations l̂j , for each

j ∈ [p], as:

l̂j =

{
k; |T̂ (k)

j | ≤ Φ−1
(

1− α1

2

)}
and T̂

(k)
j =

√
nσ̂

(k)
j√

θ̂
(k)
j

, (3.2)

where σ̂
(k)
j = (1/n)

∑n
i=1(X

(k)
ij − X̄

(k)
j )(Y

(k)
i − Ȳ (k)) is the sample covariance,

and θ̂
(k)
j = (1/n)

∑n
i=1[(X

(k)
ij − X̄

(k)
j )(Y

(k)
i − Ȳ (k)) − σ̂

(k)
j ]2. Here, T̂

(k)
j is the

self-normalized estimator of the covariance between X
(k)
j and Y (k), Φ is the CDF
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of the standard normal distribution, and α1 is a prespecified significance level.

In each study, we test whether |T̂ (k)
j | > Φ−1(1 − α1/2); if not, we include

study k in l̂j . This step does not screen out any variables, but instead separates

potential zero and nonzero study-specific correlations, in preparation for the next

step. Define the cardinality of l̂j as κ̂j = |l̂j |. If κ̂j = 0 (i.e., no potential

zero correlation), we for sure retain feature j, and do not consider it in step 2;

Otherwise, we move on to step 2.

Remark 1. By the scaling property of T̂
(k)
j , it is sufficient to impose assumptions

on the standardized variables: W (k) = (Y (k) − E(Y (k)))/(
√

var(Y (k))), Z
(k)
j =

(X
(k)
j − E(X

(k)
j ))/(

√
var(X

(k)
j )). Thus, T̂

(k)
j can also be treated as a self-norma-

lized estimator of the correlation. We thus define θ
(k)
j = var(Z

(k)
j W (k)) and

σ
(k)
j = cov(Z

(k)
j ,W (k)) = ρ

(k)
j .

Remark 2. In our analysis, the index set in (3.2) is shown to coincide with

lj(j ∈ A[0]) and lj(j ∈ A[1]); see Section 4.

Step 2. Aggregate screening

In the second step, we test whether the aggregate effect of the potential zero

correlations in l̂j identified in step 1 is strong enough to be retained. Define

the statistics L̂j =
∑

k∈l̂j (T̂
(k)
j )2, which approximately follows a χ2

κ̂j
distribution,

with degrees of freedom κ̂j under the null. Thus, we estimate Â[0] by:

Â[0] = {j ∈ [p]; L̂j ≤ ϕ−1κ̂j
(1− α2) and κ̂j 6= 0}, (3.3)

or, equivalently, estimate Â[1] by:

Â[1] = {j ∈ [p]; L̂j > ϕ−1κ̂j
(1− α2) or κ̂j = 0}, (3.4)

where ϕκ̂j
is the CDF of the chi-square distribution with degrees of freedom equal

to κ̂j , and α2 is the prespecified significance level.

The second step takes the sum of the squares of T̂
(k)
j from studies with

potential zero correlation as the test statistic. For each feature j, we test whether∑
k∈l̂j (T̂

(k)
j )2 > ϕ−1κ̂j

(1 − α2). If rejected, we conclude that the aggregate effect

is strong and the feature needs to be retained; otherwise, we screen it out. This

step performs a second check in addition to the individual testing in step 1, and

potentially saves those important features with weak signals in individual studies,

but that have a strong aggregate effect.

The procedure proposed here involves two tuning parameters: α1 and α2.

Because the actual screening test is performed in the second step, commonly used
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Table 1. Toy example to demonstrate the strength of the two-step screening procedure.

S1 (signal) S2 (signal) N1 (noise)

k = 1 |T̂ (1)
1 | = 3.71 |T̂ (1)

2 | = 3.70 |T̂ (1)
3 | = 0.42

k = 2 |T̂ (2)
1 | = 3.16 |T̂ (2)

2 | = 2.71 |T̂ (2)
3 | = 0.54

k = 3 |T̂ (3)
1 | = 3.46 |T̂ (3)

2 | = 2.65 |T̂ (3)
3 | = 0.56

k = 4 |T̂ (4)
1 | = 3.63 |T̂ (4)

2 | = 2.68 |T̂ (4)
3 | = 0.12

k = 5 |T̂ (5)
1 | = 3.24 |T̂ (5)

2 | = 1.94 |T̂ (5)
3 | = 0.69

TSA-SIS

l̂j ∅ {2, 3, 4, 5} {1, 2, 3, 4, 5}
κ̂j 0 4 5

L̂j - 25.31 > ϕ4(0.95) 1.27 < ϕ5(0.95)

Â[0] N N Y

Â[1] Y Y N

OneStep-SIS
Â[0] N Y Y

Â[1] Y N (FN) N

significance levels such as α2 = 0.05, are recommended to reduce false negative

errors, following Bühlmann, Kalisch and Maathuis (2010). In general, there is

a trade-off between false negative errors and false positive errors, determined

by the choice of α1. To further reduce the rate of false negative errors during

screening, we recommend using a small α1 (e.g., 1e-4) in practical applications.

A sensitivity analysis on the choices of these two parameters is performed in

Section 6; the results supported our recommendation.

In Table 1, we use a toy example to demonstrate our idea and compare

the two approaches (OneStep-SIS vs. TSA-SIS). Suppose we have five studies

(K = 5) and three features (two signals and one noise). S1 is a strong signal,

with β = 0.8 in all studies, S2 is a weak signal, with β = 0.4 in all studies,

and N1 is noise, with β = 0. In THE hypothesis tests, both small β and zero β

yield a small marginal correlation, and are sometimes indistinguishable. Suppose

T = 3.09 is used as the threshold (corresponding to α1 = 0.001). For the strong

signal S1, all studies have large marginal correlations; thus both OneStep-SIS

and TSA-SIS include it correctly. The weak signal S2 has small correlations in

many studies. As a result, it is incorrectly screened out by OneStep-SIS (FN).

However, the TSA-SIS procedure saves it in the second step (with α2 = 0.05).

Both methods tend to remove the noise N1 after screening.
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4. Theoretical Properties

4.1. Assumptions and conditions

We impose the following conditions to establish the model selection consis-

tency of our procedure:

(C1) (Sub-Gaussian Condition) There exist constants M1 > 0 and η > 0, such

that, for all |t| ≤ η, j ∈ [p], k ∈ [K]:

E{exp(tZ
(k)2
j )} ≤M1, E{exp(tW (k)2)} ≤M1.

In addition, there exist τ0 > 0, such that minj,k θ
(k)
j ≥ τ0.

(C2) The number of studies K = O(pb), for some constant b ≥ 0. The dimension

satisfies log3(p) = o(n) and κj log2 p = o(n), where κj is defined next.

(C3) For j ∈ A[0], lj(j ∈ A[0]) = {k; ρ
(k)
j = 0} and κj = |lj |. If k /∈ lj , then

|ρ(k)j | ≥ C3

√
log p/n

√
1.01θ

(k)
j , where C3 = 3(L+ 1 + b).

(C4) For j ∈ A[1], lj(j ∈ A[1]) = {k; |ρ(k)j | < C1

√
log p/n

√
0.99θ

(k)
j } and κj = |lj |,

where C1 = L + 1 + b. If k /∈ lj , then |ρ(k)j | ≥ C3

√
log p/n

√
1.01θ

(k)
j . In

addition, we require
∑

k∈lj |ρ
(k)
j |2 ≥ (C2(log2 p+

√
κj log p))/n, where C2 is

some large positive constant.

The first condition (C1) assumes that each standardized variable Z
(k)
j or

W (k), for j ∈ [p], k ∈ [K], marginally follows a sub-Gaussian distribution in each

study. This condition relaxes the normality assumption in (Fan and Lv (2008);

Bühlmann, Kalisch and Maathuis (2010)). The second part of (C1) assumes

there always exists some positive τ0 not greater than the minimum variance

of Z
(k)
j W (k). In particular, if (X

(k)
j , Y (k)) jointly follows a multivariate normal

distribution, then θ
(k)
j = 1 + ρ

(k)2
j ≥ 1; thus, we can always pick τ0 = 1.

The second condition (C2) allows the dimension p to grow at an exponen-

tial rate with the sample size n, which is a fairly standard assumption in high-

dimensional analyses. Many sure screening methods (e.g. SIS, DC-SIS, TPC) use

this assumption (Fan and Lv (2008); Li, Zhong and Zhu (2012); Li, Liu and Lou

(2017)). Although the PC-simple algorithm (Bühlmann, Kalisch and Maathuis

(2010)) assumes a polynomial growth of pn as a function of n, this can be re-

laxed to assume exponential growth with n. We further require that the product

κj log2 p be small. This is used to control the errors in the second step of our

screening procedure, and is always true if K log2 p = o(n).
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Condition (C3) assumes a lower bound on nonzero correlations (i.e., k /∈ lj)
for features from A[0]. In other words, if the marginal correlation |ρ(k)j | is not

zero, then it needs to be larger than the signal-to-noise ratio. Although this is a

key assumption for a single study in many sure screening methods (Fan and Lv

(2008); Bühlmann, Kalisch and Maathuis (2010); Li, Zhong and Zhu (2012); Li,

Liu and Lou (2017)), we only impose this assumption for j ∈ A[0], rather than

on all j ∈ [p]. This condition is used to control for type-II errors in step 1 for

features from A[0].

Condition (C4) gives assumptions on features from A[1]. We assume the

correlations are small for k ∈ lj , and large for k /∈ lj , such that studies with

strong or weak signals can be well identified in the first step. For studies in lj ,

we further require that the sum of the squares of their correlations be greater

than a threshold; this controls for type-II errors in step 2. This condition is

different to those of methods based on single studies, which they usually assume

a lower bound on each marginal correlation for features from A[1] as in (C3).

We relax this condition, placing restriction on their L2 norm only. This allows

features from A[1] to have weak signals in each study, but a strong combined

signal. To appreciate this change, we compare the minimal requirements with

and without step 2. For each j ∈ A[1], in order to detect this feature, we need

|ρ(k)j | ≥ C(log p/n)1/2, with some large constant C, for all k ∈ lj and, thus, at

least
∑

k∈lj |ρ
(k)
j |2 ≥ C2κj log p/n. By comparison, the assumption in (C4) is

much weaker in reasonable settings κj � log p.

4.2. Consistency of the two-step screening procedure

The first theorem addresses the consistency of the screening in step 1.

Theorem 1. Consider a sequence of linear models, as in (2.1), that satisfy

Assumptions and Conditions (C1)—(C4), and define the event A = {l̂j = lj for

all j ∈ [p]}. Then, there exists a sequence α1 = α1(n, p) → 0 as (n, p) → ∞,

where α1 = 2{1− Φ(γ
√

log p)}, with γ = 2(L+ 1 + b), such that:

P (A) = 1−O(p−L)→ 1 as (n, p)→∞. (4.1)

The proof of Theorem 1 can be found in Section 9. This theorem states that

the screening in our first step correctly identifies the set lj for features in both

A[0] and A[1] (in which strong and weak signals are well separated), and that

the chance of incorrect assignment is low. Given the results in Theorem 1, we

can now show the main theorem for the consistency of the two-step screening

procedure.
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Theorem 2. Consider a sequence of linear models, as in (2.1), that satisfy

Assumptions and Conditions (C1)—(C4). We know there exists a sequence

α1 = α1(n, p) → 0 and α2 = α2(n, p) → 0 as (n, p) → ∞, where α1 =

2{1 − Φ(γ
√

log p)} with γ = 2(L + 1 + b), α2 = 1 − ϕκj
(γκj

) with γκj
=

κj + C4(log2 p+
√
κj log p), and some constant C4 > 0, such that:

P{Â[1](α1, α2) = A[1]} = 1−O(p−L)→ 1 as (n, p)→∞. (4.2)

The proof of Theorem 2 can be found in Section 9. The result shows that

the two-step screening procedure enjoys the model selection consistency property,

and identifies the model specified in (3.1) with high probability. The significance

levels that yield consistency are α1 = 2{1−Φ(γ
√

log p)} and α2 = 1−ϕκj
(γκj

) .

Remark 3. Condition (C3) is not needed if our goal is to obtain P{Â[1](α1, α2) ⊃
A[1]} = 1 − O(p−L), rather than the model selection consistency. In addition,

the separation requirement in Condition (C4), |ρ(k)j | ≥ C3

√
log p/n

√
1.01θ

(k)
j ,

for all k /∈ lj , can be removed if we are willing to assume stronger conditions on

the sample size, with an additional sample-splitting procedure (Wasserman and

Roeder (2009)). To make our procedure and analysis transparent, we impose

such a mild separation requirement in Theorems 1—2.

4.3. Partial faithfulness and the sure screening property

Bühlmann, Kalisch and Maathuis (2010) were the first to derive the par-

tial faithfulness assumption, which theoretically justifies the use of a marginal

correlation or a partial correlation in screening, as follows:

ρj|S = 0 for some S ⊆ {j}C implies βj = 0, (4.3)

where S is the set of variables conditioned on. For independence screening, S = ∅.
Under two conditions (the positive-definiteness of ΣX , and nonzero regres-

sion coefficients being realized from some common absolutely continuous distri-

bution), they showed that partial faithfulness holds almost surely (Theorem 1

in Bühlmann, Kalisch and Maathuis (2010)). Because the random effect model

described in Section 2 also satisfies the two conditions, the partial faithfulness

condition holds almost surely in each study.

Thus, we can readily extend their Theorem 1 to a scenario with multiple

studies, as follows.

Corollary 1. Consider a sequence of linear models, as in (2.1), that satisfy the
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partial faithfulness condition in each study, and are true active and inactive sets,

as defined in (2.2). Then, the following holds for every j ∈ [p]:

ρ
(k)
j|S = 0 for some k for some S ⊆ {j}C implies βj = 0. (4.4)

The proof is straightforward, and is thus omitted: if ρ
(k)
j|S = 0, for some study

k, then with partial faithfulness, we have β
(k)
j = 0 for that particular k. Because

we only consider features with zero or nonzero β
(k)
j in all studies in (2.2), we have

βj = 0. In the case of independence screening (i.e., S = ∅), ρ(k)j = 0, for some k

implies a zero βj .

With the model selection consistency in Theorem 2 and the extended partial

faithfulness condition in Corollary 1, the sure screening property of our two-step

screening procedure follows immediately.

Corollary 2. Consider a sequence of linear models, as in (2.1), that satisfy

Assumptions and Conditions (C1)—(C4), as well as the extended partial faith-

fulness condition in Corollary 1. Then, there exists sequences α1 = α1(n, p)→ 0

and α2 = α2(n, p) → 0, as (n, p) → ∞, where α1 = 2{1 − Φ(γ
√

log p)} with

γ = 2(L+ 1 + b), and α2 = 1− ϕκj
(γκj

) with γκj
= κj + C4(log2 p+

√
κj log p),

such that:

P{A ⊆ Â[1](α1, α2)} = 1−O(p−L)→ 1 as (n, p)→∞. (4.5)

The proof of this corollary simply combines the results of Theorem 2 and

the extended partial faithfulness and, thus, is omitted.

5. Algorithms for Variable Selection with Multiple Studies

Usually, performing sure screening once may not remove enough unimportant

features. In our case, because we have data from multiple studies, we expect our

two-step screening procedure to remove more unimportant features than if we

had data from a single study only. If the dimension is still high after applying

our two-step screening procedure, we can readily extend our procedure to an

iterative variable selection algorithm by testing the partial correlation with a

gradually increasing size of the conditional set S. Because this method is a

multiple study extension of the PC-simple algorithm in Bühlmann, Kalisch and

Maathuis (2010), we call it the “Multi-PC” algorithm (Section 5.1).

On the other hand, if the dimension has been greatly reduced by the two-
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step screening procedure, we can simply add a second-stage group-based feature-

selection technique to select the final set of variables (Section 5.2).

5.1. Multi-PC algorithm

We start from S = ∅, (i.e., our two-step screening procedure) to build a first

set of candidate active variables:

Â[1,1] = Â[1] = {j ∈ [p]; L̂j > ϕ−1κ̂j
(1− α2) or κ̂j = 0}. (5.1)

We call this set the stage1 active set, where the first index in [, ] corresponds

to the stage of our algorithm, and the second index corresponds to whether the set

contains active variables ([, 1]) or inactive variables ([, 0]). If the dimensionality

has already been decreased by a large amount, we can directly apply group-based

feature selection methods, such as the group Lasso, to the remaining variables

(introduced in Section 5.2).

However, if the dimension is still very high, we can reduce it further by

increasing the size of S and considering partial correlations, given the variables

in Â[1,1]. We follow a similar two-step procedure, but now use a partial correlation

of order one instead of the marginal correlation, which yields a smaller stage2
active set:

Â[2,1] = {j ∈ Â[1,1]; L̂j|q > ϕ−1κ̂j|q
(1− α2) or κ̂j|q = 0, for all q ∈ Â[1,1]\{j}},

(5.2)

where each self-normalized estimator of the partial correlation is computed using

the residuals from the regression over the variables in the conditional set.

We continue screening high-order partial correlations, resulting in a nested

sequence of m active sets:

Â[m,1] ⊆ · · · ⊆ Â[2,1] ⊆ Â[1,1]. (5.3)

Note that the active and inactive sets at each stage are nonoverlapping, and

that the union of active and inactive sets at a stage m is the active set in the

previous stage m− 1; that is, Â[m,1] ∪ Â[m,0] = Â[m−1,1]. This is very similar to

the original PC-simple algorithm, but we now perform the two-step procedure at

each order-level. The algorithm can stop at any stage m when the dimension of

Â[m,1] drops to a low-to-moderate level, and other common group-based feature

selection techniques can be used to select the final set. Alternatively, we can

continue the algorithm until the candidate active set no longer changes. The

algorithm is summarized as follows:
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Algorithm 1: Multi-PC algorithm for variable selection.

Step 1. Set m = 1, and perform the two-step screening procedure to construct
the stage1 active set:

Â[1,1] = {j ∈ [p]; L̂j > ϕ−1κ̂j
(1− α2) or κ̂j = 0}.

Step 2. Set m = m+ 1. Construct the stagem active set:

Â[m,1] = {j ∈ Â[m−1,1]; L̂j|S > ϕ−1κ̂j|S
(1− α2) or κ̂j|S = 0,

for all S ⊆ Â[m−1,1]\{j} with |S| = m− 1}.

Step 3. Repeat Step 2 until m = m̂reach, where
m̂reach = min{m : |Â[m,1]| ≤ m}.

5.2. Two-stage feature selection

As an alternative to the “Multi-PC” algorithm for variable selection, we

introduce here a two-stage feature selection algorithm that combines our two-step

screening procedure with other regular feature selection methods. For a single

study, Fan and Lv (2008), for example, perform sure independence screening in

the first stage, and then apply model selection techniques, including the adaptive

Lasso, Dantzig Selector, and SCAD, which they refer to as SIS-AdaLasso, SIS-DS

and SIS-SCAD, respectively.

In our case, because the feature selection is group based, we adopt a model

selection technique that uses a group Lasso penalty in the second stage:

min
β

K∑
k=1

‖y(k) −X(k)

Â[1]
β
(k)

Â[1]
‖22 + λ

∑
j∈Â[1]

‖βj‖2, (5.4)

where Â[1] is the active set identified from our two-step screening procedure,

and the tuning parameter λ can be chosen using cross-validation or the BIC in

practice, just as in a regular group Lasso problem. We call this two-stage feature

selection algorithm TSA-SIS-groupLasso.

In addition, if the dimension drops to a moderate level at any stage while

running the Multi-PC algorithm, the group Lasso-based feature selection tech-

niques can take over to select the final set of variables.

6. Numerical Evidence

In this section, we demonstrate the advantage of the TSA-SIS procedure by

comparing it with the multiple study extension of SIS (called “Min-SIS”), which
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ranks features by the minimum absolute correlation between all studies. We

simulated data according to the linear model in (2.1), including p covariates with

a zero mean and covariance matrix Σ
(k)
i,j = r|i−j|, where Σ

(k)
i,j denotes the (i, j)th

entry of Σ
(k)
X .

In the first part of the simulation, we fixed the sample size n = 100, p = 1,000,

and the number of studies K = 5, and performed B = 1,000 replications in each

setting. We assume that the true active set consists of just 10 variables, and

that all other variables have zero coefficients (i.e., s0 = 10). The indices of

nonzero coefficients are evenly spaced between 1 and p. The variance of the

random error term in the linear model is fixed as 0.52. We randomly drew r

from {0, 0.2, 0.4, 0.6} and allowed r to vary across studies. We considered the

following four settings:

1. Homogeneous weak signals across all studies: nonzero βj generated from

Unif(0.1, 0.3) and β
(1)
j = β

(2)
j = · · · = β

(K)
j = βj .

2. Homogeneous strong signals across all studies: nonzero βj generated from

Unif(0.7, 1) and β
(1)
j = β

(2)
j = · · · = β

(K)
j = βj .

3. Heterogeneous weak signals across all studies: nonzero βj generated from

Unif(0.1, 0.3) and β
(k)
j ∼ N(βj , 0.5

2).

4. Heterogeneous strong signals across all studies: nonzero βj generated from

Unif(0.7, 1) and β
(k)
j ∼ N(βj , 0.5

2).

We evaluated the performance of Min-SIS using receiver operating char-

acteristic (ROC) curves, which measure the accuracy of the variable selection

independently of choosing good tuning parameters (for Min-SIS, the tuning pa-

rameter is the top number of features d). The OneStep-SIS procedure is actually

a special case of the Min-SIS procedure (thresholding at α1). In presenting our

TSA-SIS procedure, we fixed α1 = 0.0001 and α2 = 0.05, so the result was just

one point on the sensitivity vs. 1-specificity plot. We also performed a sensitivity

analysis on the two cutoffs, based on the first simulation (see Table 2), and found

the two values to be optimal because they both had high sensitivity and high

specificity. Thus, we suggest fixing these two values in all simulations.

Figure 1 shows the results of simulation 1—4. When the signals are homoge-

neously weak in all studies, as in (1), TSA-SIS clearly outperforms the Min-SIS

procedure (it lies above its ROC curve). The TSA-SIS procedure reached about

90% sensitivity with controlled false positive errors (specificity ∼ 95%). In order

to reduce false negatives, Min-SIS has to sacrifice specificity and increase the rate
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Table 2. Sensitivity analysis on the choice of α1 and α2 in the simulation (Sensitiv-
ity/Specificity).

Sensitivity/Specificity α2 = 0.15 0.05 0.01 0.001
α1 = 0.01 0.793/0.901 0.525/0.984 0.210/0.999 0.142/1.000

0.001 0.947/0.826 0.864/0.943 0.691/0.990 0.373/0.999
0.0001 0.966/0.816 0.922/0.932 0.840/0.985 0.681/0.998

Note: All values are based on the average results from B = 1,000 replications.

Figure 1. Simulation results 1-4: the ROC curve applies to Min-SIS, and the black point
denotes our TSA-SIS using α1 = 0.0001 and α2 = 0.05.

of false positives, thus losing the benefits of performing screening (i.e. it keeps

too many features). When the signals became strong, as in (2), both proce-

dures performed equally well. This fits our motivation and theory, and shows the

strength of our two-step procedure in saving weak signals, without increasing the

false positive rate significantly. When the signals become heterogeneous, as in

(3) and (4), both procedures perform worse than before. However, the Min-SIS

procedure never outperforms the TSA-SIS procedure, because it only examines

the minimum correlation between all studies, whereas the two-step procedure

also considers the aggregate statistics.
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7. Real Data Application

We next demonstrate our method using three microarray data sets of triple-

negative breast cancer (TNBC, sometimes called basal-like), an aggressive sub-

type of breast cancer, usually with a poor prognosis. Previous studies have shown

that the tumor suppressor protein “p53” plays an important role in breast can-

cer prognosis, and its expression is associated with both disease-free survival and

overall survival in TNBC (Yadav, Chanana and Jhamb (2015)). Our purpose

is to identify the genes most relevant and predictive to the response, namely,

the expression level of the TP53 gene, which encodes the p53 protein. The three

data sets are publicly available on the authors’ website or at the GEO repository,

including METABRIC (a large cohort consisting of roughly 2000 primary breast

tumours), GSE25066, and GSE76250 (Curtis et al. (2012); Itoh et al. (2014); Liu

et al. (2016)). We filter the data to focus on TNBC cases only, which yielded

275, 178, and 165 TNBC samples for the three data sets, respectively. After rou-

tine preprocessing and filtering by including genes sufficiently expressed and with

enough variation, a total of 3,377 genes remained in common for the analysis.

We applied our Multi-PC algorithm and compared the results with those of

the Min-SIS method using d = n/ log(n) = 49 (as suggested by their paper).

We used α1 = 0.0001 and α2 = 0.05 (as determined by the sensitivity analysis

in the simulation); the Multi-PC algorithm ran up to the first order only (i.e.,

m = 2), and stopped with six features. This again shows the power of screening

using multiple studies. After the feature selection, we fit the linear model in each

study to obtain the coefficient estimates and adjusted R2. Table 3 shows the

coefficient estimates and standard errors of the final set of six genes selected by

our procedure. We have added two columns to indicate whether they were also

retained by the Min-SIS procedure and their relative rank, respectively. As we

can see from the table, all six genes selected by our procedure were missed by Min-

SIS. These genes typically had weak signals in one or more studies, and thus were

very likely to be incorrectly excluded by a one-step screening procedure. Because

the METABRIC study had a larger sample size, the coefficients all appear to be

more significant than for the other two studies. Furthermore, the final Min-SIS

model with 49 features had a much larger BIC (mean BIC = −189.17) than that

of the model in our procedure with only six features (mean BIC = −313.07),

showing the advantage of our model selection procedure.

The gene EXOC1 and p53 are both components of the Ras signaling pathway,

which is responsible for cell growth and division, and can ultimately lead to
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Table 3. The six genes selected by our TSA-SIS procedure.

Gene METABRIC GSE25066 GSE76250 Min-SIS Rank in
Est (SE) Est (SE) Est (SE) d = 49 Min-SIS

Intercept 7.600 (1.502) 0.213 (0.553) −1.783 (0.971) - -
EXOC1 0.251 (0.081)∗∗ 0.278 (0.157). 0.293 (0.167). N 164

ITGB1BP1 −0.134 (0.045)∗∗ 0.003 (0.111) −0.178 (0.194) N 123
RBM23 0.168 (0.078)∗ 0.144 (0.167) 0.367 (0.168)∗ N 152
SETD3 −0.166 (0.081)∗ 0.366 (0.184)∗ −0.080 (0.175) N 101

SQSTM1 −0.114 (0.050)∗ 0.029 (0.099) 0.245 (0.183) N 98
TRIOBP −0.126 (0.062)∗ 0.084 (0.118) 0.628 (0.261)∗ N 91

Adjusted-R2 0.151 0.522 0.359
Note: “.” indicates a significance level of 0.1, “∗” denotes a level of 0.05, “∗∗” denotes a
level of 0.01.

cancer (Rajalingam et al. (2007)). RBM23 encodes for an RNA-binding protein

implicated in the regulation of estrogen-mediated transcription, and has been

found to be associated with p53 indirectly via a heat shock factor (Asano et al.

(2016)). ITGB1BP1 encodes for an integrin protein that is essential for cell

adhesion and other downstream signaling pathways that are also modulated by

p53 (Brakebusch et al. (2002)).

8. Discussion

In this paper, we proposed a two-step screening procedure for a high-dimen-

sional regression analysis of multiple related studies. In a fairly general frame-

work, with weaker assumptions on the signal strength, we showed that our pro-

cedure possesses the sure screening property for exponentially growing dimen-

sionality, without requiring the normality assumption. We have shown through

simulations that our procedure consistently outperforms the rank-based SIS pro-

cedure, independent of their tuning parameter d. To the best of our knowledge,

our study is the first to perform variable screening in a high-dimensional regres-

sion when there are multiple related studies. In addition, we introduced two

variable selection algorithms that follow the two-step screening procedure.

In our procedure, we used the self-normalized estimator of the correlation

to perform the screening test in order to relax the Gaussian assumption to sub-

Gaussian assumptions. This relaxation is especially beneficial compared with

Fisher’s Z-transformation, because in many real scenarios, the normality assump-

tion is violated. Cai and Liu (2016) discuss the same self-normalized sample

correlation as that in our procedure to perform a large-scale correlation test. In
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some other scenarios, self-normalized estimators enjoy the normal approximation

property only under certain weak moment conditions and, thus, are more robust.

We refer interested readers to Peña, Lai and Shao (2008) for more general results

and examples.

Variable selection in regressions with multiple studies have been studied in a

subfield of machine learning called multi-task learning (MTL). The general proce-

dure is to apply regularization methods by including a group Lasso penalty, fused

Lasso penalty, or trace norm penalty (Argyriou, Evgeniou and Pontil (2007);

Zhou et al. (2012); Ji and Ye (2009)). However, at ultrahigh dimensions, such

regularization methods usually fail, owing to challenges related to computation

efficienciency, statistical accuracy, and algorithmic stability. Instead, sure screen-

ing can be used as a fast algorithm for preliminary feature selection, and as

long as it exhibits comparable statistical performance both theoretically and em-

pirically, its computational advantages make it a good choice (Genovese et al.

(2012)). Our method provides an alternative for high-dimensional multi-task

learning problems. Our scenario is related to meta-analysis, and the procedure

in a broader sense can be regarded as a two-stage meta-analysis-based variable

screening method. Here, we first compute the statistics for each study with initial

screening and then combine the results for the aggregate test. From a variable

selection point of view, our general framework is a homogeneous meta-analysis

setting that assumes that the coefficients are either zeros or nonzeros in all stud-

ies. However, the magnitudes of the nonzero coefficients may still vary across

studies, allowing for potential study-to-study heterogeneity.

The current two-step screening procedure is based on a linear model, but

relaxes the Gaussian assumption to a sub-Gaussian distribution. We can apply a

modified Fisher’s Z-transformation estimator rather than our self-normalized esti-

mator to readily accommodate general elliptical distribution families (Li, Liu and

Lou (2017)). In biomedical applications, noncontinuous outcomes, such as cate-

gorical, count, or survival outcomes, are more commonly observed. Fan and Song

(2010) extended the SIS and proposed a more general independent learning ap-

proach for generalized linear models by ranking the maximum marginal likelihood

estimates. Fan, Feng and Song (2011) further extended the correlation learning

to marginal nonparametric learning for screening in ultrahigh-dimensional ad-

ditive models. Other researchers have exploited more robust measures for the

correlation screening (Zhu et al. (2011); Li, Zhong and Zhu (2012); Balasubra-

manian, Sriperumbudur and Lebanon (2013)). These measures are all potential

extensions to our method by modifying the marginal utility used in the screening
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procedure. In addition, the idea of performing screening with multiple studies

is quite general, and is applicable to relevant statistical models other than the

regression model (e.g. a Gaussian graphical model for multiple studies). We

leave these interesting problems for future research.

9. Proofs

We start by introducing three technical lemmas that are essential for the

proofs of the main results. By the scaling property of T̂
(k)
j and Remark 1,

without loss of generality, we assume E(X
(k)
j ) = E(Y (k)) = 0 and var(X

(k)
j ) =

var(Y (k)) = 1, for all k ∈ [K], j ∈ [p]. Therefore in the proof we do not dis-

tinguish between σ
(k)
j and ρ

(k)
j . The first lemma describes the concentration

inequalities of the self-normalized covariance and θ̂
(k)
j .

Lemma 1. Under the Assumptions (C1) and (C2), for any δ ≥ 2 and M > 0,

we have:

(i) P (maxj,k |(σ̂
(k)
j − σ

(k)
j )/((θ̂

(k)
j )1/2)|≥δ

√
(log p)/n)=O((log p)−1/2p−δ+1+b),

(ii) P (maxj,k |θ̂
(k)
j − θ

(k)
j | ≥ Cθ

√
(log p)/n) = O(p−M ),

where Cθ is a positive constant depending on M1, η, and M only.

The second and third lemmas, which are used in the proof of Theorem 2, de-

scribe the concentration behaviors of Ĥ
(k)
j := ((1/

√
n)
∑n

i=1[(X
(k)
ij −X̄

(k)
j )(Y

(k)
i −

Ȳ (k)) − ρ(k)j ])/
√
θ
(k)
j = T̂

(k)
j

√
θ̂
(k)
j /θ

(k)
j − (

√
nρ

(k)
j )/

√
θ
(k)
j and Ȟ

(k)
j := ((1/

√
n)∑n

i=1(X
(k)
ij Y

(k)
i − ρ(k)j ))/

√
θ
(k)
j .

Lemma 2. There exists some constant c > 0, such that,

P

∣∣∣∣∣∣
∑
k∈lj

[Ȟ
(k)2
j − 1]

∣∣∣∣∣∣ > t

 ≤ 2 exp

(
− cmin

[
t2

κj
, t1/2

])
,

where c depends on M1 and η only.

Lemma 3. There exists some constant CH > 0, such that,

P

max
j,k
|Ȟ(k)

j − Ĥ
(k)
j | > CH

√
log2 p

n

 = O(p−M ),

P

max
j,k
|Ȟ(k)2

j − Ĥ(k)2
j | > CH

√
log3 p

n

 = O(p−M ),
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where CH depends on M1, η, M , and τ0 only.

The proofs of the three lemmas are provided in the Supplementary Material.

Proof of Theorem 1. We first define the following error events:

EI,A
[0]

j,k =

{
|T̂ (k)
j | > Φ−1

(
1− α1

2

)
and j ∈ A[0], k ∈ lj

}
,

EII,A
[0]

j,k = {|T̂ (k)
j | ≤ Φ−1

(
1− α1

2

)
and j ∈ A[0], k /∈ lj},

EI,A
[1]

j,k =

{
|T̂ (k)
j | > Φ−1

(
1− α1

2

)
and j ∈ A[1], k ∈ lj

}
,

EII,A
[1]

j,k =

{
|T̂ (k)
j | ≤ Φ−1

(
1− α1

2

)
and j ∈ A[1], k /∈ lj

}
.

To show Theorem 1 that P (A) = 1−O(p−L), it suffices to show that

P

⋃
j,k

(EI,A
[0]

j,k ∪ EII,A
[0]

j,k )

 = O(p−L), (9.1)

and

P

⋃
j,k

(EI,A
[1]

j,k ∪ EII,A
[1]

j,k )

 = O(p−L). (9.2)

We can apply Lemma 1 to bound each component in (9.1) and (9.2), with α1 =

2{1− Φ(γ
√

log p)} and γ = 2(L+ 1 + b). Specifically, we obtain that,

P

⋃
j,k

EI,A
[0]

j,k

 = P

(
max

j∈A[0],k∈lj
|T̂ (k)
j | ≥ γ

√
log p

)

= O

(
1√

log p
p−γ+1+b

)
= o(p−L), (9.3)

where the second equality follows from Lemma 1 (i) with δ = γ, noting that

σ
(k)
j = 0 and T̂

(k)
j =

√
nσ̂

(k)
j /

√
θ̂
(k)
j . In addition, we have that

P

⋃
j,k

EI,A
[1]

j,k

 = P

{
max

j∈A[1],k∈lj
|T̂ (k)
j | ≥ γ

√
log p

}

≤ P

(
max

j∈A[1],k∈lj

∣∣∣∣∣ σ̂
(k)
j − ρ

(k)
j

(θ̂
(k)
j )1/2

∣∣∣∣∣ ≥ (γ − C1)

√
log p

n

)
+O(p−L)

= O

(
1√

log p
p−(γ−C1)+1+b

)
+O(p−L)
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= O(p−L), (9.4)

where the inequality on the second line is the result of Assumption (C4) on lj for

j ∈ A[1], Lemma 1 (ii) with M = L, and Assumption (C1) minj,k θ
(k)
j ≥ τ0; that

is, θ̂
(k)
j ≥ θ(k)j − Cθ(log p/n)1/2 ≥ 0.99θ

(k)
j . The equality on the third line follows

from Lemma 1 (i), where δ = γ − C1 = L+ 1 + b. Finally, we obtain that,

P

⋃
j,k

(
EII,A

[0]

j,k ∪ EII,A
[1]

j,k

)
= P

(
max
j,k/∈lj

|T̂ (k)
j | < γ

√
log p

)
≤ P

(
max
j,k/∈lj

∣∣∣∣∣ σ̂
(k)
j − ρ

(k)
j

(θ̂
(k)
j )1/2

∣∣∣∣∣ ≥ (C3 − γ)

√
log p

n

)
+O(p−L)

= O

(
1√

log p
p−(C3−γ)+1+b

)
+O(p−L)

= O(p−L), (9.5)

where the inequality on the second line follows from Assumptions (C3) and (C4)

on lj , Lemma 1 (ii) with M = L, and Assumption (C1) on sub-Gaussian distri-

butions; that is, θ̂
(k)
j ≤ θ

(k)
j + Cθ(log p/n)1/2 ≤ 1.01θ

(k)
j . In particular, we have

implicitly used the fact that maxj,l θ
(k)
j is upper bounded by a constant depend-

ing on M1 and η only. The equality on the third line follows from Lemma 1 (i),

where δ = C3 − γ = L+ 1 + b.

Finally, we complete the proof by combining (9.3)–(9.5) to show (9.1)–(9.2).

Proof of Theorem 2. We first define the following error events:

EA
[0],2

j = {|L̂j | > ϕ−1(1− α2) or κ̂j = 0} for j ∈ A[0],

EA
[1],2

j = {|L̂j | < ϕ−1(1− α2) and κ̂j 6= 0} for j ∈ A[1].

To prove Theorem 2, we only need to show that

P

 ⋃
j∈A[0]

EA
[0],2

j

 = O(p−L) and P

 ⋃
j∈A[1]

EA
[1],2

j

 = O(p−L), (9.6)

with α2,κj
:= 1− ϕκj

[κj + C4(log2 p+
√
κj log p)] := 1− ϕκj

(γκj
).

Recall the event A defined in Theorem 1. Thus, we have that

P
{(
∪j∈A[0] EA

[0],2
j

)⋃(
∪j∈A[1] EA

[1],2
j

)}
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≤ P (AC) + p max
j∈A[0]

P

∑
k∈lj

T̂
(k)2
j > γκj

+ p max
j∈A[1],κj 6=0

P

∑
k∈lj

T̂ (k)2 < γκj

 .

Therefore, given the results in Theorem 1, it suffices to show that

P

∑
k∈lj

T̂ (k)2 > γκj

 = O(p−L−1) for any j ∈ A[0], (9.7)

and

P

∑
k∈lj

T̂ (k)2 < γκj

 = O(p−L−1) for any j ∈ A[1] and κj > 0. (9.8)

We first prove equation (9.7). Because j ∈ A[0], we have Ĥ
(k)
j = T̂

(k)
j√

θ̂
(k)
j /θ

(k)
j . We are ready to bound the probability of

∑
k∈lj T̂

(k)2
j > γκj

be-

low:

P

∑
k∈lj

T̂
(k)2
j > γκj


≤ P

∑
k∈lj

Ĥ
(k)2
j >

(
1− Cθ

τ0

√
log p

n

)
γκj

+O(p−L−1)

≤ P

∑
k∈lj

(Ȟ
(k)2
j − 1) >

(
1− Cθ

τ0

√
log p

n

)
γκj
− κj − κjCH

√
log3 p

n


+O(p−L−1)

= P

∑
k∈lj

(Ȟ
(k)2
j − 1) > κj + C4(log2 p+

√
κj log p)− Cθ

τ0

√
κ2j log p

n

−CθC4

τ0

√ log5 p

n
+

√
κj log2 p

n

− κj − κjCH
√

log3 p

n

+O(p−L−1)

≤ P

∑
k∈lj

(Ȟ
(k)2
j − 1) > C ′2(log2 p+

√
κj log p)

+O(p−L−1)

= O(p−L−1).

The inequality on the second line follows from Assumption (C1) that

minj,k θ
(k)
j ≥ τ0 > 0, and from Lemma 1 (ii) with M = L + 1. The inequal-

ity on the third line follows from Lemma 3 with M = L + 1. The inequality on
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the fifth line is the result of the choice of γκj
, with a sufficiently large C4 > 0,

and Assumption (C2) that log3 p = o(n) and κj log2 p = o(n). The last equality

follows from Lemma 2.

Lastly, we prove (9.8) as follows:

P

(∑
k∈lj

T̂
(k)2
j < γκj

)
= P

∑
k∈lj

Ĥ(k)
j +

√
nρ

(k)
j√

θ
(k)
j

2

θ
(k)
j

θ̂
(k)
j

< γκj


≤ P

∑
k∈lj

Ĥ(k)
j +

√
nρ

(k)
j√

θ
(k)
j

2

≤

(
1 +

Cθ
τ0

√
log p

n

)
γκj

+O(p−L−1)

≤ P

∑
k∈lj

(Ȟ
(k)2
j − 1) ≤ κjCH

√
log3 p

n
− κj +

(
1 +

Cθ
τ0

√
log p

n

)
γκj

−Cmn
∑
k∈lj

ρ
(k)2
j − 2

∑
k∈lj

Ȟ
(k)
j

√
nρ

(k)
j√

θ
(k)
j

+ 2CH

√
log2 p

n

∑
k∈lj

√
n|ρ(k)j |√
θ
(k)
j


+O(p−L−1). (9.9)

The first inequality follows from Assumption (C1) that minj,k θ
(k)
j ≥ τ0 > 0,

and Lemma 1 (ii) with M = L + 1. The last inequality follows from Lemma 3

(both equations) and minj,k(θ
(k)
j )−1 := Cm > 0, guaranteed by the sub-Gaussian

assumption in Assumption (C1).

We can upper bound the term 2CH

√
(log2 p)/n

∑
k∈lj (
√
n|ρ(k)j |)/(

√
θ
(k)
j ) in

(9.9) as follows:

2CH

√
log2 p

n

∑
k∈lj

√
n|ρ(k)j |√
θ
(k)
j

≤ 2CH

√
log2 p

n

√
n
√
τ0

√
κj

√∑
k∈lj

ρ
(k)2
j

= o

√n∑
k∈lj

ρ
(k)2
j

 . (9.10)

The first inequality follows from the Cauchy—Schwarz inequality and Assump-

tion (C1), and the second equality follows from (C2) that κj log2 p = o(n).

We next upper bound the term −2
∑

k∈lj Ȟ
(k)
j (
√
nρ

(k)
j )/

√
θ
(k)
j with a high

probability. Note that θ
(k)
j is bounded below and above; that is, τ0 ≤ θ(k)j ≤ C−1m

by Assumption (C1). In addition, Ȟ
(k)
j has a zero mean and is sub-exponential

with bounded constants, by Assumption (C1). From the Bernstein inequality
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(Proposition 5.16 in Vershynin (2010)), we have, with some constant c′ > 0,

P

|2∑
k∈lj

∣∣∣∣∣∣Ȟ(k)
j

√
n|ρ(k)j |√
θ
(k)
j

∣∣∣∣∣∣ > t


≤ 2 exp

−c′min

 t2

n
∑

k∈lj ρ
(k)2
j

 , t

maxk∈lj
√
n|ρ(k)j |

 . (9.11)

We select t = CB

√
n
∑

k∈lj ρ
(k)2
j log2 p with a large constant CB in the inequality

above, and apply (9.10) to reduce (9.9), as follows:

P

∑
k∈lj

T̂
(k)2
j < γκj


≤ P

(∑
k∈lj

(Ȟ
(k)2
j − 1) ≤ −Cmn

∑
k∈lj

ρ
(k)2
j + 2CB

√
n
∑
k∈lj

ρ
(k)2
j log2 p

+ 2C4

√
κj log p+ 2C4 log2 p

)
+O(p−L−1)

≤ P

(∑
k∈lj

(Ȟ
(k)2
j − 1) ≤ −CmC2(log2 p+

√
κj log p)

+ 2CB

√
C2 log2 p(log2 p+

√
κj log p)

+ 2C4

√
κj log p+ 2C4 log2 p

)
+O(p−L−1)

≤ P

(∑
k∈lj

(Ȟ
(k)2
j − 1) ≤ −C ′2(log2 p+

√
κj log p)

)
+O(p−L−1)

= O(p−L−1).

The inequality on the first line is obtained by the choice of γκj
, with the

chosen C4 > 0 and Assumption (C2) that κj log2 p = o(n). The inequalities on

the second and third lines follows from Assumption (C4) that
∑

k∈lj |ρ
(k)
j |2 ≥

(C2(log2 p+
√
κj log p))/n, for a sufficiently large C2 > 0. The last equality

follows from Lemma 2.

This completes the proof of (9.7) and (9.8), which yields

P
{(
∪j∈A[0] EA

[0],2
j

)⋃(
∪j∈A[1] EA

[1],2
j

)}
= O(p−L),

with the results from Theorem 1. Therefore we have completed the proof of
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Theorem 2.

Supplementary Material

The online Supplementary Material contains the proofs of the three lemmas.
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