
Statistica Sinica: Supplement

AN ALGEBRA FOR THE CONDITIONAL

MAIN EFFECT PARAMETERIZATION

Arman Sabbaghi

Purdue University

Supplementary Materials



2

S1. Proofs

In this section, we provide the proofs for the results in Sections 4, 5, and 6.

Proof of Proposition 2. We recognize that

〈
Xs
i|j, X

s′

l|k | F
〉

= 2−2
〈
X{i} + sX{i,j}, X{l} + s′X{l,k} | F

〉
= 2−2(

〈
X{i}, X{l} | F

〉
+ s′

〈
X{i}, X{l,k} | F

〉
+ s

〈
X{i,j}, X{l} | F

〉
+ ss′

〈
X{i,j}, X{l,k} | F

〉
),

and then apply Lemma 1 to each term in this expression.

Proof of Proposition 3. We have that

〈
Xs
i|j, XI | F

〉
= 2−1

〈
X{i} + sX{i,j}, XI | F

〉
= 2−1(

〈
X{i}, XI | F

〉
+ s

〈
X{i,j}, XI | F

〉
),

and then apply Lemma 1 to each term in this expression.

Proof of Corollary 3. Twin CMEs correspond to the functions X+
i|j and X−i|j for dis-

tinct i, j ∈ {1, . . . , r}, which are orthogonal by Proposition 2.

Proof of Corollary 4. This property follows from Proposition 3, and also corresponds

to Corollary 2.
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Proof of Corollary 5. Sibling CMEs correspond to the functions Xs
i|j and Xs′

i|k for

distinct i, j, k ∈ {1, . . . , r} and any s, s′ ∈ {−,+}. From Proposition 2, their inner

product is 2−2bF ,φ, and from Corollary 1, their correlation is 1/2.

Proof of Corollary 6. Let CME(Ai | Ajs) and CME(Al | Aks
′) denote non-twin

CMEs in a family of a resolution IV fraction F ⊆ Dr, where i, j, l, k ∈ {1, . . . , r}

with i 6= j, l 6= k, and s, s′ ∈ {−,+}. In this case, INT(Ai, Aj) and INT(Al, Ak) are

fully aliased in F . Then as F is resolution IV,
〈
Xs
i|j, X

s′

l|k | F
〉

= 2−2ss′bF ,φ from

Proposition 2, so that the non-twin CMEs are aliased.

Now let CME(Ai | Ajs) and CME(Al | Aks
′) denote CMEs with different parents

and non-aliased corresponding two-factor interactions. Then
〈
Xs
i|j, X

s′

l|k | F
〉

= 0

from Proposition 2, so that the CMEs are orthogonal.

Proof of Corollary 7. An uncle-nephew effect pair corresponds to the functions Xs
i|j

and X{j} for distinct i, j ∈ {1, . . . , r} and any s ∈ {−,+}. As all indicator function

coefficients involving one or two factors are zero in a regular design of resolution at

least III, we obtain the result from Proposition 3.

Proof of Corollary 8. Cousin CMEs correspond to the functions Xs
i|j and Xs′

l|j for dis-

tinct i, j, l ∈ {1, . . . , r} and any s, s′ ∈ {−,+}. As all indicator function coefficients

involving one, two, or three factors are zero in a regular design of resolution at least

IV, we obtain this result from Proposition 2.
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Proof of Proposition 4. For distinct i, j ∈ {1, . . . , r} in a 2r−pIV design F ⊆ Dr,

CME(Ai | Aj+) is clear if and only if CME(Ai | Aj−) is clear, and CME(Ai | Aj+)

is clear if and only if INT(Ai, Aj) is clear. The first direction in the latter result

follows from Corollary 2. For the second direction, note from Corollary 2 that, for

any I ∈ Pr − {{i}, {i, j}} such that |I| ∈ {1, 2}, and for any l ∈ {1, . . . , r} − {i, j},

{i}4I and {i, j}4{l} are not defining words. The second direction then follows by

recognizing that INT(Ai, Aj) is clear if and only if for any I ∈ Pr − {{i, j}} such

that |I| = 2, {i, j}4I is not a defining word. Therefore, for any two 2r−pIV designs F

and F ′, F has more clear two-factor interactions than F ′ if and only if F has more

clear CMEs than F ′.

Proof of Lemma 2. This follows by translating the result of Cheng, Steinberg, and

Sun (1999) and Cheng (2014, p. 172) on the connection between a regular design’s

count of defining words of length four and the numbers of two-factor interactions in

its aliasing sets into CME terminology. Specifically, the number of pairs of aliased

two-factor interactions that correspond to the distinct factor pairs among the CMEs

in a family t ∈ {1, . . . , TF} of F is Nt(F){Nt(F)−1}/2. Each such pair of aliased two-

factor interactions corresponds to a defining word of length four in F . As a defining

word of length four gives rise to three distinct pairs of aliased two-factor interactions,

we have that the number of defining words of length four is
∑TF

t=1Nt(F){Nt(F)−1}/6.

A minimum aberration 2r−pIV design minimizes the number of defining words of length
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four, and hence minimizes
∑TF

t=1Nt(F){Nt(F)− 1} among 2r−pIV designs F .

Proof of Proposition 5. From Corollary 1, the absolute correlation between any two

non-sibling CMEs that do not involve both of the same factors is either 0 or 1/2.

Lemma 2 then yields the result.

Proof of Lemma 3. For c, d ∈ {1, . . . , q}, entry (c, d) of MTM is the inner product

of columns c and d of M . This inner product of column vectors is equivalent to the

inner product of Z(c) and Z(d) using the indicator function of F in Definition 8, with

a multiplicative factor of 2r being introduced because the inner product of column

vectors in M does not involve division by 2r as in Definition 8.

Proof of Proposition 6. The entries of MTM are derived by combining Lemma 3

with Lemma 1 and Propositions 2 and 3 to calculate the inner products of pairs

of traditional and conditional effects across the columns of M . The determinant of

MTM then follows by recognizing its block-matrix structure, and using the standard

determinant formula for such matrices.

S2. Conditional Main Effect Analysis of Practical Application

The data from the painted panel experiment of Lorenzen and Anderson (1993, p. 242–

249), in the order of the execution of the runs, are contained in Tables 1 and 2. Es-

timates and tests for the factorial effects that correspond to the final ANOVA they
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performed are in Table 3. Note that in this table, complete aliasing of two-factor

interactions are denoted by “=”. The R2 and adjusted R2 vales for the correspond-

ing linear regression model are approximately 0.95 and 0.91, respectively. Residual

diagnostics in Figure 1 do not indicate either violations of the standard regression as-

sumptions of independent and identically distributed Normal errors, or the existence

of outliers. As we can see, ME(A1), ME(A2), ME(A3), ME(A4), ME(A5), ME(A8),

INT(A4, A7), and INT(A2, A8) = INT(A3, A5) = INT(A4, A6) are statistically sig-

nificant at the 0.05 level. We cannot conclude which of the latter three two-factor

interactions are active by the traditional analysis because they are fully aliased in

the design. To resolve this limitation, we use the CME analysis method of Su and

Wu (2017, p. 5–6). We first note that, among the estimates of the main effects for

the factors involved in these interactions, the estimate of ME(A2) (−0.01875) is clos-

est to the estimate of the aliased set of two-factor interactions (0.0175) in absolute

value. Then as these two estimators have opposite signs, we conclude from Rule 1 in

(Su and Wu, 2017, p. 5) that CME(A2 | A8−) is significant. Our final set of signifi-

cant effects under the CME analysis are thus ME(A1), ME(A2), ME(A3), ME(A4),

ME(A5), ME(A8), INT(A4, A7), and CME(A2 | A8−).
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Table 1: Runs 1− 16 of the experiment of Lorenzen and Anderson (1993, p. 246).

Run A1 A2 A3 A4 A5 A6 A7 A8 Film Build

1 + + − − − − + + 0.15

2 − + − + + − − − 0.16

3 + − − − − − − − 0.19

4 − − + − − + + + 0.38

5 + + + + + + + + 0.22

6 + − + − + − + − 0.35

7 − + + − + − + + 0.30

8 − − + + + + + − 0.26

9 − + + − − + − − 0.30

10 − − − − + + − + 0.15

11 + − + + − − + + 0.27

12 + + − + + − + − 0.16

13 + − + + + + − − 0.28

14 + + − + − + − + 0.16

15 − + + + + + − + 0.27

16 + + + + − − − − 0.27



8

Table 2: Runs 17− 32 of the experiment of Lorenzen and Anderson (1993, p. 246).

Run A1 A2 A3 A4 A5 A6 A7 A8 Film Build

17 − + + + − − + − 0.28

18 − − − + − + − − 0.22

19 − + − + − + + + 0.20

20 + + + − − + + − 0.32

21 + − − + + − − + 0.13

22 − − − + + − + + 0.16

23 − − − − − − + − 0.34

24 − − + − + − − − 0.35

25 + − + − − + − + 0.28

26 − + − − + + + − 0.21

27 − + − − − − − + 0.20

28 + + + − + − − + 0.27

29 + − − − + + + + 0.14

30 − − + + − − − + 0.27

31 + − − + − + + − 0.15

32 + + − − + + − − 0.15
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Table 3: Summary of the estimates and tests for the factorial effects in the final

ANOVA of Lorenzen and Anderson (1993, p. 248). Complete aliasing of any pair of

two-factor interactions in the design is denoted by “=” here.

Factorial Effect Estimate F-Test Statistic p-Value

ME(A1) −0.035 20.035 3.8× 10−4

ME(A2) −0.01875 5.75 2.9× 10−2

ME(A3) 0.1125 206.96 1.4× 10−10

ME(A4) −0.03875 24.55 1.4× 10−4

ME(A5) −0.02625 11.27 4.0× 10−3

ME(A6) −0.01 1.64 2.2× 10−1

ME(A7) 0.015 3.68 7.3× 10−2

ME(A8) −0.0275 12.37 2.9× 10−3

INT(A1, A3) 0.01625 4.32 5.4× 10−2

INT(A1, A5) 0.015 3.68 7.3× 10−2

INT(A2, A4) = INT(A6, A8) 0.01625 4.32 5.4× 10−2

INT(A2, A6) = INT(A4, A8) 0.015 3.68 7.3× 10−2

INT(A2, A8) = INT(A3, A5) = INT(A4, A6) 0.0175 5.01 4.0× 10−2

INT(A3, A4) = INT(A5, A6) −0.015 3.68 7.3× 10−2

INT(A4, A7) −0.0225 8.28 1.1× 10−2
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Figure 1: The boxplot, Normal quantile-quantile plot, scatterplot against fitted val-

ues, and plot against the run order, of the standardized residuals for the linear

regression model that corresponds to the final ANOVA of Lorenzen and Anderson

(1993, p. 242–249).
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