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Abstract: We add a log-concave qualitative constraint on the baseline distribution

of the proportional odds model. A full maximum likelihood method is developed

for the joint estimation of the regression parameters and densities. The asymptotic

properties of the estimates are established. A likelihood ratio test is constructed to

test the significance of the regression parameter. We also propose a Kolmogorov-

Smirnov type test to assess the log-concavity of the baseline distribution. A sim-

ulation study and an application to data from the Chicago Healthy Aging Study

show the usefulness of our method.
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1. Introduction

The density ratio model, or exponential tilt model, is useful for modeling

treatment effects, the biased-sampling problem, and the distribution of a mix

of discrete and continuous variables (Cheng, Qin and Zhang (2009); Qin (1998);

Terrell (2003); Zou, Fine and Yandell (2002); Chen (2007)), among many other

applications. Cheng and Chu (2004) and Fokianos (2004) show that a density

estimation based on data from all samples under the density ratio model is more

efficient than a traditional estimation based on separate samples. Luo and Tsai

(2012), and Diao, Ning and Qin (2012) generalize the density ratio model to a

proportional likelihood ratio model by incorporating covariates:

f(y|x) =
dF0(y) exp(yxTβ)∫
exp(yxTβ)dF0(y)

, (1.1)

where F0(·) is the baseline distribution of response y, and x and β are linear

covariates and coefficient vectors, respectively. For example, density estimations

for the above models can be used to describe the distributional difference of an

outcome between groups. To the best of our knowledge, the current literature

on model (1.1) treats the baseline distribution as a nuisance, estimated only em-
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pirically. We generalize the functional form of the regression part of model (1.1),

and propose a joint estimation of the baseline density and regression parameters.

Moreover, we impose a log-concave qualitative constraint on the baseline

density for model (1.1). Therefore the baseline density is p(y) = expϕ(y), for

some concave function ϕ : R→ [−∞,∞). Density estimations without any con-

straint are known to be inefficient, because the parameter space is too large. A

popular approach is to use smoothing methods, such as a kernel density esti-

mation, or an estimation based on a roughness penalization. Estimating model

(1.1) involves iteratively updating the estimate of the nonparametric or paramet-

ric components, while conditioning on the others. Smoothing methods cause an

intensive computational burden, because the optimal smoothing parameter needs

to be selected at each iteration. As a useful alternative, the log-concave density

estimation is an automatic nonparametric estimation that avoids the problem of

selecting tuning parameters. The univariate log-concave density estimation has

the same minimax rate of order n−4/5 as that of a density estimation with two

bounded derivatives (Ibragimov and Khas’minskii (1983); Seregin and Wellner

(2010); Kim and Samworth (2016)). Thus, compared with traditional approaches

that include tuning parameter selection, the proposed approach offers computa-

tional advantages without loss of asymptotic efficiency.

The well-studied log-concave densities include most of the commonly used

parametric distributions (Walther (2009)), such as the uniform, normal, logis-

tic, chi-square, chi, gamma, beta, and Weibull distributions. Estimations with

log-concave constraints have practical applications in econometric modeling, reli-

ability theory, and estimations of monotonic hazard rates (Bagnoli and Bergstrom

(2005); Barlow and Proschan (1975); Hall et al. (2001)). Although there is no

nonparametric maximum likelihood estimation for a unimodal density (Birge

(1997)), such an estimation does exist for a log-concave density, and may be

used instead of the larger class of unimodal densities (Dumbgen and Rufibach

(2009)).

A maximum likelihood estimation of a multidimensional log-concave density

is shown to have a smaller mean integrated squared error than those of kernel-

based methods, for moderate to large sample sizes (Cule and Samworth (2010)).

In addition, we obtain finite-sample efficiency for the regression parameter esti-

mates by imposing a correct log-concavity constraint on the baseline density es-

timation for model (1.1). Now how confident can we be that the shape constraint

is correct in practical applications when we do not know the true distribution,

a priori? In other words, it is critical that we determine the log-concavity of
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the baseline distribution. For example, Walther’s (2002) method is equivalent to

testing whether a parameter c is equal to zero. Howvever, it is computationally

expensive because it requires many bootstrap estimates based on a set of values

of c. Cule and Samworth (2010) introduce a permutation test, and Hazelton

(2010) proposes a test using a kernel density estimation. However, theoretical

support is still lacking for these two methods. Chen and Samworth (2013) de-

velop a test based on smoothed log-concave density estimates. Nevertheless,

while these methods test the log-concavity of the marginal density estimation,

they do not incorporate covariates. Thus, we propose a Kolmogorov-Smirnov

type test to assess the log-concavity of the baseline distribution, which is shown

to be consistent.

The rest of the paper is organized as follows. The model and estimation

method are introduced in Section 2. Section 3 describes the asymptotic properties

of the estimates and a test of the log-concavity of the baseline distribution. The

results of simulation studies and an application to data from the Chicago Healthy

Aging Study are presented in Section 4. Section 5 concludes the paper.

2. Models and Methods

Let the random vector Y follow distribution PY on a given set Y ⊆ R, PY
have a density pY in Y, and pY ∈ Pc for a log-concave class of probability densities

Pc. The random vector X follows distribution PX on a given set X ⊆ Rk. Our

conditional model of interest is

f(y; x,β, p) =
p(y)eη(y,x|β)∫
p(y)eη(y,x|β)dy

, (2.1)

where η(y,x|θ) is a parametric regression function that depends on parame-

ters β ∈ Θ, for Θ ⊆ R1×k, and the baseline density p is log-concave. A

simple form for η(y,x|θ) is linear yxTβ, as in model (1.1). However, it can

be specified using other parametric forms to accommodate various applications,

for example, the transformed linear form HY (y)HX(x)Tβ for known functions

HX and HY . We call model (2.1) the proportional odds model with a log-

concave distribution (POML), because the proportionality between conditional

odds {f(y1|x1)/f(y1|x2)}/{f(y2|x1)/f(y2|x2)} = exp{η(y1,x1|β)−η(y1,x2|β)+

η(y2,x2|β)− η(y2,x1|β)}.
In addition to the nice properties of model (2.1) described in the literature

(Rathouz and Gao (2009); Luo and Tsai (2012)), we examine the relationships

between model (2.1) and a shape-constrained survival analysis, and generalized
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models with a random component under a shape constraint. Distributions under

a shape constraint on the hazard rate are of considerable practical interest (Hall

et al. (2001); Qin et al. (2011)). Because it imposes a log-concave constraint, the

POML might be utilized to model the monotonic hazard rate (Dumbgen and Ru-

fibach (2009)) for complete data using h(y; x,β) = f(y; x,β)/{1 − F (y; x,β)}.
Although challenging, the POML for censored data can be estimated using a

EM type algorithm (Cheng, Qin and Zhang (2009); Shen, Jing and Qin (2012)).

Rathouz and Gao (2009) extended the generalized linear model with density

estimations for categorical responses using exponential tilting. POML can be

represented as a generalized model with a canonical link function and an addi-

tional log-concave constraint on a random component.

Denote PX,Y as the joint distribution of (Y,X). The likelihood function for

(β, p) is

LP (β, p) =

∫
log p(y)dPY +

∫
η(y,x|β)dPX,Y

−
∫ [

log

∫
exp{η(y,x|β)}p(y)dy

]
dPX . (2.2)

The maximum likelihood estimators (MLEs) satisfy (β̂n, p̂n) = arg maxβ,p∈PcLP

(β, p), where P denotes the empirical distribution.

Let (y(1), . . . , y(k)) be the observed ordered distinct response with corre-

sponding observed frequencies (m1, . . . ,mk), and vector ϕ = (ϕ1, . . . , ϕk), for

ϕi = log p(y(i)). We propose an iterative procedure for the simultaneous estima-

tion of the parametric and nonparametric components of the POML as follows:

Initialization: set initial values for β̂, which may be the result of an educated

guess in a practical application. In our study, we choose the initial values from

the null space, β̂ = 0.

Density Estimation: update ϕ using

ϕ̂ = arg max
exp(ϕ)∈Pc

[
n∑
i=1

η(yi,xi|β̂) +

k∑
l=1

mlϕl −
n∑
i=1

log

∫
exp{ϕ(y) + η(y,xi|β̂)}dy

]
.

(2.3)

Regression Parameter Estimation: update β using

β̂ = arg max
β

[
n∑
i=1

η(yi,xi|β) +

k∑
l=1

mlϕ̂l −
n∑
i=1

log

∫
exp{ϕ̂(y) + η(y,xi|β)}dy

]
.

Iteration: iterate for the density and regression parameter estimations until con-

vergence.
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The estimation of the conditional density is an optimization problem with

a nonlinear objective function and a concave constraint on the result. We aim

to estimate the baseline density function f(·) = dF (·)/dµ nonparametrically for

a Lebesgue measure µ, or equivalently, ϕ(·) = log(f), and parameters β. Esti-

mating the vector ϕ is sufficient because the nonparametric maximum likelihood

estimate of the log-concave density exists and is a piecewise linear continuous

function, with knots on the observation points (Dumbgen and Rufibach (2009)).

The iterative convex minorant algorithm (Groeneboom and Wellner (1992)) and

active set algorithm (Fletcher (1987)) have been used to estimate the marginal

log-concave density. As discussed by Dumbgen, Husler and Rufibach (2011),

the likelihood function in expression (2.3) is infinitely often differentiable and

strictly concave on Rk. We extend the active set algorithm of Dumbgen, Husler

and Rufibach (2011) to maximize (2.3) for a conditional density estimation. The

term “active set” refers to the set of knots where the slope changes in a contin-

uous piecewise linear function. Essentially, the active set algorithm incorporates

two iterative procedures: updating the active set, and updating the density esti-

mate within the active set. We also tried a gradient method for the conditional

log-concave density estimation, and found it to be computationally inefficient

for large sample sizes. The estimation of the regression parameters is a nonlin-

ear optimization problem, and can be maximized using a Newton-Raphson type

algorithm.

Our MLE approach differs from the empirical likelihood approach in the

literature (Luo and Tsai (2012); Diao, Ning and Qin (2012)) in terms of estimat-

ing the baseline distribution. The empirical likelihood approach only provides

an empirical estimate for the distribution function, that is, a stepwise function

with jumps at data points. The likelihood approach for the POML provides an

estimated density function with a log-concave shape constraint. Qin and Zhang

(2005) develop a useful kernel density estimation under a density ratio model.

However, the kernel density estimation relies on empirical likelihood estimates.

That is, they first estimate the regression parameters and the empirical esti-

mate F̃0 of the baseline distribution function F0. Then, they obtain the kernel

estimator of density f̂0 by smoothing the increment in F̃0.

3. Inferential Results

In this section, we consider the asymptotic properties of the estimates of

the regression parameters and the baseline distribution. We also propose a log-
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likelihood ratio test for the hypothesis related to the regression parameters β, and

a Kolmogorov-Smirnov type test for assessing the log-concavity of the baseline

density.

To build the theoretical results, we make the followed assumptions:

A. The true parameters (β0, p0) maximize LP (β, p), and the Kullback-Leibler

information exists and is finite; that is,

E0

{∣∣∣∣log
f(y; x,β, p)

f(y; x,β0, p0)

∣∣∣∣} <∞,

where E0 denotes the expectation under PX,Y ;

B. The domains of PY and PX are compact in the Euclidean space;

C. The parameter space Θ is convex compact. The function η(y,x|β) is

a parametric continuous differentiable function in terms of β. The parameter

β ∈ Θ is identifiable from η(y,x|β);

D. The information matrix −(∂2E[LP (β, p)])/(∂β2)|β=β0
is positive-definite;

E. The true log-concave density function p0 is continuously differentiable.

Assumption A is required for consistency. Condition B is a general regu-

larity condition, used to apply the asymptotic theorem to large samples. The

identification condition Assumption C is a basic criterion. The theoretical results

might not succeed if this condition is weak. Conditions D and E are needed to

derive the
√
n-consistency and asymptotic normality of the regression parameter

estimates β̂.

3.1. Consistency: Multi-dimensional log-concave distribution

In this paper, we focus on the case Y ⊆ R. The estimation for a POML with

a multivariate log-concave baseline distribution is challenging, and is addressed

elsewhere (Cule and Samworth (2010)). However, we find that the MLE of the

POML with Y ⊆ Rd is theoretically consistent, and show it here for generality.

Let the random vector Y follow distribution PY on a given set Y ⊆ Rd, and

let PY have density pY in a log-concave class Pc of the probability density on

Y. Let h(p, q) denote the Hellinger distance between two probability measures

with densities p and q with respect to the Lebesgue measure on Rd: h2(p, q) =

1/2
∫

(
√
p−√q)2dµ = 1−

∫ √
p.qdµ. Denote the joint density:

gβ,p =
p(y)eη(y,x|β)∫
p(y)eη(y,x|β)dy

px(x).

It can be seen that the likelihood (2.2) is log gβ,p, with px(x) omitted because it

does not involve (β, p).
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Lemma 1. The Hellinger distance satisfies h2(gβ,p, gβ0,p0) ≥ ah2(p, p0) for a

positive constant a.

Proof. see Appendix.

The consistency of the MLE of a log-concave density on R with respect to

the Hellinger metric is established by Pal, Woodroofe and Meyer (2007), and

the uniform consistency is shown by Dumbgen and Rufibach (2009). Both the

Hellinger consistency (Seregin and Wellner (2010)) and the uniform consistency

(Cule and Samworth (2010); Schuhmacher, Husler and Duumbgen (2011)) of the

MLE for the multivariate log-concave density on Rd are established. Dumbgen,

Samworth and Schuhmacher (2011) present the consistency of the MLE for mul-

tivariate log-concave distributions in terms of the total variation distance in the

regression model. We first establish the connection between the joint and base-

line densities in terms of the Hellinger distance under the POML in Lemma 1.

This implies that h2(p, p0) = 0 if h2(gβ,p, gβ0,p0) = 0. Then, in the following

Theorem, we show that the estimates of the baseline density and regression pa-

rameters are both consistent. Specifically, the estimate of the baseline density is

Hellinger consistent.

Theorem 1. Under Assumptions A-C, the sequence of MLEs (β̂n, p̂n) = arg

maxβ,p∈PcLP(β, p) satisfy: β̂n → β0 and h(p̂n, p0) → 0 as n → ∞. Moreover,

p̂n → p0 pointwise and the convergence is uniform on a compact space.

Proof. see Appendix.

3.2. Asymptotic normality: One-dimensional log-concave distribution

In this section, we establish the asymptotic normality for the estimates of

β for the case Y ⊆ R. First, let us introduce the concept of a bracketing num-

ber with a Hellinger metric specific to our problem (van der Vaart and Wellner

(1996)). An ε-bracket is a bracket [gL, gU ], with h(gL, gU ) < ε, where the bracket

[gL, gU ] is the set of all functions g with gL ≤ g ≤ gU and g ∈ G. The brack-

eting number N[ ](ε,G, h) is the minimum number of ε-brackets needed to cover

G. The logarithm of the bracketing number is generally referred to entropy with

bracketing.

Lemma 2. Let Gδ = {gβ,p : h(p, p0) < δ, ‖β − β0‖ < δ}, and h2
0(p, q) = h2(p +

p0, q + p0) for δ > 0. There is a constant C > 0, such that

logN[ ](ε,Gδ, h0) ≤ c(ε−1/2),

for ε small enough, and a constant c.
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Proof. see Appendix.

The bounds for the metric entropy with bracketing for the class of log-concave

densities determine the global rate of convergence of the MLE. Doss and Wellner

(2016) obtain that the bound of entropy with respect to a Hellinger metric is

of order O(ε−1/2) for MLEs of univariate log-concave densities, and that the

rate of convergence is O(n−2/5). Similarly, we establish the entropy of the joint

density of interest in Lemma 2. In the following lemma, we establish the rate of

convergence of the baseline density, conditioning on the convergence rate of the

regression parameters. This implies that the baseline density estimation achieves

an optimal rate if the estimates of the regression parameters behave reasonably

well.

Lemma 3. Let p̂β̃ = argmaxp∈PcLP(β̃, p), and let Assumptions C and D hold.

Then

h(p̂β̃, p0) ≤ O(n−2/5 + ‖β̃ − β0‖).

Proof. see Appendix.

Utilizing the profile likelihood (Murphy and van der Vaart (2000)) method

and the results of Lemma 3, we can prove the asymptotic normality of the esti-

mates of β.

Theorem 2. Under Assumptions A-E,
√
n(β̂ − β0) is asymptotic normal with

mean zero and covariance matrix Ĩ0.

Proof. see Appendix for proof and details of Ĩ0.

Establishing the asymptotic normality when Y ⊆ Rd presents nontrivial

technical challenges, and thus is left to future research. The convergence rate

shown in Lemma 3 is used to establish the
√
n-asymptotic normality in Theo-

rem 2. If the baseline density is multivariate for the POML (i.e., Y ⊆ Rd), the

derivation of the convergence rate includes additional technique difficulties. A

first step might be to extend Lemma 2 to an entropy bound for the multivari-

ate case. Kim and Samworth (2016) show that the minimax lower bound rate

for a Hellinger loss is n−1/(d+1), for d ≥ 2, for log-concave density estimations

without covariates. If these convergence rates can be established for the baseline

density estimation in the POML, we conjecture that asymptotic normality for√
n(β̂ − β0) can be achieved for d = 2, 3. However, for d > 4,

√
n-asymptotic

normality might not be satisfied; thus, we may need to find alternative estimators

to achieve optimal rates of convergence.
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3.3. Inference for regression parameters

Because the estimates are obtained using the maximum likelihood estimation

procedure, it is natural to use the log-likelihood ratio test to test the regression

parameters. A likelihood ratio inference proceeds by fitting a series of reduced

and nested models. Thus each reduced model in the sequence is contained within

the previous one. Denote the hypothesis of interest as H0 : β = βø. The testing

technique employs the profile likelihood because we are interested in testing the

low-dimensional parameter β, rather than the high-dimensional paramter p. De-

fine the profile likelihood as pL(β) = L{β, p(β)}, where p(β) = argmaxpL(β, p)

and L(β, p) is the full likelihood. The difference between the reduced model

and the full model with no restriction on β can be examined by calculating the

profile likelihood ratio test statistic G = 2{pL(β̂) − pL(βø)}. The asymptotic

distribution of this test statistic is presented in the following lemma.

Lemma 4. Under Assumptions A-E and the null hypothesis H0 : β = βø,

2{pL(β̂)− pL(βø)→ χ2
u in distribution,

where χ2
u is a chi-squared distribution with u degrees of freedom, equal to the

difference between the number of parameters specified under the reduced model

and that under the full model.

Proof. The proof follows immediately from Corollary 2 in Murphy and van der

Vaart (2000).

Substituting the estimator β̂ into the respective score vector and information

matrix of β, the covariance matrix of β̂ can be obtained from the sandwich

estimator:{
−∂

2pLn(β)

∂β∂βT

∣∣∣∣
β̂

}−1

[
n∑
i=1

{
∂pL(yi,xi,β)

∂β
|β̂

}{
∂pL(yi,xi,β)

∂β
|β̂

}T]{
−∂

2pLn(β)

∂β∂βT

∣∣∣∣
β̂

}−1

.

The explicit analytical expression for the gradient and the hessian of the pro-

file likelihood pL(β) is very complicated. In practical applications, we can use

numerical derivatives for the variance estimates.

3.4. Assess log-concavity of baseline density

An essential assumption of the POML (2.1) is the log-concave shape con-

straint on the baseline density, which may be violated in practical application.
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It is important to have an inferential tool to diagnose the appropriateness of

log-concavity. Many tests have been developed in the literature. Walther (2002)

represents the mixture of log-concave densities as exp{φ(y) + c‖y‖2}, for a con-

cave function φ and constant c ≥ 0. The test for a log-concave distribution is

equivalent to testing whether c = 0. A limitation of this approach is that it is only

practical for small sample sizes, because the computation of the test statistics re-

quires constructing many bootstrap samples. Cule and Samworth (2010) present

a permutation test with an easy implementation, but with less power. The test

by Hazelton (2010) is based on choosing the smallest bandwidth for the kernel

density estimate, with log-concavity satisfied. An extension of this test to model

(2.1) results in an excessive computational burden, because it is nontrivial to find

optimal kernel estimates, as discussed in the introduction. Moreover, there is a

lack of theoretical support for tests utilizing kernel densities or permutations.

Motivated by the aforementioned works, we develop a test for the log-

concavity of the baseline distribution that is computationally feasible and sup-

ported theoretically. In what follows, we present a Kolmogorov-Smirnov type

test to examine the log-concave assumption. The test statistic is essentially the

distance between the shape-constrained and nonconstrained MLEs of the baseline

distribution, in terms of a uniform metric. Denote by Fc the family of distribu-

tions with log-concave densities, and the MLEs (β̂n, F̂n) = arg maxβ,F∈FcPn{l(β,
F )}, where

l(β, F ) = dF (y) + η(y,x|β)− log

∫
exp(yxTβ)dF (y).

Let (β̃, F̃n) maximize the empirical likelihood without a shape constraint. Luo

and Tsai (2012) demonstrate that the empirical likelihood estimates are both

computationally and asymptotically efficient. We test the log-concavity using

the test statistic Tn =
√
n‖F̂n(y)− F̃n(y)‖∞, where ‖ · ‖∞ is the supernorm.

Because the distribution of Tn is difficult to derive, we propose a bootstrap

testing procedure, as follows:

1) Obtain the shape-constraint estimates (β̂n, F̂n) and empirical estimates

(β̃, F̃n) for the data {Y,X}, and calculate Tn;

2) Use the bootstrap method to sample data {Y ∗,X} from the null dis-

tribution f(y; x, β̂n, F̂n), obtain the shape-constrained MLEs (β̂∗, F̂ ∗n) and the

empirical estimates (β̃∗, F̃∗n) without a shape constraint, adn calculate T ∗;

3) Repeat the bootstrap process N times;

4) Compute the upper α-level critical value ξα from T ∗, and reject the null

hypothesis if Tn > ξα.
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We investigate the asymptotic property of our proposed Kolmogorov-Smirnov

type test under the alternative hypothesis; that is, the log-concave shape con-

straint is violated. The results show that test based on the proposed bootstrap

procedure is consistent.

Theorem 3. Under Assumptions A-C, if the true distribution F0 /∈ Fc, then

P (Tn > ξα)→ 1.

Proof. see Appendix.

4. Numerical Studies

4.1. Simulation

We conduct a simulation study to assess the performance of our methods.

The data are generated from the following POML with a linear regression func-

tion:

f(y;x1, x2, β1, β2, p) =
p(y)eyβ1x1+yβ2x2∫
p(y)eyβ1x1+yβ2x2dy

, (4.1)

with x1 ∼ Binomial(1, 0.5) under the following four settings: I. p(y) ∼ N(0, 1),

x2 ∼ N(0, 1), β1 = 0, and β2 = 0; II. p(y) ∼ N(0, 1), x2 ∼ N(0, 1), β1 = 1, and

β2 = 0.5; III. p(y) ∼ Exponential(1), x2 ∼ Exponential(1), β1 = 0, and β2 = 0;

IV. p(y) ∼ Exponential(1), x2 ∼ Exponential(1), β1 = −1, and β2 = −0.5.

For each setting, we generate 500 data sets, and fit the data using the POML.

The bias, standard deviation, mean squared error (MSE), and coverage proba-

bility of the 95% confidence intervals of the estimated regression parameters are

shown in Table 1. This table also shows the empirical rejection rates for a sig-

nificance level of 0.05, using the likelihood ratio test G. The mean estimated

density functions are shown in Figure 1. In summary, our method does a rea-

sonably effective job of providing accurate estimates of the regression parameters

and the density functions. The proposed likelihood ratio test is an adequate tool

for testing the significance of regression parameters.

For the purpose of comparing our results with those of existing similar meth-

ods, we also fit the data using the empirical likelihood approach of Luo and

Tsai (2012). Define the relative efficiency as RE = MSEPOML/MSEEL, where

MSEPOML is the MSE of the estimate using our method, and MSEEL is the

MSE using the empirical likelihood approach. Figure 2 shows the REs for the

estimations of the regression parameters (β1, β2). We can see that the MLE with

a log-concave density constraint has a smaller MSE than those of the empirical

likelihood estimates without shape constraints for moderate to large sample sizes.
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Table 1. Estimates of regression parameters in the simulation studies using
POML. The data are generated from the following POML: f(y;x1, x2, β1, β2, p) =
(p(y)eyβ1x1+yβ2x2)/(

∫
p(y)eyβ1x1+yβ2x2dy), with x1 ∼ Binomial(1, 0.5) and the follow-

ing four settings: I. p(y) ∼ N(0, 1), x2 ∼ N(0, 1), β1 = 0, and β2 = 0; II. p(y) ∼ N(0, 1),
x2 ∼ N(0, 1), β1 = 1, and β2 = 0.5; III. p(y) ∼ Exp.(1), x2 ∼ Exp.(1), β1 = 0, and
β2 = 0; IV. p(y) ∼ Exp.(1), x2 ∼ Exp.(1), β1 = −1, and β2 = −0.5. Bias: estimated re-
gression parameters minus true values; Est.: estimates; sd: sampling standard deviation
of estimates; mse: average of estimated mean squared error; CP: coverage probability of
95% confidence interval; RR: empirical rejection rate of a nominal 0.05 level using the
log-likelihood ratio test.

n
β1 β2

Bias sd. mse CP RR Est. sd. mse CP RR

I
200 0.009 0.148 0.022 0.920 0.058 0.006 0.072 0.005 0.964 0.038
500 0.001 0.090 0.008 0.956 0.062 -0.00005 0.043 0.002 0.940 0.046

II
200 0.013 0.186 0.035 0.960 0.992 0.021 0.090 0.009 0.960 0.966
500 -0.005 0.111 0.012 0.944 1.000 -0.005 0.054 0.003 0.966 0.996

III
200 0.006 0.151 0.023 0.952 0.066 0.016 0.081 0.007 0.960 0.052
500 0.005 0.085 0.007 0.952 0.044 0.009 0.047 0.002 0.954 0.046

IV
200 -0.031 0.320 0.103 0.950 0.984 -0.044 0.210 0.046 0.955 0.880
500 -0.015 0.190 0.036 0.944 1.000 -0.001 0.122 0.015 0.958 0.994

− −

Figure 1. Plots of mean estimated densities and distributions for control and treatment
groups in simulation. Left: normal distribution in setting II with N = 200; right:
exponential distribution in setting IV with N = 200. Dashed line: estimated density
for control group (β1 = 0); dotted line: estimated density for treatment group (β1 = 1);
solid line: true densities.
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Table 2. Results of power simulation. The data are generated from model (4.1) with
mixture normal baseline distribution 0.5N(µ1, 1) + 0.5N(µ2, 1). There is only a binary
predictor x ∼ binomail(1, 0.5), with regression coefficient equal to one. The significance
level is α = 0.05.

n
Type I Error Rate Power

µ1 = 0, µ2 = 0 µ1 = 0, µ2 = 2 µ1 = 0, µ2 = 4
100 0.070 0.105 0.580
200 0.055 0.055 0.900

Intuitively, adding an appropriate shape constraint on the distribution provides

some efficiency gains in terms of finite-sample performance. As discussed by Cule

and Samworth (2010), the poor approximation of the convex hull of the data of

the support of the underlying density results in relatively poor performance of

the log-concave maximum likelihood estimator for small sample sizes. In small

samples, the less desirable baseline density estimates affect the quality of the

estimation of the regression parameter as well.

Another simulation is conducted to evaluate the behavior of our proposed test

for the log-concave constraint. The data are generated from model (4.1), with a

mixture normal baseline distribution 0.5N(µ1, 1)+0.5N(µ2, 1). For simplicity, we

only consider a binary predictor x ∼ binomail(1, 0.5), with regression coefficient

β = 1. The baseline mixture p(·) has three settings: (µ1 = 0, µ2 = 0), (µ1 =

0, µ2 = 2), and (µ1 = 0, µ2 = 4). It is well known that the log-concavity is

satisfied when |µ2 − µ1| ≤ 2. We generate 200 data sets for each setting and for

two sample sizes (N = 100 and N = 200). Within each data set, 100 bootstrap

samples are generated to obtain the critical value for the test statistics. As shown

in Table 2, our proposed testing procedure performs appropriately in terms of

the type-I error rate and power, even for a relatively small sample size.

4.2. Chicago healthy aging study

As described in the introduction, the Chicago Healthy Aging Study (CHAS)

is a re-examination of a sample of 1,395 surviving participants (ages 65-84, 28%

female) from the Chicago Heart Association Detection Project in Industry 1967-

1973 cohort (CHA) (Pirzada et al. (2013)). Their cardiovascular disease (CVD)

risk profiles were originally ascertained at ages 25-44. This study re-examined

421 participants who were low-risk (LR) and 974 participants who were not-LR

at the baseline. LR is defined as having favorable levels of five major CVD risk

factors: serum total cholesterol < 200 mg/dL and not taking cholesterol-lowering
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Figure 2. Relative efficiency for regression parameters (β1, β2) between estimates us-
ing POML and empirical likelihood (EL) estimates. Dashed line: estimated rela-

tive efficiency MSEPOML/MSEEL for β̂1; dotted line: estimated relative efficiency

MSEPOML/MSEEL for β̂2.

medication; blood pressures ≤ 120/ ≤ 80 mmHg and not taking antihypertensive

medication; BMI < 25 (mass(kg)/{(height(m)}2); not smoking; and no history of

diabetes or heart attack. In the CHAS study, LR and not-LR CHA participants

were randomly selected from the 12,119 surviving original CHA participants, in

which there are 1,034 LR and 11,085 not-LR individuals at the baseline. There

is a problem with biased sampling because the baseline LR participants were

oversampled to obtain adequate samples for between-group comparisons. In ad-

dition, the CHAS participants tended to be healther than the CHA participants

not selected for CHAS.

Although the importance of the LR status in overcoming the CVD epidemic

is often recognized, the long-term association of LR status at a younger age with

objectively measured health in older age has not been examined (Daviglus et

al. (2004)). We divide the CHAS participants into four groups: LR, 0 RF, 1

RF, 2+ RF. The 0 RF, 1 RF, 2+ RF refer to having 0, 1, and ≥ 2 of the five
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Figure 3. Estimated densities and cumulative distribution functions for six minutes
walking distance of participants in CHAS study using POML by risk groups, adjusted
for gender and age. Left: estimated density functions; right: estimated cumulative
distribution functions. Solid Line: LR; dashed line: 0 RF; dotted line: 1 RF; dash-
dotted line: 2+ RF. Waking distance is measured in foot.

adverse CVD risk factors, respectively (Daviglus et al. (2016)). The POML is

applied to study the distributional difference of six minutes walking distance

(measured in feet) between LR and not-LR participants, defined at the baseline.

For illustration purposes, we consider four discrete predictors, binary indicators

of the risk group (0 RF, 1 RF, and 2+ RF), gender, and the continuous predictor,

age. The estimated regression coefficients for the 0 RF, 1 RF, and 2+ R groups

are −0.056 (p-value = 0.583), −0.339 (p-value < 0.001), and −0.627 (p-value

< 0.001), respectively. The estimated coefficients for male and age are 0.848

(p-value < 0.001) and −0.368 (p-value < 0.001), respectively. The test statistic

for testing log-concavity is Tn = 0.088, with #{b : Tn > T ∗b }/100 = 0.4, where T ∗b
for b = 1, . . . , 99 is calculated from 99 bootstrap samples, following our proposed

bootstrap procedure. Consequently, we fail to reject the hull hypothesis that

the baseline distribution is log-concave. The plots of the estimated densities and

cumulative functions for four risk groups are shown in Figure 3. The estimated

six minute walking distance of participants in the LR and 0 RF groups cluster

around 1,760 feet, while those of participants in the 1 RF and 2+ RF groups

cluster around 1,640 feet. The estimated densities using our proposed method

clearly capture the left skewness, and provide insightful information about the
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distributional difference of a six minute walking distance for the individuals in

each group. Compared with individuals without risk factors at a younger age,

the results imply that those who do have risk factors at a younger age, and have

survived to an older age, will have shorter six minute walking distances, after

adjusting for gender and age.

5. Conclusion

We propose a log-concave shape constraint on the baseline density function

for the POML, enabling us to model a variety of distributions. We present a

maximum likelihood estimation method to jointly estimate the regression pa-

rameters and densities. The asymptotic properties, including the consistency

and normality of the estimates, are explored. Inference tests are also developed:

a log-likelihood ratio test for the significance of a regression parameter, and a

Kolmogorov-Smirnov type test to assess the log-concavity. A simulation study

and an application to data from the CHAS study show the usefulness of our

method.

To improve the small-sample performance, a smoothed log-concave estimate

of the baseline density in the POML might help. Denote by s2 the sample variance

of observed Y , and by σ2
p̂ the variance of the estimated log-concave density.

A smoothed version of p̂ can be derived via convolution, as p̃(z) =
∫
φγ̂(z −

y)p̂(y)dy, where φγ̂ is the density for N(0, γ̂). For observation Y generated from

the marginal log-concave density, the nonnegativity of γ̂ is ensured by the fact

σ2
p̂ ≤ s2 (corollary 2.3, Dumbgen and Rufibach (2009)). If σ2

p̂ is the variance of the

estimated baseline density in the POML, then the criterion σ2
p̂ ≤ s2 is not always

satisfied, because the observed Y is generated from a distribution conditioning

on various values of x. Thus, it is difficult, but promising to develop smoothed

baseline log-concave density estimates for the POML in future research.

Another interesting topic is to extend the POML to multi-dimensional re-

sponses that allows for the joint modeling of associations between multiple re-

sponse and multiple covaraites. This is motivated by the work of Cule and Sam-

worth (2010), who establish the existence, uniqueness, and computation of a non-

parametric MLE for multi-dimensional log-concave densities; this MLE is a fully

automatic nonparametric density estimator. In general, kernel estimations for

multi-dimensional densities, and specifying a symmetric, positive-definite band-

width matrix are challenging tasks.
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Appendix: Proof of Theorems

Proof of Lemma 1

Let assume that

h2(gβ,p, gβ0,p0) < ah2(p, p0) (A.1)

for any a > 0. Since 0 ≤ h2(gβ,p, gβ0,p0) ≤ 1 and 0 ≤ h2(p, p0) ≤ 1, both

h2(gβ,p, gβ0,p0) = 0 and h2(p, p0) > 0 have to be satisfied to meet the inequality

(A.1).

If h2(gβ,p, gβ0,p0) = 0, then
∫ √

gβ,pgβ0,p0dydx = 1, and gβ,p = gβ0,p0 follows

by Cauchy–Schwarz inequality. We have p = p0 and β = β0 by the identifiable

property of the parameter (p0,β0) (Lemma 1 of Luo and Tsai (2012)). This

contradict h2(p, p0) > 0.

Proof of Theorem 1

Denote φ = log p, and fβ,p = p(y) exp{η(y,x|β)}/Qp(β) where Qp(β) =∫
p(y) exp{η(y,x|β)}dy. For ε > 0, we have

0 ≤ LP(β̂n, p̂n)− LP(β0, p0) =

∫
log gβ̂n,p̂ndP−

∫
log gβ0,p0dP

≤
∫

log(ε+ gβ̂n,p̂n)dP−
∫

log gβ0,p0dP =

∫
log{ε+ gβ̂n,p̂n}d(P− PX,Y )

+

∫
log

{
ε+ gβ̂n,p̂n
ε+ gβ0,p0

}
dPX,Y +

∫
log{ε+ gβ0,p0}dPX,Y −

∫
loggβ0,p0dP.

By assumption B and Lemma 3.2 in Seregin and Wellner (2010), it is not

difficulty to show that
∫

log{ε + gβ̂n,p̂n}}d(P − PX,Y ) → 0 almost surely for ε

small enough. Following Lemma 1 in Pal, Woodroofe and Meyer (2007), it can

be derived:

∫
log

(
ε+ gβ̂n,p̂n
ε+ gβ0,p0

)
dPX,Y ≤ 2

∫ √
ε

ε+ gβ0,p0

dPX,Y − 2h2(gβ̂n,p̂n , gβ0,p0).

By the strong law of large numbers:
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log{ε+ gβ0,p0}dPX,Y −

∫
loggβ0,p0dP→

∫
log

{
ε+ gβ0,p0

gβ0,p0

}
dPX,Y → 0

as ε→ 0.

Consequently, we have

0 ≤ lim inf

[∫
log{ε+ gβ̂n,p̂n}d(P− PX,Y ) +

∫
log

{
ε+ gβ̂n,p̂n
ε+ gβ0,p0

}
dPX,Y

+

∫
log{ε+ gβ0,p0}dPX,Y −

∫
loggβ0,p0dP

]
≤ 2

∫ √
ε

ε+ gβ0,p0

dPX,Y − 2lim sup{h2(p̂n, p0)}.

As ε→ 0, we have lim sup{h2(gβ̂n,p̂n , gβ0,p0)} → 0, and lim sup{h2(p̂n, p0)} → 0

follows from Lemma 1. Following the same arguments of Lemma 3.14 in Sere-

gin and Wellner (2010), p̂n → p0 pointwise and the convergence is uniform on

compact space.

The limn→∞{
∫

loggβ̂n,p̂ndP−
∫

loggβ0,p0dP} ≥ 0 yields∫
loggβ̂n,p̂ndPX,Y −

∫
loggβ0,p0dPX,Y ≥ 0,

and ∫
(φ̂n − φ0)dPY +

∫
{η(y,x|β̂n)− η(y,x|β̂0)}dPX,Y

≥
∫
{logQp̂n(β̂n)− logQp(β0)}dPX . (A.2)

Let φ̂(y)− φ0(y) = c(y) and η(y,x|β̂n)− η(y,x|β0) = b(y,x|β̂n,β0), we have

Qp̂n(β̂n)

Qp0(β0)
=

∫
ec(y)+b(y,x|β̂n,β0)fβ0,p0dy ≥ e

∫
{c(y)+b(y,x|β̂n,β0)}fβ0,p0dy

with the equality hold when c(y) + b(y,x|β̂n,β0) = c0 for a constant c0 by

Jensen’s inequality. Furthermore,∫
log

{
Qp̂n(β̂n)

Qp0(β0)

}
dPX ≥

∫ ∫
{c(y) + b(y,x|β̂n,β0)}fβ0

(p0)dydPX

=

∫
c(y)dPY +

∫
b(y,x|β̂n,β0)dPX,Y ,

by the law of total expectation. Combining with (A.2), we have∫
(φ̂n − φ0)dPY +

∫
{η(y,x|β̂n)− η(y,x|β0)}dPX,Y

=

∫
{logQp̂(β0)− logQp(β0)}dPX ,
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and it has to be c(y) + b(y,x|β̂n,β0) = c0. Based on the facts that both exp(φ̂n)

and exp(φ0) need to be a density function, and both Y and X are not degen-

erate, we can deduce c0 = 0. Furthermore, it implies η(y,x|β̂n) → η(y,x|β0)

because again both Y and X are not degenerate, followed by β̂n → β0 based on

assumption C.

Proof of Lemma 2

By Theorem 4.2 of Doss and Wellner (2016), we know that N[ ](ε,
√
Pc, L2) .

exp{ε−1/2} for L2(p, q) = (
∫
|p− g|2dλ)1/2, where . means the left side bounded

by a constant times the right side. It imply that there is a set of functions

{(pl1, pu1 , . . . , pls, pus ) : L2(
√
pli,
√
pui ) < ε, i ∈ (1, . . . , s)} such that, for each p ∈ P,

pli ≤ p ≤ pui for some i. Furthermore, let pLi = pli − ε and pUi = pui + ε, which

satisfy pLi + ε ≤ p ≤ pUi − ε.
Consider t points β1, . . . ,βt in the neighborhood B(β0, δ). By our model

assumptions B and C, the exp{η(y,x|β)} is bounded for β ∈ B(β0, δ)., Fol-

lowing the arguments in the proof of Lemma 3.1 by Huang (1996), by choosing

appropriate δ and t . 1/ε, we have

exp{y,x|βj)}pLi (y) ≤ exp{η(y,x|β)}p(y) ≤ exp{η(y,x|βj)}pUi (y), (A.3)

for j ∈ (1, . . . , t).

For each (β, p) ∈ B(β0, δ)×Pc, i ∈ (1, . . . , s), and j ∈ (1, . . . , t), inequalities

(A.3) imply

gLij ≤ gβ,p ≤ gUij ,

where

gLij =
pLi (y)eη(y,x|βj)∫
pUi (y)eη(y,x|βj)dy

px(x) and gUij =
pUi (y)eη(y,x|βj)∫
pLi (y)eη(y,x|βj)dy

px(x).

By Assumption B, we can see that L2(gLij , g
U
ij) . L2(pLi , p

U
i ). It implies, there

exist {gLij , gUij : i = 1, . . . , s, j = 1, . . . , t} such that gLij ≤ g ≤ gUij for any g ∈ Gδ
and some i ∈ (1, . . . , s), j ∈ (1, . . . , t). That is, N[ ](ε,

√
Gδ, L2) . ε−1 exp(ε−1/2).

For small enough ε, the claim of the theorem is followed since N[ ](ε,Gδ, h0) ≤
N[ ](ε,G4δ, h) ≤ N[ ](ε/

√
2,
√
Gδ, L2).

Proof of Lemma 3

Define mβ,p = log{(gβ,p+gβ0,p0)/2gβ0,p0}. Utilizing the relation P{log(p/q)}
. −h2(p, q) and the arguments in Theorem 3.4.4 of van der Vaart and Wellner

(1996), it can be shown that P0(mβ,p − mβ0,p0) . −h2(gβ,p, gβ0,p0). Lemma 1

leads to P0(mβ,p − mβ0,p0) . −h2(p, p0). By Taylor series expansion in β, we

have P0(mβ,p0 −mβ0,p0) & −‖β − β0‖2. Thus decomposing P0(mβ,p −mβ,p0) as



896 CHEN ET AL.

P0(mβ,p −mβ0,p0)− P0(mβ,p0 −mβ0,p0) yeilds

P0(mβ,p −mβ,p0) . −h2(p, p0) + ‖β − β0‖2. (A.4)

Denote the empirical process Gnf =
√
n(P − P )f . Following Lemma 3.4.2 and

Theorem 3.4.4 of van der Vaart and Wellner (1996), we have

E∗Gδ |G(mβ,p −mβ,p0)| . ζ(δ) = J[ ](δ,Gδ, h0)

{
1 +

J[ ](δ,Gδ, h0)

δ2
√
n

}
, (A.5)

where J[ ](δ,Gδ, h0) =
∫ δ

0

√
1 + logN[ ](ε,Gδ, h0)dε.

The inequalities (A.4) and (A.5) correspond to expressions (3.5) and (3.6) of

Murphy and van der Vaart (1999). The entropy in Lemmea 2 imply J[ ](δ,Gδ, h0) .
δ3/4. If a sequence δn satisfy δn . n=2/5, we have δ−2

n J[ ](δn,Gδ, h0) .
√
n, which

is equivalent to ζn(δn) ≤
√
nδ2

n. Then h(p̂β̃, p0) ≤ O(n−2/5 + ‖β̃ − β0‖) follows

from Theorem 3.2 of Murphy and van der Vaart (1999) and Theorem 3.4.1 van

der Vaart and Wellner (1996).

Proof of Theorem 2

In the context of least favorable model, we assume that for each (β, p), there

exist a map t → pt(β, p) = p + (β − t)h0p, where h0 is the least favorable di-

rection at the true parameter (β0, p0). We then form the map t→ l(t,β, p)(y) by

l(t,β, p)(y) = l{t, pt(β, p)}(y), where l(β, p) = log p(y) + η(y,x|β)−
log
∫

exp(η(y,x|β))p(y)dy is twice continuously differentiable for all y. The cor-

responding derivatives are denoted as l̇(t,β, p)(y) and l̈(t,β, p)(y).

In the followed, we will establish four conditions.

Condition 1. pβ(β, p) = p for every (β, p).

It is satisfied for pt(β, p) = p+ (β − t)h0p.

Condition 2. l̇(β0,β0, p0) = l̇β0,p0 .

The score function for β is l′β,p = η′ −
∫
η′eη(y,x|β)p(y)dy/

∫
eη(y,x|β)p(y)dy.

Let H be the set of measurable function h : Y → [0, 1], given a fixed p, let

pt(β, p) = p + thp. When p is log-concave, pt is log-concave for th > 0.

Differentiating at t = 0, we have the score for p as Aβ,ph = h − Bβ,ph =

h −
∫
heη(y,x|β)p(y)dy/

∫
eη(y,x|β)p(y)dy. The efficient score function for β at

(β0, p0) is defined as l̇β0,p0 = l′β0,p0
+Aβ0,p0hβ0,p0 . Substituting β = t and pt = p

in l(β, p) and differentiating with respect to t, it is straight forward to show that

l̇(β0,β0, p0) = l̇β0,p0 .

Condition 3. For any β̃n
P−→ β0, p̂β̃n

P−→ p0.

It is followed by Lemma 3.

Condition 4. For any β̃n
P−→ β0, P0 l̇(β0, β̃n, p̂β̃n) = oP (‖β̃n − β0‖+ n−1/2).
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As shown in expression (17) of Murphy and van der Vaart (2000), P0 l̇(β0,β0, p)

is of order Op{h2(p, p0)} since p→ fβ,p is twice differentiable and p→ l̇(β0,β0, p)

is differentiable at p0. By Lemma 3, we can see that P0 l̇(β0,β0, p̂β̃n) = oP (‖β̃n−
β0‖+ n−1/2) is satisfied, which is equivalent to Condition 4.

The conditions 1-4 correspond to conditions (8)-(11) in Murphy and van der

Vaart (2000), in addition, we need to prove the invertibility of the information

matrix to build the asymptotic property. Let Dn(β, p) = {Dn1(β, p),Dn2(β, p)}
be the element of Rg × l∞(H) given by

Dn1(β, p) = Pl′β,p, Dn2(β, p) = PAβ,ph− Pβ,pAβ,ph.

The expectation of Dn(β, p) under the true distribution P0 = Pβ0,p0 is the ele-

ment D(β, p) = {D1(β, p),D2(β, p)} of Rk × l∞(H) given by

D1(β, p) = P0l
′
β,p, D2(β, p) = P0Aβ,ph− Pβ,pAβ,φh.

A Hilbert-space adjoint B∗β,p of Bβ,p is given by B∗β,pq =
∫
q(x)eη(y,x|β)dPX(x).

The least favourable direction, h0, for the estimation of β in the presence of p

is given by (A∗β0,p0
Aβ0,p0)

−1A∗β0,p0
l′β0,p0

, and it can be shown that A∗β0,p0
l′β0,p0

=

−B∗β0,p0
l′β0,p0

and A∗β0,p0
Aβ0,p0 = I −B∗β0,p0

Bβ0,p0 .

The derivative of D at (β0, p0) is given by the map:

Ḋ : (β − β0, p− p0)→

(
H11 H12

H21 H22

)(
β − β0

p− p0

)
,

where H11(β−β0) = P0l
′′
0(β−β0) = −I0(β−β0), H12(p−p0) =

∫
B∗0 l

′
0(p−p0)dy,

H21(β−β0)h = P0A0h(l′0−η′0)(β−β0), and H22(p−p0)h = −
∫

(I−B∗0B0)h(p−
p0)dy. Since

Ḋ−1 =

(
H−1

11 (H11 + H12Λ−1H21)H−1
11 −H−1

11 H12Λ−1

−Λ−1H21H
−1
11 Λ−1

)
,

the continuous invertibility of Ḋ can be verified by continuous invertibility of H11

and Λ = H22 −H21H
−1
11 H12. By Assumption D, the matrix H11 is continuous

invertible. The operator

Λ = −
∫
{I+P0A0(l′0−η′0)I−1

0 B∗0 l
′
0−B∗0B0}h(p−p0)dy = −

∫
(I+K)h(p−p0)dy

is continuous invertible if K is compact and I+K is one-to-one using the theory

of Fredholm operator. Since eη(y,x|β) is sufficiently smooth, the operator B∗0
is compact by Arzelà-Ascoli theorem. The operator P0A0(l′0 − η′0)I−1

0 B∗0 l
′
0 is

compact because it has a one-dimensional range. Thus K is compact. Now

it suffices to show that I + K is one-to-one. The spectrum of the self-adjoint
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operator I−B∗0B0 : L2(p0)→ L2(p0) is contained in [1,∞). Finally, this operator

is continuously invertible in the Hilbert-space sense.

Following Corollary 1 and Theorem 1 in Murphy and van der Vaart (2000),

the conditions 1-4, the invertibility of information matrix, and the consistence of

estimators imply
√
n(β̂ − β0) is asymptotic normal with mean 0 and covariance

matrix Ĩ0 = H11 −H12H
−1
22 H21.

Proof of Theorem 3

Let

(β1, F1) = arg max
β,F∈Fc

E0

{
log

f(y; x,β, F )

f(y; x,β0, F0)

}
,

where E0 denote the expectation under PX,Y .

Helly’s lemma (van der Vaart (1998)) implies that, there exist a subsequence

of F̂n which converges to a distribution F2 on the continuous points of F2. There

is also a subsequence of β̂n converging to β2 because Θ is a compact set. It

follows that

0 ≤ Pn{l(β̂n, F̂n)− l(β0, F0)} → E0{l(β2, F2)− l(β0, F0)}.

Since (β1, F1) is the unique miaximizer of the Kullback-Leibler information by

assumption A, we conclude that (β2, F2) = (β1, F1). That is, F̂n converge weakly

to F1 whose density is log-concave when F0 /∈ Fc. Since both F̂n and F1 are

continuous probability distribution function, the weak convergence of F̂n implies

its uniform convergence, i.e., ‖F̂n(y)−F1(y)‖∞ → 0 (Chow and Teicher (1978)).

Based on ‖F̂n(y) − F̃n(y)‖∞ ≥ ‖F̂n(y) − F0(y)‖∞ − ‖F̃n(y) − F0(y)‖∞ and

‖F1(y)− F0(y)‖∞ ≥ C for a positive constant C, we have

lim
n→∞

inf
F̂n(y)∈Fc,F0 /∈Fc

‖F̂n(y)− F̃n(y)‖∞ ≥ C

because ‖F̃n(y)− F0(y)‖∞ → 0 by Luo and Tsai (2012). Consequently, we have

lim
ε→0

lim
n→∞

inf
F̂n(y)∈Fc,F0 /∈Fc

P (Tn ≥
√
nε) = 1. (A.6)

When the true distribution satisfy the shape constraint, we have

limn→∞:F0∈FcP (Tn ≤
√
nε) = 1 for all ε > 0 since ‖F̂n(y) − F0(y)‖∞ → 0 by

Theorem 1. It follows that lim
n→∞

P (T ∗ ≤
√
nε) = 1 because the shape constraint

estimate (β∗, F ∗) is based on data sampled from the null distribution Fc in the

bootstrap procedure. It implies that

lim
n→∞

P (ξα ≤
√
nε) = 1 for all ε > 0, (A.7)

where ξα is the critical values in the bootstrap procedure. Combining (A.6) and
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(A.7) together, we complete the proof.
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