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Abstract: We propose a new procedure to estimate the index parameter and link

function of single-index models, where the response variable is subject to fixed

censoring. Under some regularity conditions, we show that the estimated index pa-

rameter is root-n consistent and asymptotically normal, and the estimated nonpara-

metric link function achieves the optimal convergence rate and is asymptotically

normal. In addition, we propose a linearity testing method for the nonparametric

link function. A simulation study shows that the proposed procedures perform well

in finite-sample experiments. An application to an HIV data set is presented for

illustrative purposes.
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1. Introduction

Because of the non-negativity or a detection limit, data with fixed censored

responses are common in econometrics and biometrics studies (Maddala (1986);

Adesina and Zinnah (1993); Nizar Al-Malkawi (2007); Haab, Dunham and Brown

(2001); Van der Pouw Kraan et al. (1995)). For instance, in our motivating HIV

data set, the viral load in the blood serum can only be observed if it is above 50

units (Kobie et al. (2012)).

To explore the relationship between the fixed censored response variable

and the covariates, several models and associated estimation methods are pro-

posed. Earlier works focused on parametric regression models, including the To-

bit model (Tobin (1958)) and its variants (Amemiya (1984, 1979); Blundell and

Meghir (1987)), which assume a linear relationship with normal errors. However,

both linearity and normality assumptions can be violated in practice (Maddala

and Nelson (1975); Gawande (1995); Chen, Dahl and Khan (2005)). To make

the model more flexible, several researchers have studied nonparametric regres-

sion models with fixed censored data. For example, Lewbel and Linton (2002)

proposed a two-stage moment-based method to estimate the nonparametric con-
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ditional mean function; Chen, Dahl and Khan (2005) studied the identification

and estimation problems of the conditional median function in nonparametric

location-scale models. These nonparametric methods achieve greater flexibility

and, in general, do not require distributional assumptions. However, they suffer

from “curse of dimensionality”, and their performance can be poor, even when

the dimension of the covariates is moderate.

To amend the limitations of the existing methods, we consider single-index

models with the fixed censored responses. Single-index models have been widely

studied in the literature (Powell, Stock and Stoker (1989); Duan and Li (1991);

Härdle, Hall and Ichimura (1993); Ichimura (1993); Horowitz and Härdle (1996);

Carroll et al. (1997); Xia and Härdle (2006); Liang et al. (2010)). The majority of

these studies focuses on cases in which the response Y is fully observed, although

some researchers have studied estimation when Y is randomly censored (Lopez

(2009); Bücher, El Ghouch and Van Keilegom (2014); Chiang, Wang and Huang

(2017); Kong and Xia (2017)). Note that the methods for single-index models

with randomly censored responses implicitly assume that we can always observe

uncensored observations below any given value of the censoring point (Lopez

(2009); Bücher, El Ghouch and Van Keilegom (2014); Kong and Xia (2017);

Huang (2017)). However, this is not true for the fixed censoring case because the

probability of observing uncensored observations below the given fixed censored

point is zero. Thus, the associated methods cannot be applied. To the best of our

knowledge, no estimation methods for single-index models with fixed censored

responses are available in the literature.

By establishing a relationship between fixed censored single-index models

and uncensored single-index models, we propose a new procedure to estimate the

index parameter. Under certain regularity conditions, the proposed estimator is

root-n consistent and asymptotically normal. After substituting in the index

parameter, the single-index model is simplified to a univariate fixed-censored

nonparametric model, and we apply the method of Lewbel and Linton (2002)

to estimate the nonparametric link function. The estimated nonparametric link

function achieves the optimal convergence rate and is asymptotically normal.

Finally, a hypothesis testing procedure is proposed to check the linearity of the

nonparametric link function.

The rest of the paper is organized as follows. Section 2 presents the model,

and gives the estimation and testing procedures. Section 3 presents the asymp-

totic properties. Section 4 explores the finite-sample performance by means of

a simulation study, and an HIV data set is analyzed in Section 5 for illustra-
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tive purposes. All technical proofs are provided in the online Supplementary

Material.

2. Model and Methods

2.1. Model

Consider the following single-index model for the latent responses:

Y ∗i = m(X>i β)− εi, i = 1, . . . , n, (2.1)

where Xi = (Xi,1, . . . , Xi,d)
> is a d-dimensional covariate vector, β = (β1, . . . ,

βd)
> is an unknown index parameter vector, m(u) = E(Y ∗i |X>i β = u) is an

unknown smooth function, and εi is the random error. Owing to fixed censoring,

Y ∗i cannot be fully observed. Instead we can only observe (Yi, δi), where Yi =

max(Y ∗i , c), δi = I(Y ∗i > c), c is the known lower detection limit, and I(·) is

an indicator function. Without loss of generality, we assume c = 0. Instead of

making parametric distribution assumptions, such as normality, we assume only

that εi is independently and identically distributed (i.i.d.), from an unknown

distribution symmetric around zero, and with finite variance. Furthermore, we

assume that no intercept is included in the index function X>i β, for ‖β‖ = 1,

and that the first element of β is positive, which ensures identification, where

‖ · ‖ denotes the L2-norm. In addition, we assume that β ∈ Θ ⊂ Rd for some

compact set Θ, and X ∈ DX ⊂ Rd for some compact set DX .

Remark 1. To facilitate theoretical derivations, we consider an error term of

“ − εi” instead of “εi”; a similar model setting can be found in Lewbel and

Linton (2002). Note that with the symmetry assumption on εi around 0, εi and

−εi have the same distribution.

2.2. Profile least-squares estimator of β

Under model (2.1), the proposed estimation procedure for β is inspired by

considering a connection between fixed censored single-index models and uncen-

sored single-index models. Under mild assumptions, this connection changes the

estimation of a single-index Tobit model to a standard single-index model; as a

result, well-developed estimation procedures can be applied.

Assumption A.1. (i) The latent response Y ∗ has first ν(≥ 3) absolute mo-

ments. (ii) The common density function of εi, denoted as f(·), is symmetric

around zero and its derivative is continuous.
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Proposition 1. Let F (·) be the distribution function of ε. Under Assumption

A.1, if limε→−∞ εF (ε) = 0, then E(Yi|X>i β) =
∫m(X>

i β)
−∞ F (ε)dε.

Assumption A.1 and the assumption limε→−∞ εF (ε)=0 are mild, and are

most commonly used with symmetric distributions, such as the normal dis-

tribution, Student’s tυ distribution (υ ≥ 4), and the uniform distribution on

a symmetric interval (Lewbel and Linton (2002)). Proposition 1 implies that

E(Yi|X>i β) can be represented as a new uncensored single-index model with

the same index parameter β, but with a new link function. More specifically,

E(Yi|X>i β = u) = r(u) = w ◦m(u), where w(t) =
∫ t
−∞ F (ε)dε, and “◦” means

the composition of two functions; a similar derivation can be found in Lewbel

and Linton (2002).

According to Proposition 1, we can assign a new single-index model for the

observed responses as

Yi = r(X>i β)− ε′i, i = 1, 2, . . . , n, (2.2)

where ε′i = εi + (Y ∗i −Yi) + r(X>i β)−m(X>i β). By Proposition 1, E(Yi|X>i β) =

r(X>i β). Thus we have E(ε′i|X>i β) = 0. Therefore, existing estimation methods

for single-index models can be applied to estimate β. Here, we adopt the profile

least-squares method of Liang et al. (2010), as follows. Given β, we employ the

local linear regression technique to estimate r(·), that is, we minimize
n∑
i=1

{a+ b(X>i β − u)− Yi}2Kh(X>i β − u) (2.3)

with respect to a and b, where Kh(·) = K(·/h)/h, K(·) ≥ 0 is a kernel function,

and h > 0 is the bandwidth. Let (â, b̂) be the minimizer of (2.3); then, r̂(u) = â.

As discussed in Jennrich (1969), there exists a profile least-squares estimator β̂

that minimizes

Q(β) =

n∑
i=1

{Yi − r̂(X>i β)}2

with respect to β, where the minimization problem can be solved using standard

optimization algorithms, such as the Newton–Raphson algorithm, and conver-

gence is guaranteed.

Remark 2. The estimation procedure above treats all covariates as important.

In practice, especially when the dimension of X is high, it is quite possible that

irrelevant covariates are included. This may motivate us to consider variable

selection. Given expression (2.2), any variable selection method for single-index

models can be used for variable selection, including the penalized profile least-
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squares method of Liang et al. (2010). A detailed discussion can be found in

Huang (2017).

2.3. Nonparametric estimation of m(·)

Given β̂, we can estimate the unknown link function m(·). For notational

convenience, we rewrite model (2.1) as

Y ∗i = m(Ui)− εi, i = 1, . . . , n, (2.4)

where Ui = X>i β. Recall the definition of r(·) in (2.2), namely, r(u) = E(Y |U =

u) = E(Y |X>β = u), and define s = r(u), q(s) = q(r(u)) = P{Y > 0|r(U) =

r(u)} = P (Y > 0|U = u); and Ûi = X>i β̂. We propose estimating m(·) in a

similar manner to that of Lewbel and Linton (2002).

Step 1. Smooth the observed response Yi over Ûi to estimate r(Ûi) using a

local linear smoother (Fan and Gijbels (1996)); that is,

(âi,0, âi,1) = arg min
(a0,a1)∈R2

n∑
j=1

{Yj − a0 − a1(Ûj − Ûi)}2Kh1
(Ûj − Ûi). (2.5)

Then, r(Ûi) is estimated as r̂(Ûi) = âi,0, where h1 > 0 is a bandwidth.

Step 2. Smooth I(Yi > 0) over r̂(Ûi) to estimate q(·) using a local linear

smoother; that is,

(b̂0, b̂1) = arg min
(b0,b1)∈R2

n∑
i=1

[I(Yi > 0)− b0− b1{r̂(Ûi)− r̂(u)}]2Kh2
(r̂(Ûi)− r̂(u)).

Then, q(r̂(u)) is estimated as q̂(r̂(u)) = b̂0, where r̂(u) is estimated by

replacing Ûi with u in (2.5), and h2 > 0 is a bandwidth.

Step 3. Estimate m(u) by m̂(u) = λ̂r−
∫ λ̂r
r̂(u) 1/q̂(s)ds, where λ̂r = maxi=1,...,n r̂

(X>i β̂). For the integration part, any one-dimensional numerical integration

approach, such as Trapezoid rule, can be employed.

2.4. Testing the linearity of the link function

In practice, we may wish to determine whether m(·) is a linear function,

because if it is, we can simplify the single-index model to a linear model. In this

section, we study the hypothesis

H0 : m(u) = ζ0 + ζ1u versus H1 : H0 is not true.

To test the linearity of m(·), we further assume εi ∼ N(0, σ2), where σ is an

unknown scale parameter.
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Recalling Proposition 1, we have

w′(u) =
∂r(u)

∂m(u)
= F (m(u)) = Φ

(
m(u)

σ

)
> 0,

which indicates that r(·) is a strictly increasing function of m(·). As a result,

testing H0 against H1 is equivalent to

K0 : r0(u) =

∫ ζ0+ζ1u

−∞
Φ

(
ε

σ

)
dε versus K1 : K0 is not true.

We adopt the idea of Koul, Song and Liu (2014) to test K0 versus K1. Given a

root-n consistent estimator of β0, say β̂, we define

ε̂′i = Yi −
∫ ζ0+ζ1·X>

i β̂

−∞
Φ

(
ε

σ

)
dε,

where ζ0, ζ1, and σ are estimated by the maximum likelihood method in the

Tobit model (Tobin (1958); Amemiya (1984)). Define

Vn =
1

n(n− 1)h

∑
i 6=j

K

(
X>i β̂ −X>j β̂

h

)
ε̂′iε̂
′
j ,

γ̂2 =
2

n(n− 1)h

∑
i 6=j

K2

(
X>i β̂ −X>j β̂

h

)
ε̂
′2
i ε̂

′2
j ,

where h > 0 is the same bandwidth as that of the profile least-squares estimator

of the index parameter, specified in equation (2.3). The test statistic is then

defined as

Tn =
nh1/2Vn

γ̂
.

Under certain regularity conditions, we can prove that Tn is asymptotically nor-

mal under the null hypothesis. Thus, a large value of Tn indicates a deviation

from the Tobit model.

3. Asymptotic Properties

In this section, we present the asymptotic properties of the proposed estima-

tors for the index parameter and the link function, as well as the properties of the

test statistic. The true index parameter and unknown link function are denoted

as β0 = (β1,0, . . . , βd,0)> and m(·), respectively. In addition to Assumption A.1,

the following assumptions are needed for the asymptotic results.

Assumption A.2. (i) r(·) and m(·) are not constant on the support Ω = {u|u =

x>β, x ∈ DX , β ∈ Θ}; then their third derivatives are uniformly Lipschitz con-
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tinuous for all u ∈ Ω. (ii) Let fX(x) be the density function of X; then, the

third derivative of fX(x) is continuous. (iii) The second derivative of the func-

tion q(·) is continuous, and infu∈Ω q(r(u)) > 0. Furthermore, q(λr) = 1, where

λr = supu∈Ω r(u), and the supremum is taken over u = x>β0 for x ∈ DX . (iv)

τ2(u) = E[{Y − r(X>β0)}2|X>β0 = u] and v4(u) = E[{Y − r(X>β0)}4|X>β0 =

u] are bounded functions with continuous derivatives.

Assumption A.3. (i) nh8 → 0 and nh3+3/(ν−1)/ log n → ∞ as n → ∞, where

ν ≥ 3 is specified in A.1. (ii) nh2
1/ log2(n)→∞, nh2

2/ log2(n)→∞ and h1/h2 ≤
C1, nh5

1 ≤ C2, and nh5
2 ≤ C3 for some positive constants C1, C2, and C3.

Assumption A.4. The support of the kernel function K(·) is [−1, 1], and its sec-

ond derivative is Lipschitz continuous. Moreover,
∫ 1
−1K(s)ds = 1,

∫ 1
−1 sK(s)ds =

0, and
∫ 1
−1 s

2K(s)ds > 0.

Assumptions A.2 (i)–(ii) are similar to the regularity conditions in Carroll et

al. (1997) and Liang et al. (2010) for uncensored data. A.2 (iii) is adopted from

Assumption 2 in Lewbel and Linton (2002), which is necessary to ensure that

the estimated nonparametric link function achieves the optimal convergence rate.

Assumption A.2 (iv) is adopted from Assumption (C2) in Koul, Song and Liu

(2014), which is a necessary condition for the asymptotic normality of the test

statistic. Assumption A.3 provides us with a guideline for selecting appropriate

bandwidths. Furthermore, as pointed out by Liang et al. (2010), Assumption

A.3 (i) implies that the estimation performance remains stable in a reasonable

range of bandwidth, especially when the sample size is large. In practice, the

bandwidth can be chosen using cross-validation. Assumption A.4 is standard for

nonparametric regressions.

Theorems 1–2 present the asymptotic properties of the estimated index pa-

rameter and the nonparametric link function.

Theorem 1. Under Assumptions A.1–A.4, we have
√
n(β̂ − β0)

D−→ N(0,W+
0 ), (3.1)

where W0 = E[r′2(X>β0){X−E(X|X>β0)}{X−E(X|X>β0)}>τ2(X>β0)], and

W+
0 denotes its Moore–Penrose inverse.

Theorem 2. Under Assumptions A.1–A.4, for an interior point u = x>β, where

x ∈ DX and β ∈ Θc0 = {β : ‖β − β0‖ ≤ c0n
−1/2}, for some positive constant c0,

we have √
nh1

{
m̂(u)−m(u)− k0 − bm(u)h2

1

} D−→ N

{
0,

1

s2
0(u)

σ2
u

}
. (3.2)
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Here, σ2
u = τ2(u)f−1

U (u)
∫ 1
−1K

2(t)dt, with fU (·) being the density function of

U = X>β0; k0 = λr − F−1
1 (λr), with F1(λr) =

∫ λr
−∞ F (ε)dε; s0(u) = q(r(u));

bm(·) is a bounded continuous function that is determined by the terms T2 and T6

in the online Supplementary Material. If we further assume that supε∈Ωε ε ≤ λr,
where Ωε is the domain of ε, then the term k0 disappears, and we have√

nh1

{
m̂(u)−m(u)− bm(u)h2

1

}
D−→ N

{
0,

1

s2
0(u)

σ2
u

}
. (3.3)

Theorem 1 shows that the estimator β̂ is root−n consistent and asymptoti-

cally normal. Theorem 2 indicates that, up to a location constant, the proposed

nonparametric estimator achieves the optimal convergence rate. Furthermore,

note that although k0 is theoretically nonzero, it is numerically negligible in

many situations, based on our experience. In addition, Theorem 2 theoretically

justifies that the location shift k0 disappears with slightly stronger assumptions.

Remark 3. Constructing confidence intervals for β0 and m(·) may require that

we estimate the asymptotic variances involved in Theorems 1–2. The weighting

function τ(·) and asymptotic covariance matrix W+
0 of β̂ can be estimated us-

ing typical variance estimation methods for heterogeneous single-index models

(Ichimura (1993); Härdle, Hall and Ichimura (1993); Chiou and Müller (1998,

1999)). The asymptotic variance σ2
u/s

2
0(u) of the link function estimator can be

obtained by replacing f−1
U (·) and s0(·) with their consistent estimators (Lewbel

and Linton (2002)). Considering the potential complexity in the estimation of the

variances, the bootstrap method is a good alternative for constructing confidence

intervals for β0 and m(·).

Lastly, we state the asymptotic properties of the proposed test. We need

two additional assumptions.

Assumption A.5. The random noise εi ∼ N(0, σ2), where σ ∈ Ωσ is an un-

known parameter.

Assumption A.6. For any given β ∈ Θ, and any root-n consistent estimator

σ̂ of σ, sup(x,σ)∈DX×Ωσ |r(x
>β, σ̂) − r(x>β, σ) − (σ̂ − σ)r′(x>β, σ)| = Op(1/n),

where r(x>β, σ) =
∫m(x>β)
−∞ Φ(ε/σ)dε.

Assumption A.6 is adapted from Assumption (C.4) of Koul, Song and Liu

(2014). We have the following result for Tn.

Theorem 3. Assume Assumptions A.1–A.6 hold. Then, under H0,
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Tn =
nh1/2Vn

γ̂

D−→ N(0, 1).

4. Simulation Studies

In this section, we investigate the finite-sample performance of the proposed

estimation and testing methods using Monte Carlo simulations. Examples 1 and

2 focus on the estimation of β0 and m(·), respectively, and Example 3 studies

the performance of Tn.

Example 1. In this example, we focus on the estimation of β0. We generate 100

replicates from the following two models:

Y ∗i = e(Xi1+Xi2)/
√

2 − εi, i = 1, . . . , n, (4.1)

and

Y ∗i = sin

(
π{(Xi1 +Xi2)/

√
2}

(b− a)

)
− εi, i = 1, . . . , n, (4.2)

where Xi1 and Xi2 are i.i.d. from Uniform(0, 1), εi follows either a N(0, 0.12)

or a Laplace distribution L(0, 0.12), and a =
√

2/2 and b =
√

3/2 + 1.645/
√

12.

In both (4.1) and (4.2), the true index parameter is β0 = (β01, β02)> = (0.701,

0.701)>. The observed responses Yi are set as Yi = max(Y ∗i , c), where c is

properly chosen to yield two censoring proportions (Cen), Cen = 20% and Cen

= 40%. We consider two sample sizes, n = 200 and 400.

Because no estimation methods are available for such models, we compare our

estimator with the widely used profile least-squares estimator, based on the latent

data Y ∗i (corresponding to Cen = 0). The performance is evaluated using the L2

difference ‖β0 − β̂‖2 across replicates. We select the bandwidth h using a grid

search to minimize the simulation-based estimates of the L2 differences, following

Liang et al. (2010). The average CPU time for each replicate is 28 seconds for

n = 200 and 101 seconds for n = 400, running on an Intel(R) Core(TM) i7-

6700HQ CPU with 2.60GHz. Table 1 summarizes the averaged estimates (AVE)

of β0 and the corresponding MSE. From Table 1, we find that the biases based

on Yi are comparable with those from Y ∗i , whereas the MSE based on Yi is larger,

but still within a reasonable range.

Example 2. In this example, we focus on the estimation of m(·). We generate

200 replicates, where each replicate consists of n = 400 observations from models

(4.1) and (4.2). We estimate m(·) at 400 grid points, uniformly spaced within the

range of X>β0. The censoring point c is set to yield Cen = 20%, which mimics
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Table 1. Example 1, average estimates (AVE) and MSE×104 of the index parameter.

n Cen Model (4.1) Model (4.2)
AVE MSE AVE MSE

β1 β2 β1 β2 β1 β2 β1 β2
εi ∼ N(0, 0.12)

200 0% 0.7067 0.7080 4.84 5.07 0.7083 0.7057 5.37 5.64
20% 0.7065 0.7076 5.16 4.51 0.7083 0.7054 6.92 7.35
40% 0.7080 0.7061 7.91 7.43 0.7079 0.7052 10.80 12.12

400 0% 0.7078 0.7064 1.16 0.98 0.7069 0.7072 1.32 1.46
20% 0.7067 0.7060 1.63 1.49 0.7074 0.7074 2.05 2.28
40% 0.7056 0.7070 1.64 1.67 0.7093 0.7065 3.52 4.24

εi ∼ L(0, 0.12)
200 0% 0.7067 0.7074 4.12 3.67 0.7079 0.7073 5.76 5.97

20% 0.7075 0.7068 5.19 4.47 0.7076 0.7067 7.41 7.78
40% 0.7071 0.7061 6.27 6.34 0.7071 0.7052 9.52 9.89

400 0% 0.7070 0.7072 1.27 1.30 0.7074 0.7071 3.16 3.25
20% 0.7069 0.7730 1.28 1.33 0.7074 0.7068 4.01 4.16
40% 0.7071 0.7070 1.76 1.72 0.7093 0.7065 5.09 5.69

our real HIV data in Section 5. To alleviate the computational burden, the band-

widths for estimating the link function are chosen using a the rule of thumb (Sil-

verman (1986)), that is, h1 = 1.06s(X>β̂)n−1/5 and h2 = 1.06s(r̂(X>β̂))n−1/5,

where s(·) denotes the sample standard deviation.

Figures 1 and 2 present the point-wise median curve (solid line) of the esti-

mated function m̂(u) on the selected grid, point-wise 5% and 95% quantiles (dot-

ted line) of m̂(u), and the true m(u) (dashed lines). The difference between the

median curve and the true curve provides a measure of the bias, whereas the 5%

and 95% lines provide measures of spread, which can be interpreted as simulation-

based point-wise confidence bands. In general, regardless of normal errors or

Laplace errors, the fitted curves are close to the true curve, and the confidence

bands cover the true curve, except for a small region. Finally, as pointed out by

Lewbel and Linton (2002), if the assumption that supε∈Ωε ε ≤ supu r(u) = λr in

Theorem 2 is not satisfied, a location shift may be expected. However, for these

scenarios,
∫ λ̂r
−∞ εf(ε)dε is almost zero and F (λ̂r) = 1, numerically, which implies

that
∫ λ̂r
−∞ εf(ε)dε = λ̂r −

∫ λ̂r
−∞ F (ε)dε = 0 (i.e., λ̂r = F−1

1 (λ̂r)). Therefore, the

location bias can be ignored.

Example 3. In this example, we focus on the linearity test. We generate 200

replicates from the model
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Figure 1. Simulation results for models (4.1) and (4.2) with the normal error: fitted
curves (dashed lines) and true curves (solid lines) with 90% confidence bands (dotted
lines).

Figure 2. Simulation results for models (4.1) and (4.2) with the Laplace error: fitted
curves (dashed lines) and true curves (solid lines) with 90% confidence bands (dotted
lines).

Y ∗i = m

(
(Xi1 +Xi2)√

2

)
− σεi, Yi = max(Y ∗i , c), i = 1, . . . , n,

where Xi1, Xi2 are i.i.d. from N(0, 1), εi ∼ N(0, 1), σ is equal to either 0.1 or

0.25, n is equal to either 200 or 400, and c is chosen to yield Cen = 20%. The

true m(·) function is

m(u) = u+ c2 exp(u),

where c2 ranges from 0 to 0.16, with increment 0.04, and c2 = 0, corresponding

to the null hypothesis.

Table 2 summarizes the rejection rates for all cases, given the nominal level

0.05. We find the following: (i) under the null hypothesis, the empirical sizes

are less than the nominal level; hence, the proposed tests are conservative, which

is common for nonparametric smoothing based tests (Zheng (1996); Koul, Song

and Liu (2014)); (ii) when the alternative is true, the power approaches to one

quickly.
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Table 2. Rejection rates for the linearity test of the link function when n = 200 or 400,
and σ = 0.1 or σ = 0.25.

n = 200 n = 400
c2 σ = 0.1 σ = 0.25 σ = 0.1 σ = 0.25

0 0.02 0.01 0.01 0.02
0.04 0.58 0.04 0.96 0.13
0.08 0.98 0.35 1 0.75
0.12 1 0.78 1 0.98
0.16 1 0.93 1 1

Figure 3. Fitted link function (solid line) and 90% confidence band (shaded area).

5. Analysis of an HIV Study

A primary goal of vaccine strategies aimed at trying to prevent HIV infection

is the induction of a protective humoral response. Some HIV-infected patients

develop potent serum antibodies that are able to neutralize a broad range of

HIV isolates. By studying the characteristics of the T-cells in such patients,

mechanisms for the induction of potent neutralizing antibodies may be revealed.

In this section, we apply the proposed methods to analyze a data set from

a study that measures T-cell-related parameters in HIV patients with varying

degrees of HIV viral load. The data set consists of observations of of four variables

for 414 patients: CD4, CD8, the difference of CD4 (diffcd4), and difference of

CD8 (diffcd8). Owing to detection limit, 20% of viral load values are left censored

at 50 units. All covariates are standardized to [0, 1], and a log-transformation is

applied to the response variable.

We first apply the linearity test for the link function. The resulting p-value
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is 0.002, which provides strong evidence that the link function is nonlinear. As a

result, the proposed model is more appropriate for this data set. We then estimate

the index parameter and the link function. The bandwidth for estimating β is

selected using 10-fold cross-validation, yielding hreal = 0.14, and the bandwidths

for estimating the unknown link function are selected using a rule of thumb, as

in the simulation study.

The estimated coefficients are 0.3970 (CD4), 0.0002 (CD8), 0.5919 (diffcd4),

and -0.7015 (diffcd8). Figure 3 presents the estimated curve of the link function

and the 90% point-wise confidence band at 50 grid points, uniformly spaced be-

tween [0, 0.3]. The figure indicates that the viral load shows a logarithmically

descending trend with the composite single-index. Combining the index param-

eter signs and the descending trend of the link function, we find that CD4, CD8,

and diffcd4 have negative effects, whereas diffcd8 has a positive effect on the viral

load, although the effect of CD8 is very small. These results are largely consistent

with the conclusions in the scientific literature. For example, Jiao et al. (2006)

discovered that there is a negative relation between CD4 and viral load.

Supplementary Material

The online Supplementary Material provides the proofs of Proposition 1 and

Theorems 1–3.
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